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Abstract

In this paper, the problem of exponential stability for a class of polytopic neu-
tral systems with nondifferentiable interval time-varying delays is studied. By us-
ing an improved Lyapunov–Krasovskii parameter-dependent functional and linear
matrix inequality (LMI) technique, new delay-dependent sufficient conditions for
the exponential stability of the systems are first established in terms of linear ma-
trix inequalities (LMIs) conditions which allows to compute simultaneously the
two bounds that characterize the exponential stability rate of the solution. Numer-
ical examples are also given to show the effectiveness of the obtain results.
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1 Introduction
Stability analysis of linear delayed and neutral systems has received much attention in
the past decades, e.g., see [4,5,8–10,13,17,18] and the references therein. Theoretically,
the linear neutral system with time delays is much more complicated, especially for
the case where the system matrices belong to some convex polytope [3, 6, 12, 14, 19].
By using parameter-dependent Lyapunov functionals, some less conservative results
for asymptotic stability of uncertain polytopic delay systems have been proposed in
[3, 12, 15, 20] via LMIs. Although these results improve the estimate of asymptotic
stability domain, some conservatism still remain since common matrix variable required
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to satisfy the whole sets of LMIs and the time delays are assumed to be constants or
differentiable and upper bounded. To the best of our knowledge, so far, no result on the
stability for linear neutral interval state-delayed systems with polytope uncertainties is
available in the literature, which is still open and remains unsolved. This motivates our
present investigation.

In this paper, we develop the exponential stability problem for polytopic neutral
systems with nondifferentiable interval time-varying delays. The novel feature of the
results obtained in this paper is twofold. First, the system considered in this paper is
neutral convex polytopic uncertain subjected to interval, nondifferentiable state delay.
Second, by employing an improved parameter-dependent Lyapunov–Krasovskii func-
tional and linear matrix inequality technology, delay-dependent sufficient conditions
for the exponential stability of the system are first obtained in terms of LMI conditions.
The approach also allows to compute simultaneously the two bounds that characterize
the exponential stability rate of the solution.

The paper is organized as follows: Section 2 presents notations, definitions and
some well-known technical propositions needed for the proof of the main result. Delay-
dependent exponential stability conditions of the system is presented in Section 3. Nu-
merical examples to show effectiveness of our conditions are given in Section 4. The
paper ends with conclusions and cited references.

2 Preliminaries

The following notations will be used throughout this paper. R+ denotes the set of all
nonnegative real numbers; Rn denotes the n−dimensional Euclidean space with the
norm ‖.‖ and scalar product xTy of two vectors x, y; λmax(A) (λmin(A), resp.) denotes
the maximal (the minimal, resp.) number of the real part of eigenvalues of A; AT

denotes the transpose of the matrix A and I denote the identity matrix; 0n denote the
zero matrix in Rn×n. A matrix Q ≥ 0 (Q > 0, resp.) means that Q is semi-positive
definite (positive definite, resp.) i.e., 〈Qx, x〉 ≥ 0 for all x ∈ Rn (resp. 〈Qx, x〉 > 0 for
all x 6= 0); A ≥ B means A− B ≥ 0; C1([a, b],Rn) denotes the set of all continuously
differentiable functions on [a, b]. The segment of the trajectory x(t) is denoted by xt =
{x(t+s) : s ∈ [−h̄, 0]}. Consider a polytopic neutral system with interval time-varying
delays of the form

{
ẋ(t)−D(ξ)ẋ(t− τ(t)) = A0(ξ)x(t) + A1(ξ)x(t− h(t)), t ≥ 0,

x(t) = φ(t), t ∈ [−h̄, 0],
(2.1)

where x(t) ∈ Rn is the state; time-varying delays h(t), τ(t) satisfy 0 ≤ hm ≤ h(t) ≤
hM ; 0 ≤ τ(t) ≤ τM , τ̇(t) ≤ µ < 1 and h̄ = max{τM , hM}. The state space data are
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subject to uncertainties and belong to the polytope Ω given by{
[A0, A1, D](ξ) :=

p∑
i=1

ξi[A0i, A1i, Di], ξi ≥ 0,

p∑
i=1

ξi = 1

}
,

where A0i, A1i, Di, i = 1, . . . , p, are given constant matrices with appropriate dimen-
sions; φ ∈ C1([−h̄, 0],Rn) is initial function with its norm

‖φ‖ = sup
−h̄≤s≤0

√
‖φ(s)‖2 + ‖φ̇(s)‖2.

Definition 2.1. [4, 5] For given α > 0, system (2.1) is said to be α-exponentially stable
if there exists a constant γ ≥ 1 such that every solution x(t, φ) of the system satisfies
the following condition

‖x(t, φ)‖ ≤ γ‖φ‖e−αt, ∀t ≥ 0.

The following well-known inequality will be used in the proof of our results.

Proposition 2.2. For any symmetric positive definite matrixW , scalar ν > 0 and vector
function w : [0, ν]→ Rn such that the concerned integrals are well defined, then[∫ ν

0

w(s)ds

]T
W

[∫ ν

0

w(s)ds

]
≤ ν

∫ ν

0

wT(s)Ww(s)ds.

3 Main Results
Let Uki, k = 1, . . . , 6, i = 1, . . . , p, and M be n × n matrices; Pi, Qi, Ri, Si, Ti, Zi,
i = 1, . . . , p, be symmetric positive definite matrices and constant α > 0, we denote
δ = 1− µ and

Ξi(Pj, Qj, Rj, Sj, Tj, Zj,Uj) =

=



Ξ11 AT
0iU2j Ξ13 AT

0iU4j Ξ15 Ξ16

∗ −δe−2ατMRj UT
2jA1i 0 −UT

2j UT
2jDi

∗ ∗ Ξ33 Zj + AT
1iU4j Ξ35 Ξ36

∗ ∗ ∗ −e−2αhmQj − Zj −UT
4j UT

4jDi

∗ ∗ ∗ ∗ Ξ55 UT
5jDi − U6j

∗ ∗ ∗ ∗ ∗ Ξ66

 ,

where

Ξ11 = AT
0i(Pj + U1j) + (Pj + UT

1j)A0i + 2αPj +Qj +Rj − Tj;
Ξ13 = PjA1i + UT

1jA1i + AT
0iU3j + Tj;
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Ξ15 = −UT
1j + AT

0iU5j;

Ξ16 = PjDi + UT
1jDi + AT

0iU6j;

Ξ33 = −Tj − Zj + AT
1iU3j + UT

3jA1i;

Ξ35 = −UT
3j + AT

1iU5j;

Ξ36 = UT
3jDi + AT

1iU6j;

Ξ55 = −U5j − UT
5j + Sj + h2

Me
2αhMTj + (hM − hm)2e2αhMZj;

Ξ66 = −δe−2ατMSj +DT
i U6j + UT

6jDi;

M = diag{M,05n};
λ1 = min

1≤j≤p
λmin(Pj), λP = max

1≤j≤p
λmax(Pj),

λQ = max
j
λmax(Qj), λR = max

j
λmax(Rj),

λS = max
j
λmax(Sj), λT = max

j
λmax(Tj), λZ = max

j
λmax(Zj),

λ2 = λP + hmλQ + τM(λR + λS) +
1

2
e2αhM

(
h3
MλT + (hM − hm)2(hM + hm)λZ

)
.

The following theorem presents the α-exponential stability of system (2.1).

Theorem 3.1. Given α > 0. System (2.1) is α-exponentially stable if there exist ma-
trices U1i, U2i, U3i, U4i, U5i, U6i, i = 1, . . . , p, a symmetric semi-positive definite matrix
M , symmetric positive definite matrices Pi, Qi, Ri, Si, Ti, Zi, i = 1, . . . , p, such that the
following linear matrix inequalities hold:

Ξi(Pi, Qi, Ri, Si, Ti, Zi,Ui) ≤ −M, i = 1, . . . , p; (3.1)

Ξi(Pj, Qj, Rj, Sj, Tj, Zj,Uj) + Ξj(Pi, Qi, Ri, Si, Ti, Zi,Ui) ≤
2

p− 1
M, (3.2)

i = 1, . . . , p− 1, j = i+ 1, . . . , p.

Proof. We denote [P,Q,R, S, T, Z](ξ) =

p∑
j=1

ξj[Pj, Qj, Rj, Sj, Tj, Zj] and Uk(ξ) =

p∑
i=1

ξiUki, k = 1, . . . , 6. Consider the following Lyapunov–Krasovskii functional

V (t, xt) =
6∑
i=1

Vk, (3.3)

where,

V1 = xT(t)P (ξ)x(t),
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V2 =

∫ t

t−hm
e2α(s−t)xT(s)Q(ξ)x(s)ds

V3 =

∫ t

t−τ(t)

e2α(s−t)xT(s)R(ξ)x(s)ds,

V4 =

∫ t

t−τ(t)

e2α(s−t)ẋT(s)S(ξ)ẋ(s)ds,

V5 = hM

∫ t

t−hM

∫ t

s

e2α(θ−t+hM )ẋT(θ)T (ξ)ẋ(θ)dθds,

V6 = (hM − hm)

∫ t−hm

t−hM

∫ t

s

e2α(θ−t+hM )ẋT(θ)Z(ξ)ẋ(θ)dθds.

It is easy to verify from (3.3) that

λ1‖x(t)‖2 ≤ V (t, xt) ≤ λ2‖xt‖2, t ∈ R+. (3.4)

Taking derivative of V1 along trajectories of system (2.1) we have

V̇1 = 2xT(t)P (ξ)ẋ(t)

= xT(t)
[
P (ξ)A0(ξ) + A0(ξ)TP (ξ)

]
x(t)

+ 2xT(t)P (ξ) [A1(ξ)x(t− h(t)) +D(ξ)ẋ(t− τ(t))] .

(3.5)

Next, taking derivatives of Vk, k = 2, . . . , 6, along trajectories of system (2.1) we obtain

V̇2 = xT(t)Q(ξ)x(t)− e−2αhmxT(t− hm)Q(ξ)x(t− hm)− 2αV2;

V̇3 = xT(t)R(ξ)x(t)− (1− τ̇(t))e−2ατ(t)xT(t− τ(t))R(ξ)x(t− τ(t))− 2αV3

≤ xT(t)R(ξ)x(t)− (1− µ)e−2ατMxT(t− τ(t))R(ξ)x(t− τ(t))− 2αV3;

V̇4 = ẋT(t)S(ξ)ẋ(t)− (1− τ̇(t))e−2ατ(t)ẋT(t− τ)S(ξ)ẋ(t− τ)− 2αV4

≤ ẋT(t)S(ξ)ẋ(t)− (1− µ)e−2ατM ẋT(t− τ(t))S(ξ)ẋ(t− τ(t))− 2αV4;

(3.6)

V̇5 = h2
Me

2αhM ẋT(t)T (ξ)ẋ(t)

− hM
∫ t

t−hM
e2α(s−t+hM )ẋT(s)T (ξ)ẋ(s)ds− 2αV5

≤ h2
Me

2αhM ẋT(t)T (ξ)ẋ(t)− hM
∫ t

t−hM
ẋT(s)T (ξ)ẋ(s)ds− 2αV5;

V̇6 = (hM − hm)2e2αhmẋT(t)Z(ξ)ẋ(t)

− (hM − hm)

∫ t−hm

t−hM
e2α(s−t+hM )ẋT(s)Z(ξ)ẋ(s)ds− 2αV6

≤ (hM − hm)2e2αhmẋT(t)Z(ξ)ẋ(t)

− (hM − hm)

∫ t−hm

t−hM
ẋT(s)Z(ξ)ẋ(s)ds− 2αV6.

(3.7)
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Applying Proposition 2.2 and the Leibniz–Newton formula, we have

−hM
∫ t

t−hM
ẋT(s)T (ξ)ẋ(s)ds ≤ −h(t)

∫ t

t−h(t)

ẋT(s)T (ξ)ẋ(s)ds

≤ −
[∫ t

t−h(t)

ẋ(s)ds

]T
T (ξ)

[∫ t

t−h(t)

ẋ(s)ds

]
≤ − [x(t)− x(t− h(t))]T T (ξ) [x(t)− x(t− h(t))] ;

(3.8)

and

−(hM − hm)

∫ t−hm

t−hM
ẋT(s)Z(ξ)ẋ(s)ds

≤ −(h(t)− hm)

∫ t−hm

t−h(t)

ẋT(s)Z(ξ)ẋ(s)ds

≤ −
[∫ t−hm

t−h(t)

ẋ(s)ds

]T
Z(ξ)

[∫ t−hm

t−h(t)

ẋ(s)ds

]
≤ − [x(t− hm)− x(t− h(t))]T Z(ξ) [x(t− hm)− x(t− h(t))] .

(3.9)

By using the identity

−ẋ(t) +D(ξ)ẋ(t− τ(t)) + A0(ξ)x(t) + A1(ξ)x(t− h(t)) = 0,

we have

2
[
xT(t)U1(ξ)T + xT(t− τ)U2(ξ)T + xT(t− h(t))U3(ξ)T

+ xT(t− hm)U4(ξ)T + ẋT(t)U5(ξ)T + ẋT(t− τ(t))U6(ξ)T
]

×
[
−ẋ(t) +D(ξ)ẋ(t− τ(t)) + A0(ξ)x(t) + A1(ξ)x(t− h(t))

]
= 0.

(3.10)

Combining from (3.5)–(3.10), we have

V̇ (t, xt) + 2αV (t, xt) ≤ ηT(t)Ξ(ξ)η(t), (3.11)

where,

ηT(t) =
[
xT(t) xT(t− τ(t)) xT(t− h(t)) xT(t− hm) ẋT(t) ẋT(t− τ(t))

]
,

and
Ξ(ξ) =

[
Ξik(ξ)

]
, i, k = 1, . . . , 6, be symmetric matrix,

Ξ11(ξ) = [A0(ξ) + αI]T P (ξ) + P (ξ) [A0(ξ) + αI]

+ A0(ξ)TU1(ξ) + U1(ξ)TA0(ξ) +Q(ξ) +R(ξ)− T (ξ);
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Ξ12(ξ) = A0(ξ)TU2(ξ);

Ξ13(ξ) = P (ξ)A1(ξ) + U1(ξ)TA1(ξ) + A0(ξ)TU3(ξ) + T (ξ);

Ξ14(ξ) = A0(ξ)TU4(ξ); Ξ15(ξ) = −U1(ξ)T + A0(ξ)TU5(ξ);

Ξ16(ξ) = P (ξ)D(ξ) + U1(ξ)TD(ξ) + A0(ξ)TU6(ξ);

Ξ22(ξ) = −(1− µ)e−2ατMR(ξ); Ξ23(ξ) = U2(ξ)TA1(ξ);

Ξ24(ξ) = 0; Ξ25(ξ) = −U2(ξ)T; Ξ26(ξ) = U2(ξ)TD(ξ);

Ξ33(ξ) = −T (ξ)− Z(ξ) + A1(ξ)TU3(ξ) + U3(ξ)TA1(ξ);

Ξ34(ξ) = Z(ξ) + A1(ξ)TU4(ξ); Ξ35(ξ) = −U3(ξ)T + A1(ξ)TU5(ξ);

Ξ36(ξ) = U3(ξ)TD(ξ) + A1(ξ)TU6(ξ);

Ξ44(ξ) = −e−2αhmQ(ξ)− Z(ξ);

Ξ45(ξ) = −U4(ξ)T; Ξ46(ξ) = U4(ξ)TD(ξ);

Ξ55(ξ) = S(ξ) + h2
Me

2αhMT (ξ) + (hM − hm)2e2αhMZ(ξ)− U5(ξ)− U5(ξ)T;

Ξ56(ξ) = U5(ξ)TD(ξ)− U6(ξ);

Ξ66(ξ) = −(1− µ)e−2ατMS(ξ) + U6(ξ)TD(ξ) +D(ξ)TU6(ξ).

Using the property
p∑
i=1

ξi = 1, we have

V̇ (t, xt) + 2αV (t, xt) ≤ ηT(t)
[ p∑
i=1

ξ2
i Ξi(Pi, Qi, Ri, Si, Ti, Zi,Ui)

+

p−1∑
i=1

p∑
j=i+1

ξiξj(Ξi(Pj, Qj, Rj, Sj, Tj, Zj,Uj)

+ Ξj(Pi, Qi, Ri, Si, Ti, Zi,Ui))
]
η(t).

(3.12)

Therefore, it follows from conditions (3.1) and (3.2) that

V̇ (t, xt) + 2αV (t, xt) ≤ ηT(t)

(
−

p∑
i=1

ξ2
i +

2

p− 1

p−1∑
i=1

p∑
j=i+1

ξiξj

)
Mη(t). (3.13)

Observe that,

(p− 1)

p∑
i=1

ξ2
i − 2

p−1∑
i=1

p∑
j=i+1

ξiξj =

p−1∑
i=1

p∑
j=i+1

(ξi − ξj)2 ≥ 0,

then from (3.13) we have

V̇ (t, xt) + 2αV (t, xt) ≤ −
1

p− 1

p−1∑
i=1

p∑
j=i+1

(ξi − ξj)2ηT(t)Mη(t) ≤ 0, t ≥ 0.
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which implies V (t, xt) ≤ V (0, x0)e−2αt, t ≥ 0. Taking (3.4) into account, we obtain

‖x(t, φ)‖ ≤
√
λ2

λ1

‖φ‖e−αt, t ≥ 0

which concludes the proof.

Remark 3.2. Theorem 3.1 gives conditions in terms of linear matrix inequalities for
the α-exponential stability problem for each given decay rate α > 0 as considered
in [4–6, 12, 15]. However, the decay rate α for the global exponential stability problem
can be determined by LMIs and a nonlinear scalar equation as stated in the following
theorem.

Theorem 3.3. Assume that, for system (2.1), there exist matrices U1i, U2i, U3i, U4i, U5i,
U6i, i = 1, . . . , p, a symmetric semi-positive definite matrix M , symmetric positive def-
inite matrices Pi, Qi, Ri, Si, Ti, Zi, i = 1, . . . , p, and a positive number λ0 satisfy the
following linear matrix inequalities:

Φi(Pi, Qi, Ri, Si, Ti, Zi,Ui) ≤ −M− λ0I, i = 1, . . . , p; (3.14)

Φi(Pj, Qj, Rj, Sj, Tj, Zj,Uj) + Φj(Pi, Qi, Ri, Si, Ti, Zi,Ui) ≤
2

p− 1
M, (3.15)

i = 1, . . . , p− 1, j = i+ 1, . . . , p,

where,

Φ11 AT
0iU2j Φ13 AT

0iU4j −UT
1j + AT

0iU5j Φ16

∗ −δRj UT
2jA1i 0 −UT

2j UT
2jDi

∗ ∗ Φ33 Zj + AT
1iU4j −UT

3j + AT
1iU5j UT

3jDi + AT
1iU6j

∗ ∗ ∗ −Qj − Zj −UT
4j UT

4jDi

∗ ∗ ∗ ∗ Φ55 UT
5jDi − U6j

∗ ∗ ∗ ∗ ∗ Φ66

 ,

and

Φ11 = AT
0i(Pj + U1j) + (Pj + UT

1j)A0i +Qj +Rj − Tj;
Φ13 = PjA1i + UT

1jA1i + AT
0iU3j + Tj;

Φ16 = PjDi + UT
1jDi + AT

0iU6j;

Φ33 = −Tj − Zj + AT
1iU3j + UT

3jA1i;

Φ55 = −U5j − UT
5j + Sj + h2

MTj + (hM − hm)2Zj;

Φ66 = −δSj +DT
i U6j + UT

6jDi.

Then exists a positive number α∗ such that system (2.1) is exponentially stable with any
decay rate α ∈ (0, α∗]. Moreover, every solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤
√
λ2

λ1

‖φ‖e−αt, t ≥ 0.
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Proof. By the same argument used in the proof of Theorem 3.1, from (3.11) we have

V̇ (t, xt) + 2αV (t, xt) ≤ ηT(t)
[ p∑
i=1

ξ2
i Φi(Pi, Qi, Ri, Si, Ti, Zi,Ui)

+

p−1∑
i=1

p∑
j=i+1

ξiξj(Φi(Pj, Qj, Rj, Sj, Tj, Zj,Uj)

+ Φj(Pi, Qi, Ri, Si, Ti, Zi,Ui))
]
η(t) +

p∑
i=1

ξiη
T(t)Ψiη(t),

(3.16)

where,

Ψi = diag
{

2αPi, δ(1− e−2ατM )Ri, 0, (1− e−2αhm)Qi,

h2
M(e2αhM − 1)Ti + (hM − hm)2(e2αhM − 1)Zi, δ(1− e−2ατM )Si, 0

}
.

Therefore,

V̇ (t, xt) + 2αV (t, xt) ≤ ηT(t)

(
−

p∑
i=1

ξ2
i +

2

p− 1

p−1∑
i=1

p∑
j=i+1

ξiξj

)
Mη(t)

− λ0

(
p∑
i=1

ξ2
i

)
‖η(t)‖2 + ϕ(α)‖η(t)‖2,

≤

[
ϕ(α)− λ0

(
p∑
i=1

ξ2
i

)]
‖η(t)‖2,

(3.17)

where,

ϕ(α) = 2αλP + δ
(
1− e−2ατM

)
(λR + λS) +

(
1− e−2αhm

)
λQ

+ h2
M

(
e2αhM − 1

)
λT + (hM − hm)2 (e2αhM − 1

)
λZ .

Observe that, p

(
p∑
i=1

ξ2
i

)
≥

(
p∑
i=1

ξi

)2

= 1, then from (3.17) we have

V̇ (t, xt) + 2αV (t, xt) ≤
[
ϕ(α)− λ0

p

]
‖η(t)‖2, t ≥ 0. (3.18)

Noting that, ϕ(α) is continuous and strictly increasing function in α ∈ [0,∞), ϕ(0) = 0,
ϕ(α) → ∞ as α → ∞. Hence, there is a unique positive solution α∗ of the equation

ϕ(α) =
λ0

p
and ϕ(α) <

λ0

p
for all α ∈ (0, α∗).
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For any α ∈ (0, α∗] we have

V̇ (t, xt) + 2αV (t, xt) ≤
[
ϕ(α)− λ0

p

]
‖η(t)‖2 ≤ 0

which implies V (t, xt) ≤ V (0, x0)e−2αt, t ≥ 0. Taking (3.4) into account, we obtain

‖x(t, φ)‖ ≤
√
λ2

λ1

‖φ‖e−αt, t ≥ 0

which concludes the proof.

Remark 3.4. If p = 1, then condition (3.2) is automatically removed and Theorem 3.1 is
reduced to asymptotic stability conditions for neutral systems with interval time-varying
state delay as stated in the following corollary.

Corollary 3.5. Assume that all the eigenvalues of matrix D are inside the unit circle,
the system (2.1), with p = 1, is asymptotically stable if there exist matrices Uk, k =
1, . . . , 6, symmetric positive definite matrices P,Q,R, S, T, Z, such that the following
linear matrix inequality hold:

Ξ11 AT
0U2 Ξ13 AT

0U4 Ξ15 Ξ16

∗ −(1− µ)R UT
2 A1 0 −UT

2 UT
2 D

∗ ∗ Ξ33 Z + AT
1U4 Ξ35 Ξ36

∗ ∗ ∗ −Q− Z −UT
4 UT

4 D
∗ ∗ ∗ ∗ Ξ55 UT

5 D − U6

∗ ∗ ∗ ∗ ∗ Ξ66

 < 0, (3.19)

where

Ξ11 = AT
0 (P + U1) + (P + UT

1 )A0 +Q+R− T ;

Ξ13 = PA1 + UT
1 A1 + AT

0U3 + T ;

Ξ15 = −UT
1 + AT

0U5; Ξ16 = PD + UT
1 D + AT

0U6;

Ξ33 = −T − Z + AT
1U3 + UT

3 A1;

Ξ35 = −UT
3 + AT

1U5; Ξ36 = UT
3 D + AT

1U6;

Ξ55 = −U5 − UT
5 + S + h2

MT + (hM − hm)2Z;

Ξ66 = −(1− µ)S +DTU6 + UT
6 D.

4 Examples
In this section, we give some numerical examples to show the effectiveness of our con-
ditions.
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Example 4.1. Consider system (2.1) with p = 3, h(t) = 1 + | sin t|, τ(t) = cos2 0.1t
and

A01 =

[
−4 1
0 −1

]
, A02 =

[
−2 −1
0 −3

]
, A03 =

[
−2 0
−1 −1

]
,

A11 =

[
0.1 0
0.1 −0.1

]
, A12 =

[
−0.2 0
0.1 0.1

]
, A13 =

[
−0.1 0.1

0 0.2

]
,

D1 =

[
0.1 0
0 −0.1

]
, D2 =

[
0.1 0
0 0.1

]
, D3 =

[
−0.1 0

0 0.1

]
.

Note that, the delay function h(t) is continuous, but nondifferentiable on R+. We
have, hm = 1, hM = 2, τM = 1 and µ = 0.1. For given α = 0.25, by using Matlab LMI
toolbox, we find that conditions (3.1), (3.2) are satisfied with

U1i = U2i = U4i = 0, i = 1, 2, 3, M =

[
1 0
0 1

]
,

P1 = 103 ×
[

1.1587 −0.1349
−0.1349 1.4127

]
, P2 = 103 ×

[
1.2071 −0.1059
−0.1059 1.0060

]
,

P3 = 103 ×
[
1.3456 0.0467
0.0467 1.5802

]
, Q1 = 103 ×

[
3.1220 −0.0156
−0.0156 3.0962

]
,

Q2 = 103 ×
[
3.1026 0.0168
0.0168 3.0959

]
, Q3 = 103 ×

[
3.1002 0.0094
0.0094 3.1846

]
,

R1 = 103 ×
[

3.2641 −0.0229
−0.0229 3.2396

]
, R2 = 103 ×

[
3.3781 0.0293
0.0293 3.2252

]
,

R3 = 103 ×
[

3.2277 −0.0268
−0.0268 3.3383

]
, S1 =

[
80.7481 2.1035
2.1035 113.5618

]
,

S2 =

[
53.0203 −14.7176
−14.7176 27.3034

]
, S3 =

[
45.1212 6.3806
6.3806 61.9915

]
,

T1 =

[
12.0558 0.9591
0.9591 28.4793

]
, T2 =

[
25.9109 −10.6601
−10.6601 8.2741

]
,

T3 =

[
11.0547 9.9937
9.9937 21.1726

]
, Z1 =

[
73.7291 2.4344
2.4344 113.5906

]
,

Z2 =

[
98.8278 −36.7086
−36.7086 41.8415

]
, Z3 =

[
42.1947 27.7165
27.7165 105.8770

]
,

U31 =

[
44.2623 −9.5044
−27.3436 −19.8529

]
, U32 =

[
47.2710 3.4638
−34.6174 −13.3825

]
,

U33 =

[
1.7296 −19.4483
−2.0176 −57.3286

]
, U51 =

[
378.0268 83.4725
−9.8866 488.9168

]
,

U52 =

[
514.0416 −203.5652
−213.2774 180.2979

]
, U53 =

[
209.9268 148.7830
143.0793 387.8910

]
,
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Table 1: Upper bounds of decay rate α for different values of µ
µ 0 0.1 0.3 0.5 0.7 0.8
α 0.323 0.307 0.266 0.209 0.121 0.047

Table 2: Upper bound of hM for different values of hm
hm 0 1 2 3 4
He et al. [2] 1.34 1.74 2.43 3.22 4.06
Jiang & Han [7] 1.34 1.80 2.52 3.33 4.18
Shao [16] 1.34 1.76 2.44 3.22 4.06
Zhang et al. [21] 1.86 2.06 2.61 3.31 4.09
Corollary 3.5 1.86 2.11 2.68 3.34 4.12

U61 =

[
1.5949 2.6459
−6.5208 −24.4674

]
, U62 =

[
−12.5017 −11.9106
19.3965 16.4398

]
,

U63 =

[
−15.0699 6.1030
12.9969 26.8754

]
.

By Theorem 3.1, System (2.1) is exponentially stable with decay rate α = 0.25. More-
over, every solution of the system satisfies

‖x(t, φ)‖ ≤ 3.0754‖φ‖e−0.25t, t ≥ 0.

With U1i = U2i = U4i = 0, i = 1, 2, 3 and M =

[
1 0
0 1

]
, Table 1 gives the upper values

of decay rate α for different values of µ.

Example 4.2. Consider the system with interval time-varying delay studied in ( [2,21]):

ẋ(t) = A0x(t) + A1x(t− h(t)), (4.1)

where

A0 =

[
−2 0
0 −0.9

]
, A1 =

[
−1 0
−1 −1

]
, hm ≤ h(t) ≤ hM .

Table 2 gives the upper bound of hM for different values of hm.

5 Conclusions
In this paper, new delay-dependent exponential stability conditions for polytopic neutral
system with nondifferentiable interval time-varying delays are proposed. By using an
improved Lyapunov–Krasovskii functional, the exponential stability conditions are de-
rived in terms of LMIs, which can be solved by various computational tools and allows
to compute simultaneously the two bounds that characterize the exponential stability
rate of the solution. Numerical examples are given to show the effectiveness of our
conditions.
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