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Abstract

Let 1 ≤ p < ∞. We characterise the classes(X, Y ) of all infinite matrices that
mapX intoY for X = wp

∞(Λ) orX = wp
0(Λ) andY = w1

∞(Λ′), for X = w1
∞(Λ)

andY = wp
∞(Λ′), and forX = Mp(Λ) andY = M1(Λ′), theβ-duals ofwp

∞(Λ)
andw1

∞(Λ′). As special cases, we obtain the characterisations of the classes of all
infinite matrices that mapwp

∞ into w1
∞, andwp into w1. Furthermore, we prove

that the classes(w∞(Λ), w∞(Λ)) and(w,w) are Banach algebras.

AMS Subject Classifications:46A45, 40H05.
Keywords: Spaces of stronglyΛ-summable and bounded sequences, matrix transfor-
mations, Banach algebras.

1 Introduction

Maddox [5] introduced the setwp of all complex sequencesx = (xk)
∞
k=0 that are

strongly summable with indexp by the Ces̀aro method of order 1; that is,wp contains
all sequencesx for which lim

n→∞
σp

n(x; ξ) = 0 for some complex numberξ, where

σp
n(x; ξ) =

1

n + 1

n∑
k=0

|xk − ξ|p for all n = 0, 1, . . . .

We will also consider the setswp
0 andwp

∞ of all sequences that are strongly summable
to zero and strongly bounded, with indexp; that is, the setswp

0 andwp
∞ contain all
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sequencesx for which lim
n→∞

σp
n(x; 0) = 0 andsup

n
σp

n(x; 0) < ∞, respectively. Maddox

also established necessary and sufficient conditions on the entries of an infinite matrix to
mapwp into the spacec of all convergent sequences; his result is similar to the famous
classical result by Silverman–Toeplitz which characterises the class(c, c) of all matrices
that mapc into c, the so-called conservative matrices .

Characterisations of classes of matrix transformations between sequence spaces con-
stitute a wide, interesting and important field in both summability and operator theory.
These results are needed to determine the corresponding subclasses of compact matrix
operators, for instance in [1,13], and more recently, of general linear operators between
the respective sequence spaces, for instance in [2,7]. They are also applied in studies on
the invertibility of operators and the solvability of infinite systems of linear equations,
for instance in [6,8]. To be able to apply methods from the theory of Banach algebras to
the solution of those problems, it is essential to determine if a class of linear operators
of a sequence spaceX into itself is a Banach algebra; this is nontrivial ifX is aBK
space that does not haveAK. Finally the characterisations of compact operators can
be used to establish sufficient conditions for an operator to be a Fredholm operator, as
in [3].

The spaceswp
∞(Λ) andwp

0(Λ) for exponentially bounded sequencesΛ and1 ≤ p <
∞ were introduced in [10]; they are generalisations of the spaceswp

∞ andwp
0. Their

dual spaces were determined in [11]. In this paper, we establish the new characterisa-
tions of the classes(X, Y ) of all infinite matrices that mapX into Y for X = wp

∞(Λ)
or X = wp

0(Λ) andY = w1
∞(Λ′), for X = w1

∞(Λ) andY = wp
∞(Λ′), and whenX is

theβ-dual ofwp
∞(Λ) or wp

0(Λ) andY is theβ-dual ofw1
∞(Λ′). As a special case, we

obtain the characterisations of the classes of all infinite matrices that mapwp
∞ into w1

∞,
andwp into w1, the last result being similar to Maddox’s and the Silverman–Toeplitz
theorems. Furthermore, we prove that the classes(w∞(Λ), w∞(Λ)) and(w, w) are Ba-
nach algebras. Our results would be essential for further research in the areas mentioned
above.

2 Notations and Known Results

Let ω denote the set of all sequencesx = (xk)
∞
k=0, and`∞, c0 andφ be the sets of all

bounded, null and finite complex sequences, respectively; also letcs, bs and

`p =

{
x ∈ ω :

∞∑
k=0

|xk|p < ∞

}
for 1 ≤ p < ∞

be the sets of all convergent, bounded and absolutelyp-summable series. We writee and
e(n) (n = 0, 1, . . .) for the sequences withek = 0 for all k, ande(n)

n = 1 ande
(n)
k = 0

for k 6= n. A sequence(bn) in a linear metric spaceX is called a Schauder basis ofX

if for everyx ∈ X there exists a unique sequenceλn of scalars such thatx =
∑

n

λnbn.
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A BK spaceX is a Banach sequence space with continuous coordinatesPn(x) = xn

(n ∈ N0) for all x ∈ X; a BK spaceX ⊃ φ is said to haveAK if x =
∞∑

k=0

xke
(k) for

every sequencex = (xk)
∞
k=0 ∈ X. Let X be a subset ofω. Then the set

Xβ = {a ∈ ω : ax = (akxk)
∞
k=0 ∈ cs for all x ∈ X}

is called theβ-dual ofX. Let A = (ank)
∞
k=0 be an infinite matrix of complex numbers

andx = (xk)
∞
k=0 ∈ ω. Then we writeAn = (ank)

∞
k=0 (n = 0, 1, . . .) andAk = (ank)

∞
n=0

(k = 0, 1, . . .) for the sequences in then-th row and thek-th column ofA, andAnx =
∞∑

k=0

ankxk provided the series converges. Given any subsetsX andY of ω, then(X, Y )

denotes the class of all infinite matricesA that mapX into Y , that is,An ∈ Xβ for all
n, andAx = (Anx)∞n=0 ∈ Y .

Let X andY be Banach spaces andBX = {x ∈ X : ‖x‖ ≤ 1} denote the unit
ball in X. Then we writeB(X,Y ) for the Banach space of all bounded linear operators
L : X → Y with the operator norm‖L‖ = sup

x∈BX

‖L(x)‖. We writeX∗ = B(X, C)

for the continuous dualof X with the norm‖f‖ = sup
x∈BX

|f(x)| for all f ∈ X∗. The

following results and definitions are well known. Since we will frequently apply them,
we state them here for the reader’s convenience.

Proposition 2.1. LetX andY beBK spaces.

(a) Then we have(X, Y ) ⊂ B(X, Y ); this means that ifA ∈ (X, Y ), thenLA ∈
B(X, Y ), whereLA(x) = Ax (x ∈ X) (see [14, Theorem 4.2.8]).

(b) If X hasAK then we haveB(X, Y ) ⊂ (X, Y ); this means everyL ∈ B(X, Y ) is
given by a matrixA ∈ (X,Y ) such thatL(x) = Ax (x ∈ X) (see [4, Theorem
1.9]).

A nondecreasing sequenceΛ = (λn)∞n=0 of positive reals is calledexponentially
boundedif there is an integerm ≥ 2 such that for all nonnegative integersν there
is at least one termλn in the intervalI(ν)

m = [mν , mν+1 − 1] ( [10]). It was shown
( [10, Lemma 1]) that a nondecreasing sequenceΛ = (λn)∞n=0 is exponentially bounded,
if and only if the following condition holds

(I)

{
There are realss ≤ t such that for some subsequence(λn(ν))

∞
ν=0

0 < s ≤ λn(ν)/λn(ν+1) ≤ t < 1 (ν = 0, 1, . . .);

such a subsequence is called anassociated subsequence.

Example 2.2.A simple, but important exponentially bounded sequence is the sequence
Λ with λn = n + 1 for n = 0, 1, . . .; an associated subsequence is given byλn(ν) = 2ν ,
ν = 0, 1, . . ..
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Throughout, let1 ≤ p < ∞ andq be the conjugate number ofp, that is,q = ∞ for
p = 1 andq = p/(p−1) for 1 < p < ∞. Also let(µn)∞n=0 be a nondecreasing sequence
of positive reals tending to infinity. Furthermore letΛ = (λn)∞n=0 be an exponentially
bounded sequence, and(λn(ν))

∞
ν=0 an associated subsequence withλn(0) = λ0. We write

K<ν> (ν = 0, 1, . . .) for the set of all integersk with n(ν) ≤ k ≤ n(ν + 1) − 1, and
define the sets

w̃p
0(µ) =

{
x ∈ ω : lim

n→∞

(
1

µn

n∑
k=0

|xk|p
)

= 0

}
,

w̃p
∞(µ) =

{
x ∈ ω : sup

n

(
1

µn

n∑
k=0

|xk|p
)

< ∞

}
,

wp
0(Λ) =

{
x ∈ ω : lim

ν→∞

(
1

λn(ν+1)

∑
k∈K<ν>

|xk|p
)

= 0

}
,

and

wp
∞(Λ) =

{
x ∈ ω : sup

ν

(
1

λn(ν+1)

∑
k∈K<ν>

|xk|p
)

< ∞

}
.

If p = 1, we omit the indexp throughout, that is, we writẽw0(µ) = w̃1
∞(µ) etc., for

short.

Proposition 2.3 (See [10, Theorem 1 (a), (b)]).Let (µn)∞n=0 be a nondecreasing se-
quence of positive reals tending to infinity,Λ = (λn)∞n=0 be an exponentially bounded
sequence and(λn(ν))

∞
n=0 be an associated subsequence.

(a) Thenw̃p
0(µ) andw̃p

∞(µ) areBK spaces with the sectional norm‖ · ‖˜µ defined by

‖x‖˜
µ = sup

n

(
1

µn

n∑
k=0

|xk|p
)1/p

andw̃p
0(µ) hasAK.

(b) We havew̃p
0(Λ) = wp

0(Λ), w̃p
∞(Λ) = wp

∞(Λ), and the sectional norm‖ · ‖˜Λ and
the block norm‖ · ‖Λ with

‖x‖Λ = sup
ν

(
1

λn(ν+1)

∑
k∈K<ν>

|xk|p
)1/p

are equivalent onwp
0(Λ) and onwp

∞(Λ).
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Remark2.4. (a) It can be shown thatwp
∞(Λ) is not separable, and so has no Schauder

basis.

(b) It follows from [14, Corollary 4.2.4] and Proposition 2.3, thatwp
0(Λ) andwp

∞(Λ)
areBK spaces with the norm‖ · ‖Λ and thatwp

0(Λ) hasAK.

Example 2.5.We might also define the set

wp(Λ) = wp
0(Λ)⊕ e = {x ∈ ω : x− ξ ∈ wp

0 for some complex numberξ }.

It can be shown that thestrongΛ-limit ξ of anyx ∈ wp(Λ) is unique if and only if

λ = lim sup
ν→∞

n(ν + 1)− n(ν)

λn(ν+1)

> 0,

and thatwp(Λ) ⊂ wp
∞(Λ) if and only if

Λ = sup
ν

n(ν + 1)− n(ν)

λn(ν+1)

< ∞.

In view of Proposition 2.3 (b) and Example 2.2, the setswp
0(Λ) andwp

∞(Λ) reduce to
theBK spaceswp

0 andwp
∞ for λn = n + 1 for n = 0, 1, . . .; it is also clear that then

Λ < ∞ andλ > 0, and consequentlywp is aBK space and the strong limitξ of each
sequencex ∈ wp is unique.

Throughout, we write‖ · ‖ = ‖ · ‖Λ, for short.
Theβ-duals play a much more important role than the continuous duals in the theory

of sequence spaces and matrix transformations. Leta be a sequence andX be a normed

sequence space. Then we write‖a‖∗X = sup
x∈BX

|
∞∑

k=0

akxk| provided the expression on the

right exists and is finite, which is the case wheneverX is a BK space anda ∈ Xβ

by [14, Theorem 7.2.9]. IfΛ is an exponentially bounded sequence with an associated
subsequenceλn(ν), then we writemax

ν
and

∑
ν

for the maximum and sum taken over all

k ∈ K<ν>. We denote byx<ν> =
∑

ν

xke
(k) (ν ∈ N0) theν-block of the sequencex.

Parts (a) and (b) of the next result are [11, Theorem 5.5 (a), (b)], Part (c) is [11,
Theorem 5.7], and Parts (d) and (e) are [11, Theorem 5.8 (a), (b)].

Proposition 2.6. SupposeΛ = (λn)∞n=0 is an exponentially bounded sequence and let
(λn(ν))

∞
ν=0 be an associated subsequence. We write

Mp(Λ) =

{
a ∈ ω : ‖a‖Mp(Λ) =

∞∑
ν=0

(
λn(ν+1)

)1/p · ‖a<ν>‖q < ∞

}
.



96 Eberhard Malkowsky

(a) Then we have(wp
0(Λ))β = (wp

∞(Λ))β = Mp(Λ) and

‖ · ‖Mp(Λ) = ‖ · ‖∗wp
∞(Λ) = ‖ · ‖∗wp

0(Λ) onMp(Λ). (2.1)

(b) The continuous dualwp
0(Λ)∗ of wp

0(Λ) is norm isomorphic toMp(Λ) with the
norm‖ · ‖Mp(Λ).

(c) ThenMp(Λ) is aBK space withAK with respect to‖ · ‖Mp(Λ).

(d) We have(wp
∞(Λ))ββ = (wp

0(Λ))ββ = wp
∞(Λ) and

‖ · ‖∗Mp(Λ) = ‖ · ‖ on (Mp(Λ))β. (2.2)

(e) The continuous dual(Mp(Λ))∗ ofMp(Λ) is norm isomorphic towp
∞(Λ).

Remark2.7. (a) The continuous dual ofw∞(Λ) is not given by a sequence space.

(b) The setwp
∞(Λ) is β-perfect, that is,(wp

∞(Λ))ββ = wp
∞(Λ).

3 Matrix Transformations on wp
∞(Λ) and wp

0(Λ)

LetΛ = (λk)
∞
k=0 andΛ′ = (λ′m)∞m=0 be exponentially bounded sequences and(λk(ν))

∞
ν=0

and(λ′m(µ))
∞
µ=0 be associated subsequences. Furthermore, letK<ν> (ν = 0, 1, . . .) and

M<µ> (µ = 0, 1, . . .) be the sets of all integersk andm with k(ν) ≤ k ≤ k(ν + 1)− 1
andm(µ) ≤ m ≤ m(µ + 1) − 1. If A = (amk)

∞
m,k=0 is an infinite matrix andM =

(Mµ)∞µ=0 is a sequence of subsetsMµ of M<µ> for µ = 0, 1, . . ., we writeSM(A) for
the matrix with the rows

SM
µ (A) =

∑
m∈Mµ

Am, that is,sM
µk(A) =

∑
m∈Mµ

amk for all µ, k = 0, 1, . . ..

Here we establish necessary and sufficient conditions for an infinite matrixA to be in
the classes(wp

∞(Λ), w∞(Λ′)), (wp
0(Λ), w∞(Λ′)) and(Mp(Λ),M(Λ′)), and consider the

special cases of(wp
∞, w∞) and(wp, w). We also estimate the operator norms ofLA in

these cases. Those characterisations and estimates are needed in the proofs of our results
on Banach algebras of matrix transformations.

First we characterise the classes(wp
∞(Λ), w∞(Λ′)) and(wp

0(Λ), w∞(Λ′)), and esti-
mate the operator norm ofLA when the matrixA is a member of those classes.

Theorem 3.1. Let Λ = (λk)
∞
k=0 and Λ′ = (λ′m)∞m=0 be exponentially bounded se-

quences and(λk(ν))
∞
ν=0 and (λ′m(µ))

∞
µ=0 be associated subsequences. Then we have

A ∈ (wp
∞(Λ), w∞(Λ′)) if and only if

‖A‖(Λ,Λ′) = sup
µ

(
1

λ′m(µ+1)

max
Mµ⊂M<µ>

∥∥SM
µ (A)

∥∥
Mp(Λ)

)
< ∞; (3.1)
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moreover, we have(wp
∞(Λ), w∞(Λ′)) = (wp

0(Λ), w∞(Λ′)). If A ∈ (wp
∞(Λ), w∞(Λ′)),

then the operator norm ofLA satisfies

‖A‖(Λ,Λ′) ≤ ‖LA‖ ≤ 4 · ‖A‖(Λ,Λ′). (3.2)

Proof. Throughout the proof, we write‖A‖ = ‖A‖(Λ,Λ′), for short.
First we assume that the condition in (3.1) is satisfied. Letm ∈ N0 be given. Then

there is a uniqueµm ∈ N0 such thatm ∈ M<µm>. We chooseMµm = {m}, and it
follows from (3.1) that‖Am‖Mp(Λ) < ∞, that is,Am ∈ (wp

∞(Λ))β by Proposition 2.6
(a). Thus we have shownAm ∈ (w∞(Λ))β for all m ∈ N0. Now let x ∈ wp

∞(Λ) be
given. For eachµ ∈ N0, we writeMµ(x) for a subset ofM<µ> for which∣∣∣∣∣∣

∑
m∈Mµ(x)

Amx

∣∣∣∣∣∣ = max
Mµ⊂M<µ>

∣∣∣∣∣∣
∑

m∈Mµ

Amx

∣∣∣∣∣∣ ,
and putM(x) = (Mµ(x))

∞
µ=0. Then we have by a well-known inequality (see [12]),

(2.1) and (3.1)

1

λ′m(µ + 1)

∑
m∈M<µ>

|Amx| ≤ 4 · 1

λ′m(µ + 1)
max

Mµ⊂M<µ>

∣∣∣∣∣∣
∑

m∈Mµ

Amx

∣∣∣∣∣∣
= 4 · 1

λ′m(µ + 1)

∣∣∣∣∣∣
∑

m∈Mµ(x)

∞∑
k=0

amkxk

∣∣∣∣∣∣ = 4 · 1

λ′m(µ + 1)

∣∣∣∣∣∣
∞∑

k=0

 ∑
m∈Mµ(x)

amk

xk

∣∣∣∣∣∣
≤ 4 · 1

λ′m(µ + 1)

∣∣SM(x)
µ (A)x

∣∣ ≤ 4 · 1

λ′m(µ + 1)

∥∥SM(x)
µ (A)

∥∥
Mp(Λ)

· ‖x‖

≤ 4 · 1

λ′m(µ + 1)
·
(

max
Mµ⊂M<µ>

∥∥SM
µ (A)

∥∥
Mp(Λ)

)
· ‖x‖ ≤ 4 · ‖A‖ · ‖x‖ < ∞ for all µ.

Hence it follows that

‖Ax‖ = sup
µ

(
1

λ′m(µ + 1)

∑
m∈M<µ>

|Amx|

)
≤ 4 · ‖A‖ · ‖x‖ < ∞, (3.3)

and consequentlyAx ∈ w∞(Λ′) for all x ∈ wp
∞(Λ). Thus, we have shown that if the

condition in (3.1) is satisfied, thenA ∈ (wp
∞(Λ), w∞(Λ′)) ⊂ (wp

0(Λ), w∞(Λ′)).
Conversely, we assumeA ∈ (wp

0(Λ), w∞(Λ′)). Then we haveAm ∈ (wp
0(Λ))β for

all m ∈ N0, hence‖Am‖Mp(Λ) < ∞ for all m by Proposition 2.6 (a). Sincewp
0(Λ) and

w∞(Λ′) are aBK spaces by Remark 2.4 (b), it follows from Proposition 2.1 (a) that
LA ∈ B(wp

0(Λ), w∞(Λ′)), and so‖LA‖ < ∞. We also haveLMµ ∈ (wp
0(Λ))∗ for all

Mµ ⊂ M<µ> and allµ ∈ N0, whereLMµ(x) = (λ′m(µ+1))
−1 ·

∑
m∈Mµ

Amx for all x ∈
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wp
0(Λ). Since trivially|LMµ(x)| ≤ ‖LA(x)‖ ≤ ‖LA‖ · ‖x‖ for all x ∈ wp

0(Λ), all Mµ ⊂
M<µ> and allµ ∈ N0, it follows by (2.1) in Proposition 2.6 (a) that‖LMµ‖Mp(Λ) =
‖LMµ‖∗wp

0(Λ) ≤ ‖LA‖ for all Mµ ⊂ M<µ> andµ ∈ N0, and so

sup
µ

(
max

Mµ⊂M<µ>

∥∥LMµ

∥∥
Mp(Λ)

)
= sup

µ

 1

λ′m(µ+1)

max
Mµ⊂M<µ>

∥∥∥∥∥∥
∑

m∈Mµ

Am

∥∥∥∥∥∥
Mp(Λ)


= ‖A‖ ≤ ‖LA‖ < ∞. (3.4)

Thus we have shown that ifA ∈ (wp
0(Λ), w∞(Λ′)), then (3.3) is satisfied.

It remains to show that ifA ∈ (wp
∞(Λ), w∞(Λ′)), then (3.2) holds. But the first and

second inequalities in (3.2) follow from (3.4) and (3.3), respectively.

Now we characterise the class(Mp(Λ),M(Λ′)), and estimate the operator norm of
LA whenA ∈ (Mp(Λ),M(Λ′)). We writeT for the set of all sequencest = (tµ)∞µ=0

such that for eachµ = 0, 1, . . . there is one and only onetµ ∈ M<µ>.

Theorem 3.2. Let Λ = (λk)
∞
k=0 and Λ′ = (λ′m)∞m=0 be exponentially bounded se-

quences and(λk(ν))
∞
ν=0 and (λ′m(µ))

∞
µ=0 be associated subsequences. Then we have

A ∈ (Mp(Λ),M(Λ′)) if and only if

‖A‖(Mp(Λ),M(Λ′)) = sup
N ⊂ N0
N finite

sup
t∈T

∥∥∥∥∥∑
µ∈N

λ′m(µ+1)Atµ

∥∥∥∥∥
Λ

 < ∞, (3.5)

where, of course,∥∥∥∥∥∑
µ∈N

λ′m(µ+1)Atµ

∥∥∥∥∥
Λ

= sup
ν

(
1

λk(ν+1)

∑
k∈K<ν>

∣∣∣∣∣∑
µ∈N

λ′m(µ+1)atµ,k

∣∣∣∣∣
p)1/p

.

If A ∈ (Mp(Λ),M(Λ′)), then the operator norm ofLA satisfies

‖A‖(Mp(Λ),M(Λ′)) ≤ ‖LA‖ ≤ 4 · ‖A‖(Mp(Λ),M(Λ′)). (3.6)

Proof. Throughout the proof, we write‖A‖ = ‖A‖(Mp(Λ),M(Λ′)), for short.
First we assume that the condition in (3.5) is satisfied. Letm ∈ N0 be given. Then

there is a uniqueµm ∈ N0 such thatm ∈ M<µm>. We chooseN = {m} andtµm = m.
Then it follows from (3.5) that

‖Am‖Λ = sup
ν

(
1

λk(ν+1)

∑
k∈K<ν>

|amk|p
)1/p

=
1

λ′m(µm+1)

· sup
ν

∥∥∥∥∥∑
m∈N

λ′m(µm+1)Atµm

∥∥∥∥∥
Λ

< ∞,
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and soAm ∈ wp
∞(Λ) = (Mp(Λ))β by Proposition 2.6 (a) and (d). Now letµ0 ∈ N0 and

x ∈ Mp(Λ) be given. For eachµ ∈ N0 with 0 ≤ µ ≤ µ0, let m(µ; x) be the smallest
integer inM<µ> such that max

m∈M<µ>
|Amx| = |Am(µ;x)x|. Then we have by a well-known

inequality (see [12]) and (2.2) in Proposition 2.6 (d)

µ0∑
µ=0

λ′m(µ+1) max
m∈M<µ>

|Amx| =
µ0∑

µ=0

λ′m(µ+1)|Am(µ;x)x|

≤ 4 · max
N⊂{0,...,µ0}

∣∣∣∣∣∑
µ∈N

λ′m(µ+1)Am(µ;x)x

∣∣∣∣∣
= 4 · max

N⊂{0,...,µ0}

∣∣∣∣∣
∞∑

k=0

(∑
µ∈N

λ′m(µ+1)am(µ;x),k

)
xk

∣∣∣∣∣
≤ 4 · max

N⊂{0,...,µ0}

sup
ν

(
1

λk(ν+1)

∑
k∈K<ν>

∣∣∣∣∣∑
µ∈N

λ′m(µ+1)am(µ;x),k

∣∣∣∣∣
p)1/p

 ‖x‖Mp(Λ)

≤ 4 · max
N⊂{0,...,µ0}

∥∥∥∥∥∑
µ∈N

λ′m(µ+1)Am(µ;x)

∥∥∥∥∥
Λ

 · ‖x‖Mp(Λ)

≤ 4 · sup
N ⊂ N0
N finite

sup
t∈T

∥∥∥∥∥∑
µ∈N

λ′m(µ+1)Atµ

∥∥∥∥∥
Λ

 · ‖x‖Mp(Λ) = 4 · ‖A‖ · ‖x‖Mp(Λ) < ∞.

Sinceµ0 ∈ N0 was arbitrary, we obtain

‖Ax‖M(Λ′) ≤ 4 · ‖A‖ · ‖x‖Mp(Λ) < ∞ for all x ∈Mp(Λ), (3.7)

and consequentlyAx ∈ M(Λ′) for all x ∈ Mp(Λ). Thus we have shown that if the
condition in (3.5) is satisfied, thenA ∈ (Mp(Λ),M(Λ′)).

Conversely, we assumeA ∈ (Mp(Λ),M(Λ′)). ThenAm ∈ (Mp(Λ))β = wp
∞(Λ)

for all m ∈ N0 by Proposition 2.6 (a) and (d). Furthermore, sinceMp(Λ) andM(Λ′)
areBK spaces by Proposition 2.6 (c), it follows from Proposition 2.1 (a) thatLA ∈
B(Mp(Λ),M(Λ′)). We also haveLN,t ∈ (Mp(Λ))∗ for all finite subsetsN of N0 and

all sequencest ∈ T , whereLN,t(x) =
∑
µ∈N

λ′m(µ+1)Atµx for all x ∈ Mp(Λ). Since

trivially |LN,t(x)| ≤
∞∑

µ=0

λ′m(µ+1) max
m∈M<µ>

|Amx| = ‖Ax‖M(Λ′) ≤ ‖LA‖ · ‖x‖Λ for all

finite subsetsN of N0 and allt ∈ T , it follows by (2.2) in Proposition 2.6 (c) that

‖LN,t‖∗Mp(Λ) = ‖LN,t‖Λ =

∥∥∥∥∥∑
µ∈N

λ′m(µ+1)Atµ

∥∥∥∥∥
Λ

≤ ‖LA‖ < ∞.
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Since this holds for all finite subsetsN of N0 and allt ∈ T , we conclude

‖A‖ = sup
N ⊂ N0
N finite

sup
t∈T

∥∥∥∥∥∑
µ∈N

λ′m(µ+1)Atµ

∥∥∥∥∥
Λ

 ≤ ‖LA‖ < ∞. (3.8)

Thus we have shown that ifA ∈ (Mp(Λ),M(Λ′)), then (3.5) is satisfied.
Finally, if A ∈ (Mp(Λ),M(Λ′)), then (3.6) follows from (3.8) and (3.7).

Using the transposeAT of a matrixA, we obtain an alternative characterisation of
the class(w∞(Λ), wp

∞(Λ′)).

Theorem 3.3.We haveA ∈ (w∞(Λ), wp
∞(Λ′)) if and only if∥∥AT

∥∥
(Mp(Λ′),M(Λ))

< ∞. (3.9)

Proof. SinceX = w0(Λ) and Z = Mp(Λ
′) are BK spaces withAK by Remark

2.4 (b) and Proposition 2.6 (c), andY = Zβ = wp
∞(Λ′) by Proposition 2.6 (d), it

follows from [14, Theorem 8.3.9] thatA ∈ (w0(Λ), wp
∞(Λ′)) = (X, Y ) = (Xββ, Y ) =

(w∞(Λ), wp
∞(Λ′)) andA ∈ ((w0(Λ), wp

∞(Λ′)) if and only if AT ∈ (Z,Xβ) = (Mp(Λ
′),

M(Λ)), and, by (3.5) in Theorem 3.2, this is the case if and only if (3.9) holds.

We consider an application to the characterisations of the classes(wp
∞, w∞), (wp, w)

and(w∞, wp
∞). Let Λ = Λ′ andλn = n + 1 for n = 0, 1, . . . as in Examples 2.2 and

2.5. Then we may choose the subsequences given byλk(ν) = 2ν andλm(µ) = 2µ for all
ν, µ = 0, 1, . . ., and consequently the setsK<ν> andM<µ> are the sets of all integersk
andm with 2ν ≤ k ≤ 2ν+1 − 1 and2µ ≤ m ≤ 2µ+1 − 1. We also writeMp = Mp(Λ).

Remark3.4. (a) We obviously havewp
0 ⊂ wp ⊂ wp

∞.

(b) For eachx ∈ wp, thestrong limitξ, that is, the complex numberξ with

lim
ν→∞

1

2ν

∑
ν

|xk − ξ|p = 0

is unique (see [5]).

(c) Every sequencex = (xk)
∞
k=0 ∈ wp has a unique representation

x = ξ · e +
∞∑

k=0

(xk − ξ)e(k) ( [5]).

Example 3.5. (a) It follows from Theorem 3.1 thatA ∈ (wp
∞, w∞) = (wp

0, w∞) if
and only if

‖A‖(wp
∞,w∞) = sup

µ

 1

2µ
max

Mµ⊂M<mu>

∥∥∥∥∥∥
∑

m∈Mµ

Am

∥∥∥∥∥∥
Mp

 < ∞, (3.10)



Banach Algebras of Matrix Transformations 101

where

∥∥∥∥∥∥
∑

m∈Mµ

Am

∥∥∥∥∥∥
Mp

=



∞∑
ν=0

2ν max
k∈K<ν>

∣∣∣∣∣∣
∑

m∈Mµ

amk

∣∣∣∣∣∣ (p = 1)

∞∑
ν=0

2ν/p

 ∑
k∈K<ν>

∣∣∣∣∣∣
∑

m∈Mµ

amk

∣∣∣∣∣∣
q1/q

(1 < p < ∞).

(b) It follows from Part (a) and [14, 8.3.6, 8.3.7] thatA ∈ (wp, w) if and only if
(3.10), 

for eachk there exists a complex numberαk with

lim
µ→∞

1

2µ

∑
m∈M<µ>

|amk − αk| = 0

 (3.11)

and

lim
µ→∞

1

2µ

∑
m∈M<µ>

∣∣∣∣∣
∞∑

k=0

amk − α̃

∣∣∣∣∣ = 0 for some comlex number̃α (3.12)

hold.

(c) We obtain from Theorems 3.2 and 3.3, interchanging the roles ofN andK, and
µ andν, thatA ∈ (w∞, wp

∞) if and only if

sup
K ⊂ N0
K finite

(
sup
t∈T

∥∥∥∥∥∑
ν∈K

2νAtν

∥∥∥∥∥
Λ

)
< ∞,

where ∥∥∥∥∥∑
ν∈K

2νAtν

∥∥∥∥∥
Λ

= sup
µ

(
1

2µ

∑
m∈M<µ>

∣∣∣∣∣∑
ν∈K

2νam,tν

∣∣∣∣∣
)

.

We also give a formula for the strong limit ofAx whenA ∈ (wp, w) andx ∈ wp.

Theorem 3.6. If A ∈ (wp, w), then the strong limitη of Ax for each sequencex ∈ wp

is given by

η = α̃ · ξ +
∞∑

k=0

αk(xk − ξ), (3.13)

whereξ is the strong limit of the sequencex, and the complex numbers̃α andαk for
k = 0, 1, . . . are given by(3.12)and (3.11)in Example 3.5 (b).
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Proof. We assumeA ∈ (wp, w) and write‖ · ‖ = ‖ · ‖(wp
∞,w∞), for short. The complex

numbers̃α andαk for k = 0, 1, . . . exist by Example 3.5 (b).
First, we show(αk)

∞
k=0 ∈ Mp. Let x ∈ wp andk0 ∈ N0 be given. Then there exists

an integerν(k0) with k0 ∈ K<ν(k0)> and we have by the inequality in [9, Lemma 1]

k0∑
k=0

|αkxk| =
k0∑

k=0

(
1

2µ

∑
µ

|αk| · |xk|

)

≤ 1

2µ

k0∑
k=0

(∑
µ

|ank − αk| · |xk|

)
+

ν(k0)∑
ν=0

∑
ν

(
1

2µ

∑
µ

|ank| · |xk|

)

≤
k0∑

k=0

(
1

2µ

∑
µ

|ank − αk|

)
· |xk|+ 4 · max

Mµ∈M<µ>

∞∑
ν=0

∑
ν

 1

2µ

∣∣∣∣∣∣
∑

n∈Mµ

ank

∣∣∣∣∣∣ · |xk|


≤

k0∑
k=0

(
1

2µ

∑
µ

|ank − αk|

)
· |xk|+ 4 · sup

µ

 1

2µ
max

Mµ⊂M<µ>

∥∥∥∥∥∥
∑

n∈Mµ

An

∥∥∥∥∥∥
Mp

 · ‖x‖.

Lettingµ tend to∞, we obtain
k0∑

k=0

|αkxk| ≤ 0 + 4 · ‖A‖ < ∞ from (3.11) and (3.10).

Sincek0 ∈ N0 was arbitrary, it follows that
∞∑

k=0

|αkxk| < ∞ for all x ∈ wp, that is,

(αk)
∞
k=1 ∈ (wp)β = Mp.

Now we write α̂(x) =
∞∑

k=0

αkxk andB = (bnk)
∞
n,k=0 for the matrix withbnk =

ank − αk for all n andk, and show

lim
µ→∞

1

2µ

∑
µ

|Bnx| = 0 for all x ∈ wp
0. (3.14)

Let x ∈ wp
0 andε > 0 be given. Sincewp

0 hasAK, there isk0 ∈ N0 such that∥∥x− x[k0]
∥∥ <

ε

‖A‖+ ‖(αk)∞k=0‖Mp + 1
for x[k0] =

k0∑
k=0

xke
(k).

It also follows from (3.11) that there isµ0 ∈ N0 such that

1

2µ

∑
µ

∣∣Bnx
[k0]
∣∣ =

1

2µ

∑
µ

∣∣∣∣∣
k0∑

k=0

bnkxk

∣∣∣∣∣ < ε for all µ ≥ µ0.

Let µ ≥ µ0 be given. Then we have

1

2µ

∑
µ

|Bnx| ≤
1

2µ

∑
µ

∣∣Bnx
[k0]
∣∣+ 1

2µ

∑
µ

∣∣Bn

(
x− x[k0]

)∣∣
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< ε + 4 · max
Mµ⊂M<µ>

 1

2µ

∣∣∣∣∣∣
∑

n∈Mµ

Bn

(
x− x[k0]

)∣∣∣∣∣∣


≤ ε + 4 · max
Mµ⊂M<µ>

 1

2µ

∥∥∥∥∥∥
∑

n∈Mµ

Bn

∥∥∥∥∥∥
Mp

 ∥∥x− x[k0]
∥∥ < 5 · ε.

Thus we have shown (3.14).
Finally, let x ∈ wp be given. Then there is a unique complex numberξ such that

x(0) = x− ξ · e ∈ wp
0, by Remark 3.4 (b), and we obtain by (3.14) and (3.12)

0 ≤ 1

2µ

∑
µ

|Anx− η| = 1

2µ

∑
µ

∣∣∣∣∣Anx
(0) + ξ · An(e)−

(
α̃ · ξ +

∞∑
k=0

αkx
(0)

)∣∣∣∣∣
≤ 1

2µ

∑
µ

∣∣Anx
(0) − α̂(x(0))

∣∣+ |ξ| · 1

2µ

∑
µ

|Ane− α̃|

=
1

2µ

∑
µ

|Bnx
(0)|+ |ξ| · 1

2µ

∑
µ

∣∣∣∣∣
∞∑

k=0

ank − α̃

∣∣∣∣∣→ 0 + 0 = 0 (µ →∞).

This completes the proof.

4 The Banach Algebra(w∞(Λ), w∞(Λ))

In this section, we show that(w∞(Λ), w∞(Λ)) is a Banach algebra with respect to the
norm‖ · ‖ defined by‖A‖ = ‖LA‖ for all A ∈ (w∞(Λ), w∞(Λ)). We also consider the
nontrivial special case of(w,w).

We need the following results.

Lemma 4.1. (a) The matrix productB ·A is defined for allA, B ∈ (w∞(Λ), w∞(Λ));
in fact

∞∑
m=0

|bnmamk| ≤ ‖Bn‖M(Λ) ‖Ak‖ for all n andk. (4.1)

(b) Matrix multiplication is associative in(w∞(Λ), w∞(Λ)).

(c) The space(w∞(Λ), w∞(Λ)) is a Banach space with respect to

‖A‖(Λ,Λ) = sup
µ

 1

λm(µ+1)

max
Mµ⊂M<µ>

∞∑
ν=0

λk(ν+1) max
k∈K<ν>

∣∣∣∣∣∣
∑

m∈Mµ

amk

∣∣∣∣∣∣
 . (4.2)
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Proof. (a) LetA, B ∈ (w∞(Λ), w∞(Λ)). First we observe thate(k) ∈ w∞(Λ) implies
Ae(k) = (Ame(k))∞m=0 = (amk)

∞
m=0 = Ak ∈ w∞(Λ) for all k. Therefore we have

‖Ak‖ = sup
µ

(
1

λm(µ+1)

∑
m∈M<µ>

|amk|

)
< ∞ for all k. (4.3)

FurthermoreB ∈ (w∞(Λ), w∞(Λ)) impliesBn ∈ (w∞(Λ))β = M(Λ) for all n, that is,
by Proposition 2.6 (a)

‖Bn‖M(Λ) =
∞∑

µ=0

λm(µ+1) max
m∈M<µ>

|bnm| < ∞ for all n. (4.4)

Now it follows from (4.3) and (4.4) that∣∣BnA
k
∣∣ ≤ ∞∑

m=0

|bnmamk| =
∞∑

µ=0

∑
m∈M<µ>

λm(µ+1)|bnm| ·
1

λm(µ+1)

|amk|

≤
∞∑

µ=0

[(
λm(µ+1) max

m∈M<µ>
|bnm|

)
·

(
1

λm(µ+1)

∑
m∈M<µ>

|amk|

)]

≤

(
∞∑

µ=0

(
λm(µ+1) max

m∈M<µ>
|bnm|

))
· sup

µ

(
1

λm(µ)+1

∑
m∈M<µ>

|amk|

)
= ‖Bn‖M(Λ) · ‖Ak‖ < ∞ for all n andk.

(b) LetA, B, C ∈ (w∞(Λ), w∞(Λ)). We write forD ∈ (w∞(Λ), w∞(Λ))

MT (D) = ‖DT‖(M(Λ),M(Λ)) =

sup
K ⊂ N0
K finite

(
sup
t∈T

(
sup

µ

1

λm(µ+1)

∑
m∈M<µ>

∣∣∣∣∣∑
ν∈K

λn(ν+1)dm,tν

∣∣∣∣∣
))

and note thatMT (D) < ∞ by Theorem 3.3. We are going to show that the series
∞∑

k=0

∞∑
m=0

anmbmkckj are absolutely convergent for alln andj. We fix n andj and write

s = An andt = Cj for the sequences in then-th row of A and thej-th column ofC.
Then we haves ∈M(Λ) andt ∈ w∞(Λ). We define the matrixD = (dµk)

∞
µ,k=0 by

dµk =
1

λm(µ+1)

∑
m∈M<µ>

|bmk| for µ, k = 0, 1, . . . .

Furthermore, givenµ ∈ N0, for everyν = 0, 1, . . ., let kν = kν(µ) ∈ K<ν> be the
smallest integer withmax

k∈K<ν>
dµk = dµkν . Then by the inequality in [9, Lemma 1],

λm(µ+1)‖Dµ‖M(Λ) =
∞∑

ν=0

λk(ν+1)

∑
m∈M<µ>

|bmkν |
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≤ 4 · sup
K ⊂ N0
K finite

 max
Mµ⊂M<µ>

∣∣∣∣∣∣
∑
ν∈K

λk(ν+1)

∑
m∈Mµ

bmkν

∣∣∣∣∣∣


≤ 4 · sup
K ⊂ N0
K finite

∑
m∈M<µ>

∣∣∣∣∣∑
ν∈K

λk(ν+1)bmkν

∣∣∣∣∣ ,
hence

‖Dµ‖M(Λ) ≤ 4 ·MT (B) < ∞ for µ = 0, 1, . . . . (4.5)

It also follows that forµ = 0, 1, . . .

1

λm(µ+1)

∑
m∈M<µ>

∞∑
k=0

|bmktk| =
∞∑

k=0

|tk| · |dµk| ≤ ‖Dµ‖M(Λ) · ‖t‖. (4.6)

Therefore, we obtain from (4.6) and (4.5)

∞∑
m=0

∞∑
k=0

|smbmktk| ≤

(
sup

µ

(
1

λm(µ+1)

∑
m∈M<µ>

∞∑
k=0

|bmktk|

))
· ‖s‖M(Λ)

≤ sup
µ

(
‖Dµ‖M(Λ)

)
· ‖t‖ · ‖s‖M(Λ) ≤ 4 ·MT (B) · ‖t‖ · ‖s‖M(Λ) < ∞.

Thus we have shown that
∞∑

m=0

∞∑
k=0

smbmktk is absolutely convergent, and consequently

matrix multiplication is associative in(w∞(Λ), w∞(Λ)).
(c) We assume that(A(j))∞j=0 is a Cauchy sequence in(w∞(Λ), w∞(Λ)). Since

(w∞(Λ), w∞(Λ)) = (w0(Λ), w∞(Λ)) by Theorem 3.1 andw0(Λ) hasAK by Remark
2.4 (b), it is a Cauchy sequence in(w0(Λ), w∞(Λ)) = B(w0(Λ), w∞(Λ)), by Propo-
sition 2.1. Consequently there isLA ∈ B(w0(Λ), w∞(Λ)) with LA(j) → LA. Since
w0(Λ) hasAK there is a matrixA ∈ (w0(Λ), w∞(Λ)) by Proposition 2.1 (b) such that
Ax = LA(x) for all x ∈ w0(Λ). Finally (w0(Λ), w∞(Λ)) = (w∞(Λ), w∞(Λ)) implies
A ∈ (w∞(Λ), w∞(Λ)).

The following result is obtained as an immediate consequence of Lemma 4.1.

Theorem 4.2.The class(w∞(Λ), w∞(Λ)) is a Banach algebra with respect to the norm
‖A‖ = ‖LA‖ for all A ∈ (w∞(Λ), w∞(Λ)).

The following example is obtained from Theorem 4.2.

Example 4.3. Let λn = n + 1 for n = 0, 1, . . . as in Examples 2.2, 2.5 and 3.5. Then
(w∞, w∞) is a Banach algebra with‖A‖ = ‖LA‖.

Finally, we show that(w, w) is a Banach algebra.
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Theorem 4.4.The class(w, w) is a Banach algebra with‖A‖ = ‖LA‖.

Proof. We have to show in view of Theorem 4.2 that

(i) (w, w) is complete;

(ii) if A, B ∈ (w, w), thenB · A ∈ (w, w).

First we show (i). Let(A(j))∞j=1 be a Cauchy sequence in(w, w). Since(w, w) ⊂
(w∞, w∞) and the operator norm onB(w∞, w∞) is the same as that onB(w, w), it
follows that (A(j))∞j=1 is a Cauchy sequence in(w∞, w∞), and soA = lim

j→∞
A(j) ∈

(w∞, w∞) by Lemma 4.1 (c). We have to showA ∈ (w, w). Let ε > 0 be given. Since
(A(j))∞j=1 is a Cauchy sequence in(w,w) there exists aj0 ∈ N0 such that

‖A(j) − A(`)‖(w∞,w∞)

= sup
µ

 1

2µ
max

Mµ⊂M<µ>

∥∥∥∥∥∥
∑

n∈Mµ

(A(j)
n − A(`)

n )

∥∥∥∥∥∥
M

 <
ε

4
for all j, ` ≥ j0; (4.7)

Also, by (3.11) and (3.12), for each fixedj there exist complex numbersα(j)
k (k =

0, 1, . . .) andα̃(j) such that

lim
µ→∞

(
1

2µ

∑
µ

∣∣∣a(j)
nk − α

(j)
k

∣∣∣) = 0 for eachk (4.8)

and

lim
µ→∞

(
1

2µ

∑
µ

∣∣∣∣∣
∞∑

k=0

a
(j)
nk − α̃(j)

∣∣∣∣∣
)

= 0. (4.9)

Let j, ` ≥ j0 be given. Then we have for each fixedk ∈ N0 by (4.7)∣∣∣α(j)
k − α

(`)
k

∣∣∣ =
1

2µ

∑
µ

∣∣∣α(j)
k − α

(`)
k

∣∣∣
≤ 1

2µ

∑
µ

∣∣∣a(j)
nk − α

(j)
k

∣∣∣+ 1

2µ

∑
µ

∣∣∣a(`)
nk − α

(`)
k

∣∣∣+ 1

2µ

∑
µ

∣∣∣a(j)
nk − a

(`)
nk

∣∣∣
≤ 1

2µ

∑
µ

∣∣∣a(j)
nk − α

(j)
k

∣∣∣+ 1

2µ

∑
µ

∣∣∣a(`)
nk − α

(`)
k

∣∣∣
+ 4 · max

Mµ⊂M<µ>

∣∣∣∣∣∣ 1

2µ

∑
n∈Mµ

(
A(j)

n − A(`)
n

)
(e(k))

∣∣∣∣∣∣
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≤ 1

2µ

∑
µ

∣∣∣a(j)
nk − α

(j)
k

∣∣∣+ 1

2µ

∑
µ

∣∣∣a(`)
nk − α

(`)
k

∣∣∣
+ 4 · sup

µ

(
1

2µ
max

Mµ⊂M<µ>

∥∥A(j) − A(`)
∥∥
M

)
‖e(k)‖

≤ 1

2µ

∑
µ

∣∣∣a(j)
nk − α

(j)
k

∣∣∣+ 1

2µ

∑
µ

∣∣∣a(`)
nk − α

(`)
k

∣∣∣+ ε for all µ ∈ N0.

Lettingµ →∞, we obtain from (4.8)∣∣∣α(j)
k − α

(`)
k

∣∣∣ ≤ ε for all j, ` ≥ j0.

Thus(α
(j)
k )∞j=1 is a Cauchy sequence of complex numbers for each fixedk ∈ N0 and so

αk = lim
j→∞

α
(j)
k exists for eachk ∈ N0. (4.10)

Now let k ∈ N0 be fixed. Then we obtain for all sufficiently largej and for allµ by
(4.10) and sinceA = lim

j→∞
A(j)

1

2µ

∑
µ

|ank − αk| ≤
1

2µ

∑
µ

∣∣∣a(j)
nk − ank

∣∣∣+ 1

2µ

∑
µ

∣∣∣a(j)
nk − α

(j)
k

∣∣∣+ 1

2µ

∑
µ

∣∣∣αk − α
(j)
k

∣∣∣
≤
∥∥A(j) − A

∥∥
(w∞,w∞)

+
1

2µ

∑
µ

∣∣∣a(j)
nk − α

(j)
k

∣∣∣+ ε

< 2 · ε +
1

2µ

∑
µ

∣∣∣a(j)
nk − α

(j)
k

∣∣∣ .
Lettingµ →∞, we obtain from (4.8)

lim
µ→∞

(
1

2µ

∑
µ

|ank − αk|

)
≤ ε.

Sinceε > 0 was arbitrary, it follows thatαk satisfies the condition in (3.11) of Example
3.5 (b). Using exactly the same argument as before witha

(j)
nk and α

(j)
k replaced by

∞∑
k=0

a
(j)
nk and α̃(j), and applying (4.9) instead of (4.8), we conclude thatα̃ = lim

j→∞
α̃(j)

exists and satisfies the condition in (3.12) of Example 3.5 (b). FinallyA ∈ (w∞, w∞)
and (3.11) and (3.12) implyA ∈ (w,w) by Example 3.5 (b). Thus we have shown that
(w, w) is complete. This completes the proof of (i).

Now we show thatA, B ∈ (w,w) impliesB · A ∈ (w, w). SinceA, B ∈ (w, w),
by Example 3.5 (b), there are complex numbersαk, α̃ that satisfy (3.11) and (3.12), and



108 Eberhard Malkowsky

complex numbersβk, β̃ that satisfy (3.11) and (3.12) withbnk, β̃k andβ̃ instead ofank,
α̃k andα̃. Let x ∈ w be given andξ be the strong limit ofx. We put

ζ =

(
β̃ −

∞∑
n=0

βn

)
·

((
α̃−

∞∑
k=0

αk

)
· ξ +

∞∑
k=0

αkxk

)
+

∞∑
n=0

βnAnx.

We observe that(αk)
∞
k=0, (βn)∞n=0 ∈ M by the proof of Theorem 3.6, and also trivially

M ⊂ `1 ⊂ cs. Therefore all the series in the definition ofζ converge. We write
C = B · A, y = Ax, η for the strong limit of the sequencey, andζ ′ for the strong limit
of the sequencez = By. SinceCx = B(Ax) by Lemma 4.1 (b), we obtain by (3.13) in
Theorem 3.6

|Cmx− ζ| = |Bmy − ζ|

=

∣∣∣∣∣Bmy −
∞∑

n=0

βnyn −

(
β̃ −

∞∑
n=0

βn

)
·

((
α̃−

∞∑
k=0

αk

)
· ξ +

∞∑
k=0

αkxk

)∣∣∣∣∣
=

∣∣∣∣∣Bmy −
∞∑

n=0

βnyn −

(
β̃ −

∞∑
n=0

βn

)
· η

∣∣∣∣∣
=

∣∣∣∣∣zm −

(
∞∑

n=0

βn(yn − η) + ηβ̃

)∣∣∣∣∣ = |zm − ζ ′| for all m,

hence

lim
µ→∞

(
1

2µ

∑
m∈M<µ>

|Cmx− ζ|

)
= lim

µ→∞

(
1

2µ

∑
m∈M<µ>

|zm − ζ ′|

)
= 0.

This shows thatCx ∈ w, and completes the proof of (ii).
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