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Abstract
In this paper, a scheme of partial averaging of fuzzy differential equations with

maxima is considered.
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1 Introduction
The study of fuzzy differential equations (FDEs) forms a suitable setting for the mathe-
matical modelling of real world problems in which uncertainty or vagueness pervades.
Fuzzy differential equations were first formulated by Kaleva [4,5]. He used the concept
of H-differentiability which was introduced by Puri and Ralescu [13], and obtained the
existence and uniqueness theorem for a solution of FDE under the Lipschitz condition.
Since then there appeared a lot of papers concerning the theory and applications of fuzzy
differential equations, fuzzy dynamics and fuzzy differential inclusions [2, 9, 10, 12].

In this paper, a scheme of partial averaging of fuzzy differential equations with max-
ima is considered that continues researches devoted to the fuzzy differential equations
with delay [7, 8].

2 Main Definitions
Let conv(Rn) be a family of all nonempty compact convex subsets of Rn with Hausdorff
metric

h(A,B) = max{max
a∈A

min
b∈B

‖a− b‖, max
b∈B

min
a∈A

‖a− b‖},
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where ‖ · ‖ denotes the usual Euclidean norm in Rn. Denote by |A| = h(A, 0).
Let En be a family of mappings x : Rn → [0, 1] satisfying the following conditions:

1) x is normal, i.e., there exists y0 ∈ Rn such that x(y0) = 1;

2) x is fuzzy convex, i.e., x(λy+ (1− λ)z) ≥ min{x(y), x(z)} whenever y, z ∈ Rn

and λ ∈ [0, 1];

3) x is upper semicontinuous, i.e., for any y0 ∈ Rn and ε > 0 there exists δ(y0, ε) >
0 such that x(y) < x(y0) + ε whenever ||y − y0|| < δ, y ∈ Rn;

4) the closure of the set {y ∈ Rn : x(y) > 0 } is compact.

Let 0̂ be a fuzzy mapping defined by 0̂(y) =

{
0 if y 6= 0,
1 if y = 0.

Definition 2.1 (See [11]). The set {y ∈ Rn : x(y) ≥ α} is called an α – level [x]α of a
mapping x ∈ En for α ∈ (0, 1]. A closure of the set {y ∈ Rn : x(y) > 0} is called a 0 -
level [x]0 of a mapping x ∈ En.

Define the metric D : En × En → R+ by the equation

D(x, y) = sup
α∈[0,1]

h([x]α, [y]α).

Let I be an interval in R.

Definition 2.2. A mapping f : I → En is called weakly continuous at point t0 ∈ I if a
multivalued mapping fα(t) = [f(t)]α is continuous for any α ∈ [0, 1].

Definition 2.3 (See [11]). A mapping f : I × En → En is called weakly continuous
at point (t0, x0) ∈ I × En if for any α ∈ [0, 1] and ε > 0 there exists δ(ε, α) > 0
such that h(fα(t, x), fα(t0, x0)) < ε for all (t, x) ∈ I × En satisfying the condition
|t− t0| < δ(ε, α), h([x]α, [x0]

α) < δ(ε, α).

Definition 2.4 (See [11]). A mapping f : I → En is called measurable on I if a
multivalued mapping fα(t) is Lebesgue measurable for any α ∈ [0, 1].

Definition 2.5 (See [11]). An element g ∈ En is called an integral of f : I → En

over I if [g]α = (A)

∫
I

fα(t)dt for any α ∈ (0, 1], where (A)

∫
I

fα(t)dt is the Aumann

integral [1].

Definition 2.6 (See [11]). A mapping f : I → En is called differentiable at point
t0 ∈ I if the multivalued mapping fα(t) is Hukuhara differentiable at point t0 [3] for any
α ∈ [0, 1] and the family {DHfα(t0) : α ∈ [0, 1]} defines a fuzzy number f ′(t0) ∈ En

(which is called a fuzzy derivative of f(t0) at point t0).
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Consider a fuzzy differential equation with delay

x′(t) = f(t, x(t), x(α(t))), x(t0) = x0, (2.1)

where t ∈ I is time; x ∈ S ⊂ En is a phase variable; the initial conditions t0 ∈ I, x0 ∈
S; a fuzzy mapping f : I × S × S → En; a delay function α(t) ∈ [t0, t].

Definition 2.7. A fuzzy mapping x : I0 → En, t0 ∈ I0 ⊂ I, is called a solution of
equation (2.1) if it is weakly continuous and for all t ∈ I0 satisfies the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s), x(α(s)))ds.

Theorem 2.8 (See [8]). Let f(t, x, y) be a weakly continuous function in the neighbor-
hood of the point (t0, x0, x0) and satisfy the Lipschitz condition in x, y with constant λ.
Then there exists a unique solution x(t) of equation (2.1) for t ∈ [t0, t0 + σ], where σ is
small enough.

3 Main Results
Consider the fuzzy differential equation with maxima

x′(t) = εf

(
t, x(t), max

τ∈[γ(t),g(t)]
|x(τ)|

)
, x (0) = x0, (3.1)

where t ≥ 0 is time; x ∈ S ⊂ En is a phase variable; ε > 0 is a small parameter;
the initial condition x0 ∈ S; a fuzzy mapping f : R+ × S × R+ → En; the functions
0 ≤ γ(t) ≤ g(t) ≤ t.

If there exists a fuzzy mapping f(t, x, z) such that for any t, z ≥ 0, x ∈ S ⊂ En

lim
T→∞

1

T
D

 t+T∫
t

f(s, x, z)ds,

t+T∫
t

f(s, x, z)ds

 = 0, (3.2)

then in the correspondence to equation (3.1) we will set the following partially averaged
equation

y′(t) = εf

(
t, y(t), max

τ∈[γ(t),g(t)]
|y(τ)|

)
, y (0) = x0. (3.3)

Theorem 3.1. Let in the domain Q = {t, z ≥ 0, x ∈ S ⊂ En} the following hold:

1. the fuzzy mappings f(t, x, z), f(t, x, z) are uniformly bounded byM, weakly con-
tinuous in t and satisfy the Lipschitz condition in x, z with constant λ, i.e.,

D(f(t, x, z), 0̂) ≤M, D(f(t, x, z), 0̂) ≤M,

D (f(t, x, z), f(t, x′, z′)) ≤ λ [D(x, x′) + |z − z′|] ,
D

(
f(t, x, z), f(t, x′, z′)

)
≤ λ [D(x, x′) + |z − z′|] ;
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2. the limit (3.2) exists uniformly with respect to t, z ≥ 0 and x ∈ S;

3. the functions γ(t), g(t) are uniformly continuous and 0 ≤ γ(t) ≤ g(t) ≤ t;

4. the solution y(t) of equation (3.3), y(0) = x0 ∈ S ′ ⊂ S belongs to the domain S
together with a ρ-neighborhood for all t ≥ 0.

Then for any η ∈ (0, ρ] and L > 0 there exists ε0(η, L) > 0 such that for all ε ∈ (0, ε0]
and t ∈ [0, Lε−1] the following estimate holds:

D (x(t), y(t)) ≤ η, (3.4)

where x(t), y(t) are solutions of equations (3.1) and (3.3) such that x(0) = y(0) = x0.

Proof. According to Definition 2.7, the solutions of equations (3.1) and (3.3) are weakly
continuous fuzzy mappings that satisfy the integral equations

x(t) = x0 + ε

t∫
0

f

(
s, x(s), max

τ∈[γ(s),g(s)]
|x(τ)|

)
ds,

y(t) = x0 + ε

t∫
0

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds.

Then

D(x(t), y(t)) = D

x0 + ε

t∫
0

f

(
s, x(s), max

τ∈[γ(s),g(s)]
|x(τ)|

)
ds,

x0 + ε

t∫
0

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds


= εD

 t∫
0

f

(
s, x(s), max

τ∈[γ(s),g(s)]
|x(τ)|

)
ds,

t∫
0

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds


≤ εD

 t∫
0

f

(
s, x(s), max

τ∈[γ(s),g(s)]
|x(τ)|

)
ds,

t∫
0

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds


+ εD

 t∫
0

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds,

t∫
0

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds


≤ ελ

t∫
0

[
D(x(s), y(s)) +

∣∣∣∣ max
τ∈[γ(s),g(s)]

|x(τ)| − max
τ∈[γ(s),g(s)]

|y(τ)|
∣∣∣∣] ds+ σ(ε),
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where

σ(ε) = max
t∈[0,Lε−1]

β(t, ε),

β (t, ε) = εD

 t∫
0

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds,

t∫
0

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds

 .

Let δ(t) = max
s∈[0,t]

D(x(s), y(s)). As

∣∣∣∣ max
τ∈[γ(s),g(s)]

|x(τ)| − max
τ∈[γ(s),g(s)]

|y(τ)|
∣∣∣∣

≤ max
τ∈[γ(s),g(s)]

||x(τ)| − |y(τ)|| ≤ max
τ∈[γ(s),g(s)]

D(x(τ), y(τ)) ≤ δ(s),

we have

δ(t) ≤ 2λε

t∫
0

δ(s)ds+ σ(ε). (3.5)

Divide the interval [0, Lε−1] on the partial intervals with the points ti =
Li

mε
, i =

0,m, m ∈ N. Let us estimate β (t, ε), using the properties of the metric D for t ∈
[tk, tk+1]:

β(t, ε)

= εD

k−1∑
i=0

ti+1∫
ti

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds+

t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds,

k−1∑
i=0

ti+1∫
ti

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds+

t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds


≤ ε

k−1∑
i=0

D

 ti+1∫
ti

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds,

ti+1∫
ti

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
+ D

 t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds,

t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds


≤ ε

k−1∑
i=0

 ti+1∫
ti

D

(
f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
, f

(
s, y(ti), max

τ∈[γ(ti),g(ti)]
|y(τ)|

))
ds
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+

ti+1∫
ti

D

(
f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
, f

(
s, y(ti), max

τ∈[γ(ti),g(ti)]
|y(τ)|

))
ds

+ D

 ti+1∫
ti

f

(
s, y(ti), max

τ∈[γ(ti),g(ti)]
|y(τ)|

)
ds,

ti+1∫
ti

f

(
s, y(ti), max

τ∈[γ(ti),g(ti)]
|y(τ)|

)
ds


+ εD

 t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds,

t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds


≤ ε

k−1∑
i=0

2λ

ti+1∫
ti

[
D(y(s), y(ti))) +

∣∣∣∣ max
τ∈[γ(s),g(s)]

|y(τ)| − max
τ∈[γ(ti),g(ti)]

|y(τ)|
∣∣∣∣] ds

+ D

 ti+1∫
ti

f

(
s, y(ti), max

τ∈[γ(ti),g(ti)]
|y(τ)|

)
ds,

ti+1∫
ti

f

(
s, y(ti), max

τ∈[γ(ti),g(ti)]
|y(τ)|

)
ds


+ εD

 t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds,

t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds

 .

(3.6)

Let us estimate every summand in (3.6) separately:

ε

ti+1∫
ti

D(y(s), y(ti))ds

= ε

ti+1∫
ti

D

y(ti) + ε

s∫
ti

f

(
τ, y(τ), max

χ∈[γ(τ),g(τ)]
|y(χ)|

)
dτ, y(ti)

 ds

= ε2

ti+1∫
ti

D

 s∫
ti

f

(
τ, y(τ), max

χ∈[γ(τ),g(τ)]
|y(χ)|

)
dτ, 0̂

 ds

≤ ε2

ti+1∫
ti

s∫
ti

D

(
f

(
τ, y(τ), max

χ∈[γ(τ),g(τ)]
|y(χ)|

)
, 0̂

)
dτds

≤ ε2M

2

(
L

εm

)2

=
ML2

2m2
. (3.7)

Using the properties of the modulus of continuity

ω(ψ, σ) = sup{|ψ(τ1)− ψ(τ2)|, |τ1 − τ2| < σ}
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of functions γ(t), g(t), we get

ε

ti+1∫
ti

∣∣∣∣ max
τ∈[γ(s),g(s)]

|y(τ)| − max
τ∈[γ(ti),g(ti)]

|y(τ)|
∣∣∣∣ ds

≤ ε

ti+1∫
ti

εM max

{
ω

(
γ,

L

εm

)
, ω

(
g,

L

εm

)}
ds

=
εLM

m
max

{
ω

(
γ,

L

εm

)
, ω

(
g,

L

εm

)}
≤ εLM

m

(
1 +

1

εm

)
max {ω (γ, L) , ω (g, L)} . (3.8)

From the uniform convergence to the average in (3.2) it follows that there exists a mono-
tone decreasing function Θ(t) → 0 as t→∞ such that

εD

 ti+1∫
ti

f

(
s, y(ti), max

τ∈[γ(ti),g(ti)]
|y(τ)|

)
ds,

ti+1∫
ti

f

(
s, y(ti) max

τ∈[γ(ti),g(ti)]
|y(τ)|

)
ds


≤ L

m
Θ

(
L

εm

)
. (3.9)

As the mappings f and f are uniformly bounded by constant M , we have

εD

 t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds,

t∫
tk

f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
ds


≤ ε

t∫
tk

D

(
f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
, f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

))
ds

≤ ε

t∫
tk

D

(
f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
, 0̂

)
ds

+ε

t∫
tk

D

(
f

(
s, y(s), max

τ∈[γ(s),g(s)]
|y(τ)|

)
, 0̂

)
ds ≤ 2Mε

t∫
tk

ds = 2
ML

m
.(3.10)

Hence using (3.6)–(3.10), we have

β(t, ε) ≤ λML2

m
+ 2λLM

(
1

m
+ ε

)
max{ω(γ, L), ω(g, L)}
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+
2ML

m
+ LΘ

(
L

εm

)
. (3.11)

Let us choose m0 to satisfy the inequality

λML2

m0

+
2λLM

m0

max{ω(γ, L), ω(g, L)}+
2ML

m0

<
η

2e2λL
(3.12)

and then choose ε0 such that

2λLM max{ω(γ, L), ω(g, L)}ε+ LΘ

(
L

εm0

)
<

η

2e2λL
. (3.13)

From (3.11)–(3.13) and (3.5) using the Gronwall–Bellman lemma, we get the statement
of the theorem.

Remark 3.2. From the definition of |x(t)| it follows that

|x(t)| = D(x(t), 0̂) = sup
α∈[0,1]

h([x(t)]α, {0}) = h([x(t)]0, {0}) = |[x(t)]0|.

So the fuzzy differential equation (3.1) is equivalent to the following

x′(t) = εf

(
t, x(t), max

τ∈[γ(t),g(t)]
|[x(τ)]0|

)
, x (0) = x0. (3.14)

It is easy to show that instead of 0-level set of the fuzzy mapping x(t) any α-level set,
α ∈ [0, 1], can be taken. The substantiation of the averaging scheme will be almost the
same.

4 Conclusion
In this paper the substantiation of one scheme of averaging for fuzzy differential equa-
tions with maxima is considered. These results generalize the results of [6] for differen-
tial equations with Hukuhara derivative with maxima.
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