Partial Averaging of Fuzzy Differential Equations with Maxima

Olga Kichmarenko and Natalia Skripnik

Odessa National University named after I.I. Mechnikov Department of Optimal Control and Economic Cybernetics Odessa, Ukraina

olga.kichmarenko@gmail.com and talie@ukr.net

Abstract

In this paper, a scheme of partial averaging of fuzzy differential equations with maxima is considered.

AMS Subject Classifications: 03E72, 34C29, 34K05. **Keywords:** Averaging method, fuzzy differential equation with maxima.

1 Introduction

The study of fuzzy differential equations (FDEs) forms a suitable setting for the mathematical modelling of real world problems in which uncertainty or vagueness pervades. Fuzzy differential equations were first formulated by Kaleva [4,5]. He used the concept of H-differentiability which was introduced by Puri and Ralescu [13], and obtained the existence and uniqueness theorem for a solution of FDE under the Lipschitz condition. Since then there appeared a lot of papers concerning the theory and applications of fuzzy differential equations, fuzzy dynamics and fuzzy differential inclusions [2, 9, 10, 12].

In this paper, a scheme of partial averaging of fuzzy differential equations with maxima is considered that continues researches devoted to the fuzzy differential equations with delay [7,8].

2 Main Definitions

Let $conv(\mathbb{R}^n)$ be a family of all nonempty compact convex subsets of \mathbb{R}^n with Hausdorff metric

 $h(A, B) = \max\{\max_{a \in A} \min_{b \in B} ||a - b||, \max_{b \in B} \min_{a \in A} ||a - b||\},\$

Received December 1, 2010; Accepted June 1, 2011 Communicated by Martin Bohner

- where $\|\cdot\|$ denotes the usual Euclidean norm in \mathbb{R}^n . Denote by |A| = h(A, 0). Let \mathbb{E}^n be a family of mappings $x : \mathbb{R}^n \to [0, 1]$ satisfying the following conditions:
 - 1) x is normal, i.e., there exists $y_0 \in \mathbb{R}^n$ such that $x(y_0) = 1$;
 - 2) x is fuzzy convex, i.e., $x(\lambda y + (1 \lambda)z) \ge \min\{x(y), x(z)\}$ whenever $y, z \in \mathbb{R}^n$ and $\lambda \in [0, 1];$
 - 3) x is upper semicontinuous, i.e., for any $y_0 \in \mathbb{R}^n$ and $\varepsilon > 0$ there exists $\delta(y_0, \varepsilon) > 0$ 0 such that $x(y) < x(y_0) + \varepsilon$ whenever $||y - y_0|| < \delta, y \in \mathbb{R}^n$;
 - 4) the closure of the set $\{y \in \mathbb{R}^n : x(y) > 0\}$ is compact.

Let $\widehat{0}$ be a fuzzy mapping defined by $\widehat{0}(y) = \begin{cases} 0 & if \ y \neq 0, \\ 1 & if \ y = 0. \end{cases}$

Definition 2.1 (See [11]). The set $\{y \in \mathbb{R}^n : x(y) \ge \alpha\}$ is called an α – level $[x]^{\alpha}$ of a mapping $x \in E^n$ for $\alpha \in (0, 1]$. A closure of the set $\{y \in \mathbb{R}^n : x(y) > 0\}$ is called a 0 level $[x]^0$ of a mapping $x \in E^n$.

Define the metric $D: \mathbb{E}^n \times \mathbb{E}^n \to \mathbb{R}_+$ by the equation

$$D(x,y) = \sup_{\alpha \in [0,1]} h([x]^{\alpha}, [y]^{\alpha}).$$

Let *I* be an interval in \mathbb{R} .

Definition 2.2. A mapping $f : I \to \mathbb{E}^n$ is called weakly continuous at point $t_0 \in I$ if a multivalued mapping $f_{\alpha}(t) = [f(t)]^{\alpha}$ is continuous for any $\alpha \in [0, 1]$.

Definition 2.3 (See [11]). A mapping $f : I \times E^n \to E^n$ is called weakly continuous at point $(t_0, x_0) \in I \times E^n$ if for any $\alpha \in [0, 1]$ and $\varepsilon > 0$ there exists $\delta(\varepsilon, \alpha) > 0$ such that $h(f_{\alpha}(t,x), f_{\alpha}(t_0,x_0)) < \varepsilon$ for all $(t,x) \in I \times E^n$ satisfying the condition $|t - t_0| < \delta(\varepsilon, \alpha), \ h([x]^{\alpha}, [x_0]^{\alpha}) < \delta(\varepsilon, \alpha).$

Definition 2.4 (See [11]). A mapping $f : I \to \mathbb{E}^n$ is called measurable on I if a multivalued mapping $f_{\alpha}(t)$ is Lebesgue measurable for any $\alpha \in [0, 1]$.

Definition 2.5 (See [11]). An element $g \in E^n$ is called an integral of $f : I \to E^n$ over I if $[g]^{\alpha} = (A) \int_{T} f_{\alpha}(t) dt$ for any $\alpha \in (0, 1]$, where $(A) \int_{T} f_{\alpha}(t) dt$ is the Aumann

integral [1].

Definition 2.6 (See [11]). A mapping $f : I \to E^n$ is called differentiable at point $t_0 \in I$ if the multivalued mapping $f_{\alpha}(t)$ is Hukuhara differentiable at point t_0 [3] for any $\alpha \in [0,1]$ and the family $\{D_H f_\alpha(t_0) : \alpha \in [0,1]\}$ defines a fuzzy number $f'(t_0) \in \mathbb{E}^n$ (which is called a fuzzy derivative of $f(t_0)$ at point t_0).

Consider a fuzzy differential equation with delay

$$x'(t) = f(t, x(t), x(\alpha(t))), \quad x(t_0) = x_0,$$
(2.1)

where $t \in I$ is time; $x \in S \subset E^n$ is a phase variable; the initial conditions $t_0 \in I, x_0 \in S$; a fuzzy mapping $f : I \times S \times S \to E^n$; a delay function $\alpha(t) \in [t_0, t]$.

Definition 2.7. A fuzzy mapping $x : I_0 \to E^n$, $t_0 \in I_0 \subset I$, is called a solution of equation (2.1) if it is weakly continuous and for all $t \in I_0$ satisfies the integral equation

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s), x(\alpha(s))) ds.$$

Theorem 2.8 (See [8]). Let f(t, x, y) be a weakly continuous function in the neighborhood of the point (t_0, x_0, x_0) and satisfy the Lipschitz condition in x, y with constant λ . Then there exists a unique solution x(t) of equation (2.1) for $t \in [t_0, t_0 + \sigma]$, where σ is small enough.

3 Main Results

Consider the fuzzy differential equation with maxima

$$x'(t) = \varepsilon f\left(t, x(t), \max_{\tau \in [\gamma(t), g(t)]} |x(\tau)|\right), \quad x(0) = x_0,$$
(3.1)

where $t \ge 0$ is time; $x \in S \subset E^n$ is a phase variable; $\varepsilon > 0$ is a small parameter; the initial condition $x_0 \in S$; a fuzzy mapping $f : \mathbb{R}_+ \times S \times \mathbb{R}_+ \to E^n$; the functions $0 \le \gamma(t) \le g(t) \le t$.

If there exists a fuzzy mapping $\overline{f}(t, x, z)$ such that for any $t, z \ge 0, x \in S \subset E^n$

$$\lim_{T \to \infty} \frac{1}{T} D\left(\int_{t}^{t+T} f(s, x, z) ds, \int_{t}^{t+T} \overline{f}(s, x, z) ds\right) = 0,$$
(3.2)

then in the correspondence to equation (3.1) we will set the following partially averaged equation

$$y'(t) = \varepsilon \overline{f}\left(t, y(t), \max_{\tau \in [\gamma(t), g(t)]} |y(\tau)|\right), \quad y(0) = x_0.$$
(3.3)

Theorem 3.1. Let in the domain $Q = \{t, z \ge 0, x \in S \subset E^n\}$ the following hold:

1. the fuzzy mappings f(t, x, z), $\overline{f}(t, x, z)$ are uniformly bounded by M, weakly continuous in t and satisfy the Lipschitz condition in x, z with constant λ , i.e.,

$$D(f(t, x, z), \widehat{0}) \leq M, \ D(\overline{f}(t, x, z), \widehat{0}) \leq M, D(f(t, x, z), f(t, x', z')) \leq \lambda [D(x, x') + |z - z'|], D(\overline{f}(t, x, z), \overline{f}(t, x', z')) \leq \lambda [D(x, x') + |z - z'|];$$

- 2. the limit (3.2) exists uniformly with respect to $t, z \ge 0$ and $x \in S$;
- 3. the functions $\gamma(t), g(t)$ are uniformly continuous and $0 \le \gamma(t) \le g(t) \le t$;
- 4. the solution y(t) of equation (3.3), $y(0) = x_0 \in S' \subset S$ belongs to the domain S together with a ρ -neighborhood for all $t \ge 0$.

Then for any $\eta \in (0, \rho]$ and L > 0 there exists $\varepsilon^0(\eta, L) > 0$ such that for all $\varepsilon \in (0, \varepsilon^0]$ and $t \in [0, L\varepsilon^{-1}]$ the following estimate holds:

$$D(x(t), y(t)) \le \eta, \tag{3.4}$$

where x(t), y(t) are solutions of equations (3.1) and (3.3) such that $x(0) = y(0) = x_0$.

Proof. According to Definition 2.7, the solutions of equations (3.1) and (3.3) are weakly continuous fuzzy mappings that satisfy the integral equations

$$x(t) = x_0 + \varepsilon \int_0^t f\left(s, x(s), \max_{\tau \in [\gamma(s), g(s)]} |x(\tau)|\right) ds,$$
$$y(t) = x_0 + \varepsilon \int_0^t \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds.$$

Then

$$\begin{split} D(x(t), y(t)) &= D\left(x_0 + \varepsilon \int_0^t f\left(s, x(s), \max_{\tau \in [\gamma(s), g(s)]} |x(\tau)|\right) ds, \\ & x_0 + \varepsilon \int_0^t \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right) \\ &= \varepsilon D\left(\int_0^t f\left(s, x(s), \max_{\tau \in [\gamma(s), g(s)]} |x(\tau)|\right) ds, \int_0^t \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right) \\ &\leq \varepsilon D\left(\int_0^t f\left(s, x(s), \max_{\tau \in [\gamma(s), g(s)]} |x(\tau)|\right) ds, \int_0^t f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right) \\ &+ \varepsilon D\left(\int_0^t f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds, \int_0^t \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right) \\ &\leq \varepsilon \lambda \int_0^t \left[D(x(s), y(s)) + \left|\max_{\tau \in [\gamma(s), g(s)]} |x(\tau)| - \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right|\right] ds + \sigma(\varepsilon), \end{split}$$

where

$$\sigma(\varepsilon) = \max_{t \in [0, L\varepsilon^{-1}]} \beta(t, \varepsilon),$$

$$\beta(t, \varepsilon) = \varepsilon D\left(\int_{0}^{t} f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds, \int_{0}^{t} \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right).$$

Let $\delta(t) = \max_{s \in [0,t]} D(x(s),y(s)).$ As

$$\begin{aligned} & \left| \max_{\tau \in [\gamma(s),g(s)]} |x(\tau)| - \max_{\tau \in [\gamma(s),g(s)]} |y(\tau)| \right| \\ & \leq \max_{\tau \in [\gamma(s),g(s)]} ||x(\tau)| - |y(\tau)|| \leq \max_{\tau \in [\gamma(s),g(s)]} D(x(\tau),y(\tau)) \leq \delta(s), \end{aligned}$$

we have

$$\delta(t) \le 2\lambda\varepsilon \int_{0}^{t} \delta(s)ds + \sigma(\varepsilon).$$
(3.5)

Divide the interval $[0, L\varepsilon^{-1}]$ on the partial intervals with the points $t_i = \frac{Li}{m\varepsilon}$, $i = \overline{0, m}$, $m \in \mathbb{N}$. Let us estimate $\beta(t, \varepsilon)$, using the properties of the metric D for $t \in [t_k, t_{k+1}]$:

$$\begin{split} &\beta(t,\varepsilon) \\ &= \varepsilon D\left(\sum_{i=0}^{k-1} \int_{t_i}^{t_{i+1}} f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds + \int_{t_k}^t f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds, \\ &\sum_{i=0}^{k-1} \int_{t_i}^{t_{i+1}} \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds + \int_{t_k}^t \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right) \\ &\leq \varepsilon \left[\sum_{i=0}^{k-1} D\left(\int_{t_i}^{t_{i+1}} f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds, \int_{t_i}^t \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right) \right] \\ &+ D\left(\int_{t_k}^t f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds, \int_{t_k}^t \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right)\right] \\ &\leq \varepsilon \sum_{i=0}^{k-1} \left[\int_{t_i}^{t_{i+1}} D\left(f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right), f\left(s, y(t_i), \max_{\tau \in [\gamma(t_i), g(t_i)]} |y(\tau)|\right)\right) ds\right] \end{split}$$

$$+ \int_{t_{i}}^{t_{i+1}} D\left(\overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right), \overline{f}\left(s, y(t_{i}), \max_{\tau \in [\gamma(t_{i}), g(t_{i})]} |y(\tau)|\right)\right) ds$$

$$+ D\left(\int_{t_{i}}^{t_{i+1}} f\left(s, y(t_{i}), \max_{\tau \in [\gamma(t_{i}), g(t_{i})]} |y(\tau)|\right) ds, \int_{t_{i}}^{t_{i+1}} \overline{f}\left(s, y(t_{i}), \max_{\tau \in [\gamma(t_{i}), g(t_{i})]} |y(\tau)|\right) ds\right)$$

$$+ \varepsilon D\left(\int_{t_{k}}^{t} f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds, \int_{t_{k}}^{t} \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(t_{i}), g(t_{i})]} |y(\tau)|\right) ds\right)$$

$$\leq \varepsilon \sum_{i=0}^{k-1} \left[2\lambda \int_{t_{i}}^{t_{i+1}} \left[D(y(s), y(t_{i}))\right] + \left|\max_{\tau \in [\gamma(s), g(s)]} |y(\tau)| - \max_{\tau \in [\gamma(t_{i}), g(t_{i})]} |y(\tau)|\right]\right] ds$$

$$+ D\left(\int_{t_{i}}^{t_{i+1}} f\left(s, y(t_{i}), \max_{\tau \in [\gamma(t_{i}), g(t_{i})]} |y(\tau)|\right) ds, \int_{t_{i}}^{t} \overline{f}\left(s, y(t_{i}), \max_{\tau \in [\gamma(t_{i}), g(t_{i})]} |y(\tau)|\right) ds\right)\right]$$

$$+ \varepsilon D\left(\int_{t_{k}}^{t} f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds, \int_{t_{k}}^{t} \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right).$$

$$(3.6)$$

Let us estimate every summand in (3.6) separately:

$$\varepsilon \int_{t_{i}}^{t_{i+1}} D(y(s), y(t_{i})) ds$$

$$= \varepsilon \int_{t_{i}}^{t_{i+1}} D\left(y(t_{i}) + \varepsilon \int_{t_{i}}^{s} \overline{f}\left(\tau, y(\tau), \max_{\chi \in [\gamma(\tau), g(\tau)]} |y(\chi)|\right) d\tau, y(t_{i})\right) ds$$

$$= \varepsilon^{2} \int_{t_{i}}^{t_{i+1}} D\left(\int_{t_{i}}^{s} \overline{f}\left(\tau, y(\tau), \max_{\chi \in [\gamma(\tau), g(\tau)]} |y(\chi)|\right) d\tau, \widehat{0}\right) ds$$

$$\leq \varepsilon^{2} \int_{t_{i}}^{t_{i+1}} \int_{t_{i}}^{s} D\left(\overline{f}\left(\tau, y(\tau), \max_{\chi \in [\gamma(\tau), g(\tau)]} |y(\chi)|\right), \widehat{0}\right) d\tau ds$$

$$\leq \frac{\varepsilon^{2} M}{2} \left(\frac{L}{\varepsilon m}\right)^{2} = \frac{ML^{2}}{2m^{2}}.$$
(3.7)

Using the properties of the modulus of continuity

$$\omega(\psi, \sigma) = \sup\{|\psi(\tau_1) - \psi(\tau_2)|, |\tau_1 - \tau_2| < \sigma\}$$

of functions $\gamma(t), g(t)$, we get

$$\varepsilon \int_{t_{i}}^{t_{i+1}} \left| \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)| - \max_{\tau \in [\gamma(t_{i}), g(t_{i})]} |y(\tau)| \right| ds$$

$$\leq \varepsilon \int_{t_{i}}^{t_{i+1}} \varepsilon M \max\left\{ \omega\left(\gamma, \frac{L}{\varepsilon m}\right), \omega\left(g, \frac{L}{\varepsilon m}\right) \right\} ds$$

$$= \frac{\varepsilon LM}{m} \max\left\{ \omega\left(\gamma, \frac{L}{\varepsilon m}\right), \omega\left(g, \frac{L}{\varepsilon m}\right) \right\}$$

$$\leq \frac{\varepsilon LM}{m} \left(1 + \frac{1}{\varepsilon m}\right) \max\left\{ \omega\left(\gamma, L\right), \omega\left(g, L\right) \right\}.$$
(3.8)

From the uniform convergence to the average in (3.2) it follows that there exists a monotone decreasing function $\Theta(t) \to 0$ as $t \to \infty$ such that

$$\varepsilon D\left(\int_{t_i}^{t_{i+1}} f\left(s, y(t_i), \max_{\tau \in [\gamma(t_i), g(t_i)]} |y(\tau)|\right) ds, \int_{t_i}^{t_{i+1}} \overline{f}\left(s, y(t_i) \max_{\tau \in [\gamma(t_i), g(t_i)]} |y(\tau)|\right) ds\right)$$
$$\leq \frac{L}{m} \Theta\left(\frac{L}{\varepsilon m}\right). \quad (3.9)$$

As the mappings f and \overline{f} are uniformly bounded by constant M, we have

$$\begin{split} \varepsilon D\left(\int_{t_k}^t f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds, \int_{t_k}^t \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right) ds\right) \\ &\leq \varepsilon \int_{t_k}^t D\left(f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right), \overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right)\right) ds \\ &\leq \varepsilon \int_{t_k}^t D\left(f\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right), \hat{0}\right) ds \\ &+ \varepsilon \int_{t_k}^t D\left(\overline{f}\left(s, y(s), \max_{\tau \in [\gamma(s), g(s)]} |y(\tau)|\right), \hat{0}\right) ds \leq 2M\varepsilon \int_{t_k}^t ds = 2\frac{ML}{m}. (3.10)$$

Hence using (3.6)–(3.10), we have

$$\beta(t,\varepsilon) \leq \frac{\lambda M L^2}{m} + 2\lambda L M\left(\frac{1}{m} + \varepsilon\right) \max\{\omega(\gamma,L), \omega(g,L)\}$$

O. Kichmarenko and N. Skripnik

$$+\frac{2ML}{m} + L\Theta\left(\frac{L}{\varepsilon m}\right).$$
 (3.11)

Let us choose m_0 to satisfy the inequality

$$\frac{\lambda ML^2}{m_0} + \frac{2\lambda LM}{m_0} \max\{\omega(\gamma, L), \omega(g, L)\} + \frac{2ML}{m_0} < \frac{\eta}{2e^{2\lambda L}}$$
(3.12)

and then choose ε_0 such that

$$2\lambda LM \max\{\omega(\gamma, L), \omega(g, L)\}\varepsilon + L\Theta\left(\frac{L}{\varepsilon m_0}\right) < \frac{\eta}{2e^{2\lambda L}}.$$
(3.13)

From (3.11)–(3.13) and (3.5) using the Gronwall–Bellman lemma, we get the statement of the theorem. \Box

Remark 3.2. From the definition of |x(t)| it follows that

$$|x(t)| = D(x(t), \hat{0}) = \sup_{\alpha \in [0,1]} h([x(t)]^{\alpha}, \{0\}) = h([x(t)]^{0}, \{0\}) = |[x(t)]^{0}|.$$

So the fuzzy differential equation (3.1) is equivalent to the following

$$x'(t) = \varepsilon f\left(t, x(t), \max_{\tau \in [\gamma(t), g(t)]} | [x(\tau)]^0 | \right), \quad x(0) = x_0.$$
(3.14)

It is easy to show that instead of 0-level set of the fuzzy mapping x(t) any α -level set, $\alpha \in [0, 1]$, can be taken. The substantiation of the averaging scheme will be almost the same.

4 Conclusion

In this paper the substantiation of one scheme of averaging for fuzzy differential equations with maxima is considered. These results generalize the results of [6] for differential equations with Hukuhara derivative with maxima.

References

- [1] R.J. Aumann. Integrals of set-valued functions. J. Math. Anal. Appl., (12):1–12, 1965.
- [2] P. Diamond and P. Kloeden. *Metric spaces of fuzzy sets*. World Scientific, Singapore, New Jersey, London, Hong Kong, 1994.
- [3] M. Hukuhara. Integration des applications mesurables dont la valeur est un compact convexe. *Func. Ekvacioj*, (10):205–223, 1967.

206

- [4] O. Kaleva. Fuzzy differential equations. *Fuzzy Sets Syst.*, 24(3):301–317, 1987.
- [5] O. Kaleva. The cauchy problem for fuzzy differential equations. *Fuzzy Sets Syst.*, 35:389–396, 1990.
- [6] O.D. Kichmarenko. Averaging of differential equations with Hukuhara derivative with maxima. *Int. J. Pure Appl. Math.*, 57(3):447–457, 2009.
- [7] O.D. Kichmarenko and N.V. Skripnik. Averaging of fuzzy differential equations with delay. *Nonlinear Oscill.*, 11(3):316–328, 2008. (Russian).
- [8] O.D. Kichmarenko and N.V. Skripnik. Fuzzy differential equations with delay. *Bull. Kiev. Nat. Univ. Math. Mechanics*, 19:18–23, 2008. (Ukrainian).
- [9] V. Lakshmikantham, T. Granna Bhaskar, and J. Vasundhara Devi. *Theory of set differential equations in metric spaces*. Cambridge Scientific Publishers, Cambridge, 2006.
- [10] V. Lakshmikantham and R. Mohapatra. *Theory of fuzzy differential equations anf inclusions*. Taylor & Frances, London, 2003.
- [11] J.Y. Park and H.K. Han. Existence and uniqueness theorem for a solution of fuzzy differential equations. *Internat. J. Math. Sci.*, 22(2):271–279, 1999.
- [12] A.V. Plotnikov and N.V. Skripnik. *Differential equations with "clear" and fuzzy multivalued right-hand side: Asymptotical methods*. Astroprint, Odessa, 2009. (Russian).
- [13] M.L. Puri and D.A. Ralescu. Differentielle d'une fonction floue. *C.R. Acad. Sc. Paris*, 293-I:237–239, 1981.