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Abstract

In this paper, we use the Leray–Schauder degree theory to establish new results
on the existence and uniqueness of anti-periodic solutions for a class of nonlinear
nth-order differential equations with two deviating arguments of the form

x(n)(t) + f(t, x(n−1)(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t).

As an application, we also give an example to demonstrate our results.
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1 Introduction
During the past twenty years, anti-periodic problems of nonlinear differential equa-
tions have been extensively studied by many authors, see [1–5] and references therein.
For example, anti-periodic trigonometric polynomials are important in the study of in-
terpolation problems [6, 7], and anti-periodic wavelets are discussed in [8]. Recently,
anti-periodic boundary conditions have been considered for the Schrodinger and Hill
differential operator [9, 10]. Also anti-periodic boundary conditions appear in the study
of difference equations [11,12]. Moreover, anti-periodic boundary conditions appear in
physics in a variety of situations [13–15].
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In this paper, we discuss the existence and uniqueness of anti-periodic solutions for
a class of nonlinear nth-order differential equations with two deviating arguments of the
form

x(n)(t) + f(t, x(n−1)(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t). (1.1)

where τi, e : R → R and f, gi : R × R → R are continuous functions, τi and e are
T -periodic, f and gi are T -periodic in their first arguments, n ≥ 2 is an integer, T > 0
and i = 1, 2.

Clearly, when n = 2 and f(t, x(t)) = f(x(t)), (1.1) reduces to

x′′(t) + f(x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t), (1.2)

which has been known as the delayed Rayleigh equation with two deviating arguments.
Therefore, we can consider (1.1) as a high-order Rayleigh equation with two deviating
arguments. The dynamic behaviors of Rayleigh equation and Rayleigh system have
been widely investigated [16–19] due to their application in many fields such as physics,
mechanics and the engineering technique fields. In such applications, it is important to
know the existence of periodic solutions of Rayleigh equation, and some results on
existence of periodic solutions were obtained in [20–23]. However, to the best of our
knowledge, few authors have considered the existence and uniqueness of anti-periodic
solutions for (1.1). This equation can stand for analog voltage transmission, and voltage
transmission process is often an anti-periodic process. Thus, it is worth continuing the
investigation of the existence and uniqueness of anti-periodic solutions of (1.1).

The main purpose of this paper is to establish sufficient conditions for the existence
and uniqueness of anti-periodic solutions of (1.1). Our results are different from those
of the references listed above. In particular, an example is also given to illustrate the
effectiveness of our results.

It is convenient to introduce the following assumptions:
(A0) Assume that there exist nonnegative constants C1 such that

| f(t, x1)− f(t, x2) |≤ C1 | x1 − x2 | for all t, x1, x2 ∈ R.

(Ã0) Assume that there exist nonnegative constants C2 such that

f(t, u) = f(u),

C2 | x1 − x2 |2≤ (x1 − x2)(f(x1)− f(x2)) for all x1, x2, u ∈ R.

(A1) for all t, x ∈ R, i = 1, 2,

f

(
t+

T

2
,−x

)
= −f(t, x), gi

(
t+

T

2
,−x

)
= −gi(t, x),

e

(
t+

T

2

)
= −e(t), τi

(
t+

T

2

)
= τi(t).
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2 Preliminary Results
For convenience, we introduce a continuation theorem [24] as follows.

Lemma 2.1. Let Ω be open bounded in a linear normal space X . Suppose that f̃ is a
complete continuous field on Ω. Moreover, assume that the Leray–Schauder degree

deg{f̃ ,Ω, p} 6= 0, for p ∈ X \ f̃(∂Ω).

Then equation f̃(x) = p has at least one solution in Ω.

Let u(t) : R→ R be continuous in t. u(t) is said to be anti-periodic on R if,

u(t+ T ) = u(t), u(t+
T

2
) = −u(t) for all t ∈ R.

For ease of exposition, throughout this paper we will adopt the following notations:

Ck
T := {x ∈ Ck(R,R), x is T -periodic}, k ∈ {0, 1, 2, . . .},

|x|q =

(∫ T

0

|x(t)|qdt
) 1

q

, |x|∞ = max
t∈[0,T ]

|x(t)|, |x(k)|∞ = max
t∈[0,T ]

|x(k)(t)|.

C
k, 1

2
T =

{
x ∈ Ck

T , x

(
t+

T

2

)
= −x(t) for all t ∈ R

}
which is a linear normal space endowed with the norm ‖ · ‖ defined by

||x|| = max
t∈[0,T ]

{|x|∞, |x′|∞, . . . , |x(k)|∞} for all x ∈ Ck, 1
2

T .

The following lemmas will be useful for proving our main results in Section 3.

Lemma 2.2. If x ∈ C2(R,R) with x(t+ T ) = x(t), then

| x′(t) |22≤
(
T

2π

)2

| x′′(t) |22 . (2.1)

Proof. Lemma 2.2 is known as Wirtinger inequality, and see [25] for the proof of it.

Lemma 2.3. Suppose one of the following conditions is satisfied:
(A2) (A0) holds and there exist nonnegative constants b1, b2 such that

C1
T

2π
+ (b1 + b2)

T n

2(2π)n−1
< 1 and
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|gi(t, x1)− gi(t, x2)| ≤ bi|x1 − x2| for all t, xi ∈ R, i = 1, 2;

(A3) (Ã0) holds and there exist nonnegative constants b1, b2 such that

0 ≤ (b1 + b2) <
2C2(2π)n−2

T n−1
and

|gi(t, x1)− gi(t, x2)| ≤ bi|x1 − x2| for all t, xi ∈ R, i = 1, 2.

Then (1.1) has at most one anti-periodic solution.

Proof. Suppose that x1 and x2 are two anti-periodic solutions of (1.1). Then, we have

(x1(t)− x2(t))(n) + (f(t, x
(n−1)
1 (t))− f(t, x

(n−1)
2 (t))) + (g1(t, x1(t− τ1(t)))

− g1(t, x2(t− τ1(t)))) + (g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))) = 0. (2.2)

Set Z(t) = x1(t)− x2(t). Then, from (2.2), we obtain

Z(n)(t) + (f(t, x
(n−1)
1 (t))− f(t, x

(n−1)
2 (t))) + (g1(t, x1(t− τ1(t)))

− g1(t, x2(t− τ1(t)))) + (g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))) = 0. (2.3)

Since Z(t) = x1(t)− x2(t) is an anti-periodic function on R, we have∫ T

0

Z(t)dt =

∫ T
2

0

Z(t)dt+

∫ T

T
2

Z(t)dt =

∫ T
2

0

Z

(
t+

T

2

)
dt+

∫ T
2

0

Z(t)dt = 0.

(2.4)

It follows that there exists a constant γ̃ ∈ (0, T ) such that

Z(γ̃) = 0. (2.5)

Then, we have

|Z(t)| =
∣∣∣∣Z(γ̃) +

∫ t

γ̃

Z ′(s)ds

∣∣∣∣ ≤ ∫ t

γ̃

|Z ′(s)|ds, t ∈ [γ̃, γ̃ + T ], (2.6)

and

|Z(t)| = |Z(t− T )| =
∣∣∣∣Z(γ̃)−

∫ γ̃

t−T
Z ′(s)ds

∣∣∣∣
≤
∫ γ̃

t−T
|Z ′(s)|ds, t ∈ [γ̃, γ̃ + T ].

(2.7)

Combining the above two inequalities, we obtain

|Z|∞ = max
t∈[0,T ]

|Z(t)| = max
t∈[γ̃,γ̃+T ]

|Z(t)|

≤ max
t∈[γ̃,γ̃+T ]

{
1

2

(∫ t

γ̃

|Z ′(s)|ds+

∫ γ̃

t−T
|Z ′(s)|ds

)}
≤ 1

2

∫ T

0

|Z ′(s)|ds ≤ 1

2

√
T |Z ′|2.

(2.8)
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Now suppose that (A2) (or(A3)) holds. We shall consider two cases as follows.
Case (i) If (A2) holds, multiplying both sides of (2.3) by Z(n)(t) and then integrating

them from 0 to T , we have

|Z(n)|22 =

∫ T

0

|Z(n)(t)|2dt

= −
∫ T

0

(f(t, x
(n−1)
1 (t))− f(t, x

(n−1)
2 (t)))Z(n)(t)dt

−
∫ T

0

(g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t))))Z(n)(t)dt

−
∫ T

0

(g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t))))Z(n)(t)dt

≤ C1

∫ T

0

|x(n−1)1 (t)− x(n−1)2 (t)||Z(n)(t)|dt

+b1

∫ T

0

|x1(t− τ1(t))− x2(t− τ1(t))||Z(n)(t)|dt

+b2

∫ T

0

|x1(t− τ2(t))− x2(t− τ2(t))||Z(n)(t)|dt.

From this, (2.1), (2.8) and the Schwarz inequality, we have

|Z(n)|22 ≤ C1

(∫ T

0

|x(n−1)1 (t)− x(n−1)2 (t)|2dt
) 1

2
(∫ T

0

|Z(n)(t)|2dt
) 1

2

+(b1 + b2)|Z|∞
∫ T

0

1× |Z(n)(t)|dt

≤ C1|Z(n−1)|2|Z(n)|2 + (b1 + b2)|Z|∞
(∫ T

0

12dt

) 1
2
(∫ T

0

|Z(n)(t)|2dt
) 1

2

≤ C1|Z(n−1)|2|Z(n)|2 + (b1 + b2)|Z|∞
√
T |Z(n)|2

≤ C1
T

2π
|Z(n)|22 +

(b1 + b2)

2

√
T |Z ′|2

√
T |Z(n)|2

≤
(
C1

T

2π
+

(b1 + b2)

2

T n

(2π)n−1

)
|Z(n)|22.

It follows from C1
T

2π
+

(b1 + b2)

2

T n

(2π)n−1
< 1 that

Z(n)(t) ≡ 0 for all t ∈ R. (2.9)

Since Z(n−2)(0) = Z(n−2)(T ), there exists a constant ξn−1 ∈ [0, T ] with Z(n−1)(ξn−1)
= 0, then, in view of (2.9), we get

Z(n−1)(t) ≡ 0 for all t ∈ R. (2.10)
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By using a similar argument as in the proof of (2.10), in view of (2.5), we can show

Z(t) ≡ Z ′(t) ≡ . . . ≡ Z(n−2)(t) ≡ 0 for all t ∈ R.

Thus, x1(t) ≡ x2(t) for all t ∈ R. Therefore, (1.1) has at most one anti-periodic
solution.

Case (ii) If (A3) holds, multiplying both sides of (2.3) by Z(n−1)(t) and then inte-
grating them from 0 to T , together with (2.8), we have

C2|Z(n−1)|22 =

∫ T

0

C2|xn−11 (t)− xn−12 (t)|2dt

≤
∫ T

0

(f(xn−11 (t))− f(xn−12 (t)))(xn−11 (t)− xn−12 (t))dt

= −
∫ T

0

Z(n)(t)Z(n−1)(t)dt−
∫ T

0

(g1(t, x1(t− τ1(t)))

− g1(t, x2(t− τ1(t))))Z(n−1)(t)dt−
∫ T

0

(g2(t, x1(t− τ2(t)))

− g2(t, x2(t− τ2(t))))Z(n−1)(t)dt

= −
∫ T

0

(g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t))))Z(n−1)(t)dt

−
∫ T

0

(g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t))))Z(n−1)(t)dt

≤ b1

∫ T

0

|x1(t− τ1(t))− x2(t− τ1(t))||Z(n−1)(t)|dt

+ b2

∫ T

0

|x1(t− τ2(t))− x2(t− τ2(t))||Z(n−1)(t)|dt

≤ (b1 + b2)|Z|∞
√
T |Z(n−1)|2

≤ b1 + b2
2

T n−1

(2π)n−2
|Z(n−1)|22.

(2.11)

By using a similar argument as in the proof of Case (i), in view of (2.5), (A3) and (2.11),
we obtain

Z(t) ≡ Z ′(t) ≡ . . . ≡ Z(n−2)(t) ≡ 0 for all t ∈ R.

Thus, x1(t) ≡ x2(t) for all t ∈ R. Therefore, (1.1) has at most one anti-periodic
solution. The proof of Lemma 2.3, is now complete.

Remark 2.4. If f ′(x) > C2 for all t ∈ R, one can see that f(x) satisfies the assumption
(Ã0).
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3 Main Results
In this section, we establish some sufficient conditions for the existence and uniqueness
of anti-periodic solutions for (1.1).

Theorem 3.1. Let condition (A1) hold. Assume that condition (A2) or condition (A3)
is satisfied. Then (1.1) has a unique anti-periodic solution.

Proof. Consider the auxiliary equation of (1.1) as the following:

x(n)(t) = −λf(t, x(n−1)(t))− λg1(t, x(t− τ1(t)))− λg2(t, x(t− τ2(t))) + λe(t)

= λQ(t, x(t), x(n−1)(t)), λ ∈ (0, 1].
(3.1)

By Lemma 2.3, together with (A2) and (A3), it is easy to see that (1.1) has at most one
anti-periodic solution. Thus, to prove Theorem 3.1, it suffices to show that (1.1) has at
least one anti-periodic solution. To do this, we shall apply Lemma 2.1. Firstly, we will
claim that the set of all possible anti-periodic solutions of (3.1) is bounded.

Let x ∈ C
n−1, 1

2
T be an arbitrary anti-periodic solution of (3.1). Then, by using a

similar argument as that in the proof of (2.8), we have

|x|∞ ≤
1

2

√
T |x′|2. (3.2)

In view of (A2) and (A3), we consider two cases as follows.
Case (i) If (A2) holds, multiplying both sides of (3.1) by x(n)(t) and then integrating

them from 0 to T , in view of (2.1), (3.2), (A2) and the inequality of Schwarz, we obtain

|x(n)|22 =

∫ T

0

|x(n)|2dt

= −λ
∫ T

0

f(t, x(n−1)(t))x(n)(t)dt− λ
∫ T

0

g1(t, x(t− τ1(t)))x(n)(t)dt

− λ
∫ T

0

g2(t, x(t− τ2(t)))x(n)(t)dt+ λ

∫ T

0

e(t)x(n)(t)dt

≤
∫ T

0

|f(t, x(n−1)(t))− f(t, 0) + f(t, 0)||x(n)(t)|dt

+

∫ T

0

[|g1(t, x(t− τ1(t)))− g1(t, 0)|+ |g1(t, 0)|]|x(n)(t)|dt

+

∫ T

0

[|g2(t, x(t− τ2(t)))− g2(t, 0)|+ |g2(t, 0)|]|x(n)(t)|dt

+

∫ T

0

e(t)x(n)(t)dt

≤ C1|x(n−1)|2|x(n)|2 + b1

∫ T

0

|x(t− τ1(t))||x(n)(t)|dt
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+ b2

∫ T

0

|x(t− τ2(t))||x(n)(t)|dt+

∫ T

0

[|f(t, 0)|+ |g1(t, 0)|

+ |g2(t, 0)|]|x(n)(t)|dt+

∫ T

0

|e(t)||x(n)(t)|dt

≤ C1
T

2π
|x(n)|22 + (b1 + b2)|x|∞

√
T |x(n)|2 + [max{|f(t, 0)|

+ |g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n)|2

≤ C1
T

2π
|x(n)|22 +

b1 + b2
2

√
T |x′|2

√
T |x(n)|2 + [max{|f(t, 0)|

+ |g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n)|2

≤ C1
T

2π
|x(n)|22 +

b1 + b2
2

T n

(2π)n−1
|x(n)|22 + [max{|f(t, 0)|+ |g1(t, 0)|

+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n)|2,

(3.3)

which, together with (A2), implies that there exists a positive constant D1

|x(j)|2 ≤
(
T

2π

)n−j
|xn|2 < D1, j = 1, 2, . . . , n. (3.4)

Since x(j)(0) = x(j)(T )(j = 1, 2, . . . , n − 1), it follows that there exists a constant
ηj ∈ [0, T ] such that

x(j+1)(ηj) = 0,

and

|x(j+1)(t)| =

∣∣∣∣∣x(j+1)(ηj) +

∫ t

ηj

x(j+2)(s)ds

∣∣∣∣∣
≤
∫ T

0

|x(j+2)(t)|dt ≤
√
T |x(j+2)|2,

(3.5)

where j = 1, 2, . . . , n− 2, t ∈ [0, T ].

Together with (3.2) and (3.4), (3.5) implies that there exists a positive constant D2

|x(j)|∞ ≤
√
T |x(j+1)|2 ≤ D2, j = 1, 2, . . . , n− 1, (3.6)

which implies that, for all possible anti-periodic solutions x(t) of (3.1), there exists a
constant M1 such that

max
1≤j≤n−1

|x(j)|∞ < M1. (3.7)
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Case (ii) If (A3) holds, multiplying both sides of (3.1) by x(n−1)(t) and then integrating
them from 0 to T , in view of (2.1), (3.2), (A3) and the inequality of Schwarz, we obtain

C2|x(n−1)|22 =

∫ T

0

C2x
(n−1)(t)x(n−1)(t)dt

≤
∫ T

0

(f(x(n−1)(t))− f(0))x(n−1)(t)dt

−
∫ T

0

g1(t, x(t− τ1(t)))x(n−1)(t)dt

−
∫ T

0

g2(t, x(t− τ2(t)))x(n−1)(t)dt

+

∫ T

0

e(t)x(n−1)(t)dt−
∫ T

0

f(0)x(n−1)(t)dt

≤
∫ T

0

|g1(t, x(t− τ1(t)))− g1(t, 0)||x(n−1)(t)|dt

+

∫ T

0

|g2(t, x(t− τ2(t)))− g2(t, 0)||x(n−1)(t)|dt

+

∫ T

0

|e(t)||x(n−1)(t)|dt

+

∫ T

0

[|f(0)|+ |g1(t, 0)|+ |g2(t, 0)|]|x(n−1)(t)|dt

≤b1
∫ T

0

|x(t− τ1(t))||x(n−1)(t)|dt+ b2

∫ T

0

|x(t− τ2(t))||x(n−1)(t)|dt

+

∫ T

0

|e(t)||x(n−1)(t)|dt

+

∫ T

0

[|f(0)|+ |g1(t, 0)|+ |g2(t, 0)|]|x(n−1)(t)|dt

≤(b1 + b2)|x|∞
√
T |x(n−1)(t)|2 + [max{|f(0)|+ |g1(t, 0)|

+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n−1)(t)|2

≤b1 + b2
2

T |x′|2|x(n−1)(t)|2 + [max{|f(0)|+ |g1(t, 0)|

+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n−1)(t)|2

≤b1 + b2
2

T n

(2π)n−2
|x(n−1)(t)|22 + [max{|f(0)|+ |g1(t, 0)|

+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n−1)(t)|2.

(3.8)
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This implies that there exists a constant D1 > 0 such that

|x(j)|∞ ≤
√
T |x(j+1)|2 ≤ D1, j = 1, 2, . . . , n− 2. (3.9)

Multiplying x(n)(t) and (3.1) and then integrating it from 0 to T , by (A3), (3.2), (3.3),
(3.9) and the inequality of Schwarz, we obtain

|x(n)|22 =

∫ T

0

|x(n)(t)|2dt

≤
∫ T

0

|g1(t, x(t− τ1(t)))− g1(t, 0)||x(n)(t)|dt+

∫ T

0

|g2(t, x(t− τ2(t)))

− g2(t, 0)||x(n)(t)|dt+

∫ T

0

|e(t)||x(n)(t)|dt

+

∫ T

0

[|g1(t, 0)|+ |g2(t, 0)|]|x(n)(t)|dt

≤ b1

∫ T

0

|x(t− τ1(t))||x(n)(t)|dt+ b2

∫ T

0

|x(t− τ2(t))||x(n)(t)|dt

+

∫ T

0

|e(t)||x(n)(t)|dt+

∫ T

0

[|g1(t, 0)|+ |g2(t, 0)|]|x(n)(t)|dt

≤ (b1 + b2)|x|∞
√
T |x(n)(t)|2 + [max{|g1(t, 0)|

+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n)(t)|2

≤ b1 + b2
2

T |x′|2|x(n)(t)|2 + [max{|g1(t, 0)|

+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n)(t)|2

≤ b1 + b2
2

TD1|x(n)(t)|2 + [max{|g1(t, 0)|

+ |g2(t, 0)| : 0 ≤ t ≤ T}+ |e|∞]
√
T |x(n)(t)|2,

it follows from (3.5) that there exists a positive constant D2 such that

|x(n−1)(t)| ≤
√
T |x(n)|2 ≤ D2. (3.10)

Therefore, in view of (3.9) and (3.10), for all possible anti-periodic solutions x of (3.1),
there exists a constant M̃1 such that

max
1≤j≤n−1

|x(j)|∞ ≤ M̃1, (3.11)

which, together with (3.7), implies that

max
1≤j≤n−1

|x(j)|∞ ≤M1 + M̃1 + 1 := M. (3.12)
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Set

Ω =

{
x ∈ Cn−1, 1

2
T = X : max

1≤j≤n−1
|x(j)|∞ < M

}
,

then we know that (3.1) has no anti-periodic solution on ∂Ω as λ ∈ (0, 1].

Now, we consider the Fourier series expansion of a function x ∈ Cn−1, 1
2

T , we have

x(t) =
∞∑
i=0

[
a2i+1 cos

2π(2i+ 1)t

T
+ b2i+1 sin

2π(2i+ 1)t

T

]
.

Define an operator L : C
k, 1

2
T →Ck+1, 1

2
T by setting

(Lx)(t) =

∫ t

0

x(s)ds− T

2π

∞∑
i=0

b2i+1

2i+ 1

=
T

2π

∞∑
i=0

[
a2i+1

(2i+ 1)
sin

2π(2i+ 1)t

T

− b2i+1

(2i+ 1)
cos

2π(2i+ 1)t

T

]
.

(3.13)

Then

d(Lx)(t)

dt
= x(t),

and

|(Lx)(t)| ≤
∫ T

0

|x(s)|ds+
T

2π

∞∑
i=0

|b2i+1|
(2i+ 1)

≤ T ||x||+ T

2π

(
∞∑
i=0

b22i+1

) 1
2
(
∞∑
i=0

1

(2i+ 1)2

) 1
2

.

(3.14)

In view of (
∞∑
i=0

1

(2i+ 1)2

) 1
2

=
π

2
√

2
,

and the Parseval equality∫ T

0

|x(s)|2ds =
T

2

∞∑
i=0

(a22i+1 + b22i+1),
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we obtain

|(Lx)(t)| ≤ T ||x||+ T

4
√

2

(
∞∑
i=0

(a22i+1 + b22i+1)

) 1
2

≤ T ||x||+ T

4
√

2

(
2

T

∫ T

0

|x(s)|2ds
) 1

2

≤
(
T +

T

4

)
||x||, l t ∈ [0, T ].

(3.15)

Thus, |(Lx)(t)| ≤ (T +
T

4
)||x||, and the operator L is continuous.

For all x ∈ Cn−1, 1
2

T , from (A1), we get

Q1

(
t+

T

2
, x

(
t+

T

2

)
, x(n−1)

(
t+

T

2

))
= −Q1(t, x(t), x(n−1)(t)).

Therefore, Q1(t, x(t), x(n−1)(t)) ∈ C
0, 1

2
T . Define a operator Fµ : Ω →Cn, 1

2
T ⊂X by

setting

Fµ(x) = L(. . . L(L(Q1(x)))) = µLn(Q1(x)), µ ∈ [0, 1].

It is easy to see from the Arzela–Ascoli lemma that Fµ is a compact homotopy, and the
fixed point of F1 on Ω is the antiperiodic solution of (1.1).

Define the homotopic continuous field as follows

Hµ(x) : Ω× [0, 1]→ C
n−1, 1

2
T , Hµ(x) = x− Fµ(x).

Together with (3.12), we have

Hµ(∂Ω) 6= 0, µ ∈ [0, 1].

Hence, using the homotopy invariance theorem, we obtain

deg{x− F1x,Ω, 0} = deg{x,Ω, 0} 6= 0.

By now we know that Ω satisfies all the requirement in Lemma 2.1, and then x−F1x = 0
has at least one solution in the Ω, i.e., F1 has a fixed point on Ω . So, we have proved
that (1.1) has a unique anti-periodic solution. This completes the proof.

4 Example and Remark
In this section, we give an example to demonstrate the results obtained in previous
sections.
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Example 4.1. Let g1(t, x) = g2(t, x) = (1 + sin4(t))
1

12π
sinx. Then the Rayleigh

equation

x′′′(t) +
1

8
x′′(t) +

1

8
e−| sin t| sinx′′(t) + g1(t, x(t− sin2 t))

+ g2(t, x(t− cos2 t)) =
1

6π
cos t,

(4.1)

has a unique anti-periodic solution with period 2π.

Proof. From (4.1), we have f(t, x) =
1

8
x+

1

8
e−| sin t| sinx, then

|f(t, x1)− f(t, x2)| ≤
1

4
|x1 − x2| for all t, x1, x2 ∈ R.

Thus, b1 = b2 =
1

6π
, C1 =

1

4
, τ1(t) = sin2 t, τ2(t) = cos2 t and e(t) =

1

6π
cost. It is

obvious that the assumptions (A1) and (A2) hold. Therefore, in view of Theorem 3.1,
(4.1) has a unique anti-periodic solution with period 2π.

Remark 4.2. Since there exist no results for the uniqueness of anti-periodic solutions of
the nth-order differential equations with two deviating arguments. One can easily see
that all the results in [1–23, 26] and the references therein can not be applicable to (4.1)
to obtain the existence and uniqueness of anti-periodic solutions with periodic 2π. This
implies that the results of this paper are essentially new.
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