Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences

Eberhard Malkowsky
Fatih University
Department of Mathematics
34500 Büyükçekmece, Istanbul, Turkey
emalkowsky@fatih.edu.tr
eberhard.malkowsky@math.uni-giessen.de

Abstract

Let $1 \leq p < \infty$. We characterise the classes (X, Y) of all infinite matrices that map X into Y for $X = w_p^\infty(\Lambda)$ or $X = w_0^p(\Lambda)$ and $Y = w_1^\infty(\Lambda')$, for $X = w_1^\infty(\Lambda)$ and $Y = w_p^\infty(\Lambda')$, and for $X = M_p(\Lambda)$ and $Y = M_1(\Lambda')$, the β-duals of $w_p^\infty(\Lambda)$ and $w_1^\infty(\Lambda')$. As special cases, we obtain the characterisations of the classes of all infinite matrices that map w_p^∞ into w_1^∞, and w_p into w_1. Furthermore, we prove that the classes $(w_\infty(\Lambda), w_1(\Lambda))$ and (w, w) are Banach algebras.

AMS Subject Classifications: 46A45, 40H05.
Keywords: Spaces of strongly Λ-summable and bounded sequences, matrix transformations, Banach algebras.

1 Introduction

Maddox [5] introduced the set w^p of all complex sequences $x = (x_k)_{k=0}^\infty$ that are strongly summable with index p by the Cesàro method of order 1; that is, w^p contains all sequences x for which $\lim_{n \to \infty} \sigma_n^p(x; \xi) = 0$ for some complex number ξ, where

$$\sigma_n^p(x; \xi) = \frac{1}{n+1} \sum_{k=0}^{n} |x_k - \xi|^p$$

for all $n = 0, 1, \ldots$.

We will also consider the sets w_0^p and w_p^∞ of all sequences that are strongly summable to zero and strongly bounded, with index p; that is, the sets w_0^p and w_p^∞ contain all...
sequences \(x \) for which \(\lim_{n \to \infty} \sigma_n^p(x; 0) = 0 \) and \(\sup_n \sigma_n^p(x; 0) < \infty \), respectively. Maddox also established necessary and sufficient conditions on the entries of an infinite matrix to map \(w^p \) into the space \(c \) of all convergent sequences; his result is similar to the famous classical result by Silverman–Toeplitz which characterises the class \((c, c) \) of all matrices that map \(c \) into \(c \), the so-called conservative matrices.\footnote{Maddox also established necessary and sufficient conditions on the entries of an infinite matrix to map \(w^p \) into the space \(c \) of all convergent sequences; his result is similar to the famous classical result by Silverman–Toeplitz which characterises the class \((c, c) \) of all matrices that map \(c \) into \(c \), the so-called conservative matrices.}

Characterisations of classes of matrix transformations between sequence spaces constitute a wide, interesting and important field in both summability and operator theory. These results are needed to determine the corresponding subclasses of compact matrix operators, for instance in [1, 13], and more recently, of general linear operators between the respective sequence spaces, for instance in [2, 7]. They are also applied in studies on the invertibility of operators and the solvability of infinite systems of linear equations, for instance in [6, 8]. To be able to apply methods from the theory of Banach algebras to the solution of those problems, it is essential to determine if a class of linear operators of a sequence space \(X \) into itself is a Banach algebra; this is nontrivial if \(X \) is a BK space that does not have AK. Finally the characterisations of compact operators can be used to establish sufficient conditions for an operator to be a Fredholm operator, as in [3]. The spaces \(w^p_\infty(\Lambda) \) and \(w^p_0(\Lambda) \) for exponentially bounded sequences \(\Lambda \) and \(1 \leq p < \infty \) were introduced in [10]; they are generalisations of the spaces \(w^p_\infty \) and \(w^p_0 \). Their dual spaces were determined in [11]. In this paper, we establish the new characterisations of the classes \((X, Y) \) of all infinite matrices that map \(X \) into \(Y \) for \(X = w^p_\infty(\Lambda) \) or \(X = w^p_0(\Lambda) \) and \(Y = w^1_\infty(\Lambda') \), for \(X = w^1_\infty(\Lambda) \) and \(Y = w^p_\infty(\Lambda') \), and when \(X \) is the \(\beta \)-dual of \(w^p_\infty(\Lambda) \) or \(w^p_0(\Lambda) \) and \(Y \) is the \(\beta \)-dual of \(w^1_\infty(\Lambda') \). As a special case, we obtain the characterisations of the classes of all infinite matrices that map \(w^p_\infty \) into \(w^1_\infty \), and \(w^p \) into \(w^1 \), the last result being similar to Maddox’s and the Silverman–Toeplitz theorems. Furthermore, we prove that the classes \((w_\infty(\Lambda), w_\infty(\Lambda)) \) and \((w, w) \) are Banach algebras. Our results would be essential for further research in the areas mentioned above.

2 Notations and Known Results

Let \(\omega \) denote the set of all sequences \(x = (x_k)_{k=0}^{\infty} \), and \(\ell_\infty \), \(c_0 \) and \(\phi \) be the sets of all bounded, null and finite complex sequences, respectively; also let \(cs \), \(bs \) and

\[
\ell_p = \left\{ x \in \omega : \sum_{k=0}^{\infty} |x_k|^p < \infty \right\} \quad \text{for } 1 \leq p < \infty
\]

be the sets of all convergent, bounded and absolutely \(p \)-summable series. We write \(e \) and \(e^{(n)} \) \((n = 0, 1, \ldots) \) for the sequences with \(e_k = 0 \) for all \(k \), and \(e^{(n)}_n = 1 \) and \(e^{(n)}_k = 0 \) for \(k \neq n \). A sequence \((b_n) \) in a linear metric space \(X \) is called a Schauder basis of \(X \) if for every \(x \in X \) there exists a unique sequence \(\lambda \) of scalars such that \(x = \sum_n \lambda_n b_n \).
A BK space X is a Banach sequence space with continuous coordinates $P_n(x) = x_n$ ($n \in \mathbb{N}_0$) for all $x \in X$; a BK space $X \supset \phi$ is said to have AK if $x = \sum_{k=0}^{\infty} x_k e^{(k)}$ for every sequence $x = (x_k)_{k=0}^{\infty} \in X$. Let X be a subset of ω. Then the set

$$X^\beta = \{a \in \omega : ax = (a_k x_k)_{k=0}^{\infty} \in cs \text{ for all } x \in X\}$$

is called the β-dual of X. Let $A = (a_{nk})_{k=0}^{\infty}$ be an infinite matrix of complex numbers and $x = (x_k)_{k=0}^{\infty} \in \omega$. Then we write $A_n = (a_{nk})_{k=0}^{\infty}$ ($n = 0, 1, \ldots$) and $A^k = (a_{nk})_{n=0}^{\infty}$ ($k = 0, 1, \ldots$) for the sequences in the n-th row and the k-th column of A, and $A_n x = \sum_{k=0}^{\infty} a_{nk} x_k$ provided the series converges. Given any subsets X and Y of ω, then (X, Y) denotes the class of all infinite matrices A that map X into Y, that is, $A_n \in X^\beta$ for all n, and $Ax = (A_n x)_{n=0}^{\infty} \in Y$.

Let X and Y be Banach spaces and $B_X = \{x \in X : \|x\| \leq 1\}$ denote the unit ball in X. Then we write $\mathcal{B}(X, Y)$ for the Banach space of all bounded linear operators $L : X \to Y$ with the operator norm $\|L\| = \sup_{x \in B_X} \|L(x)\|$. We write $X^* = \mathcal{B}(X, \mathbb{C})$ for the continuous dual of X with the norm $\|f\| = \sup_{x \in B_X} |f(x)|$ for all $f \in X^*$. The following results and definitions are well known. Since we will frequently apply them, we state them here for the reader’s convenience.

Proposition 2.1. Let X and Y be BK spaces.

(a) Then we have $(X, Y) \subset \mathcal{B}(X, Y)$; this means that if $A \in (X, Y)$, then $L_A \in \mathcal{B}(X, Y)$, where $L_A(x) = Ax$ ($x \in X$) (see [14, Theorem 4.2.8]).

(b) If X has AK then we have $\mathcal{B}(X, Y) \subset (X, Y)$; this means every $L \in \mathcal{B}(X, Y)$ is given by a matrix $A \in (X, Y)$ such that $L(x) = Ax$ ($x \in X$) (see [4, Theorem 1.9]).

A nondecreasing sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ of positive reals is called exponentially bounded if there is an integer $m \geq 2$ such that for all nonnegative integers ν there is at least one term λ_n in the interval $I^{(\nu)}_m = [m^\nu, m^{\nu+1} - 1]$ ([10]). It was shown ([10, Lemma 1]) that a nondecreasing sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ is exponentially bounded, if and only if the following condition holds

(I) \[\text{There are reals } s \leq t \text{ such that for some subsequence } (\lambda_{n(\nu)})_{\nu=0}^{\infty} \]

\[0 < s \leq \lambda_{n(\nu)}/\lambda_{n(\nu+1)} \leq t < 1 \quad (\nu = 0, 1, \ldots); \]

such a subsequence is called an associated subsequence.

Example 2.2. A simple, but important exponentially bounded sequence is the sequence Λ with $\lambda_n = n + 1$ for $n = 0, 1, \ldots$; an associated subsequence is given by $\lambda_{n(\nu)} = 2^\nu$, $\nu = 0, 1, \ldots$.

Throughout, let \(1 \leq p < \infty \) and \(q \) be the conjugate number of \(p \), that is, \(q = \infty \) for \(p = 1 \) and \(q = p/(p-1) \) for \(1 < p < \infty \). Also let \((\mu_n)_{n=0}^{\infty}\) be a nondecreasing sequence of positive reals tending to infinity. Furthermore let \(\Lambda = (\lambda_n)_{n=0}^{\infty} \) be an exponentially bounded sequence, and \((\lambda_n)_{n=0}^{\infty}\) an associated subsequence with \(\lambda_n(0) = \lambda_0 \). We write
\[K^{<\nu>} (\nu = 0, 1, \ldots) \]
for the set of all integers \(k \) with \(n(\nu) \leq k \leq n(\nu+1) - 1 \), and define the sets
\[\tilde{w}_p^{(0)}(\mu) = \left\{ x \in \omega : \lim_{n \to \infty} \left(\frac{1}{\mu_n} \sum_{k=0}^{n} |x_k|^p \right) = 0 \right\}, \]
\[\tilde{w}_p^{(\infty)}(\mu) = \left\{ x \in \omega : \sup_n \left(\frac{1}{\mu_n} \sum_{k=0}^{n} |x_k|^p \right) < \infty \right\}, \]
\[w_0^p(\Lambda) = \left\{ x \in \omega : \lim_{\nu \to \infty} \left(\frac{1}{\lambda_n(\nu+1)} \sum_{k \in K^{<\nu>}} |x_k|^p \right) = 0 \right\}, \]
and
\[w_\infty^p(\Lambda) = \left\{ x \in \omega : \sup_\nu \left(\frac{1}{\lambda_n(\nu+1)} \sum_{k \in K^{<\nu>}} |x_k|^p \right) < \infty \right\}. \]

If \(p = 1 \), we omit the index \(p \) throughout, that is, we write \(\tilde{w}_0(\mu) = \tilde{w}_1(\mu) \) etc., for short.

Proposition 2.3 (**See [10, Theorem 1 (a), (b)]**). Let \((\mu_n)_{n=0}^{\infty}\) be a nondecreasing sequence of positive reals tending to infinity, \(\Lambda = (\lambda_n)_{n=0}^{\infty} \) be an exponentially bounded sequence and \((\lambda_n)_{n=0}^{\infty}\) an associated subsequence.

(a) Then \(\tilde{w}_0^p(\mu) \) and \(\tilde{w}_\infty^p(\mu) \) are BK spaces with the sectional norm \(\| \cdot \|_{\tilde{\mu}} \) defined by
\[\| x \|_{\tilde{\mu}} = \sup_n \left(\frac{1}{\mu_n} \sum_{k=0}^{n} |x_k|^p \right)^{1/p} \]
and \(\tilde{w}_0^p(\mu) \) has AK.

(b) We have \(\tilde{w}_0^p(\Lambda) = w_0^p(\Lambda), \tilde{w}_\infty^p(\Lambda) = w_\infty^p(\Lambda), \) and the sectional norm \(\| \cdot \|_{\Lambda} \) and the block norm \(\| \cdot \|_{\Lambda} \) with
\[\| x \|_{\Lambda} = \sup_\nu \left(\frac{1}{\lambda_n(\nu+1)} \sum_{k \in K^{<\nu>}} |x_k|^p \right)^{1/p} \]
are equivalent on \(w_0^p(\Lambda) \) and on \(w_\infty^p(\Lambda) \).
Remark 2.4. (a) It can be shown that $w^p_\infty(\Lambda)$ is not separable, and so has no Schauder basis.

(b) It follows from [14, Corollary 4.2.4] and Proposition 2.3, that $w^p_0(\Lambda)$ and $w^p_\infty(\Lambda)$ are BK spaces with the norm $\| \cdot \|_\Lambda$ and that $w^p_0(\Lambda)$ has AK.

Example 2.5. We might also define the set
\[w^p(\Lambda) = w^p_0(\Lambda) \oplus e = \{ x \in \omega : x - \xi \in w^p_0 \text{ for some complex number } \xi \}. \]

It can be shown that the strong Λ-limit ξ of any $x \in w^p(\Lambda)$ is unique if and only if
\[\lambda = \limsup_{\nu \to \infty} n(\nu + 1) - n(\nu) < 0, \]
and that $w^p(\Lambda) \subset w^p_\infty(\Lambda)$ if and only if
\[\lambda = \sup_{\nu} \frac{n(\nu + 1) - n(\nu)}{\lambda_n(\nu+1)} < \infty. \]

In view of Proposition 2.3 (b) and Example 2.2, the sets $w^p_0(\Lambda)$ and $w^p_\infty(\Lambda)$ reduce to the BK spaces w^p_0 and w^p_∞ for $\lambda_n = n + 1$ for $n = 0, 1, \ldots$; it is also clear that then $\lambda < \infty$ and $\lambda > 0$, and consequently w^p is a BK space and the strong limit ξ of each sequence $x \in w^p$ is unique.

Throughout, we write $\| \cdot \| = \| \cdot \|_\Lambda$, for short.

The β-duals play a much more important role than the continuous duals in the theory of sequence spaces and matrix transformations. Let a be a sequence and X be a normed sequence space. Then we write $\| a \|_X^\beta = \sup_{x \in B_X} \left| \sum_{k=0}^\infty a_k x_k \right|$ provided the expression on the right exists and is finite, which is the case whenever X is a BK space and $a \in X^\beta$ by [14, Theorem 7.2.9]. If Λ is an exponentially bounded sequence with an associated subsequence $\lambda_n(\nu)$, then we write \max_ν and \sum_ν for the maximum and sum taken over all $k \in K^{<\nu}$. We denote by $x^{<\nu} = \sum_\nu x_k e^{(k)} (\nu \in \mathbb{N}_0)$ the ν-block of the sequence x.

Parts (a) and (b) of the next result are [11, Theorem 5.5 (a), (b)], Part (c) is [11, Theorem 5.7], and Parts (d) and (e) are [11, Theorem 5.8 (a), (b)].

Proposition 2.6. Suppose $\Lambda = (\lambda_n)_{n=0}^\infty$ is an exponentially bounded sequence and let $(\lambda_n(\nu))_{\nu=0}^\infty$ be an associated subsequence. We write
\[\mathcal{M}_p(\Lambda) = \left\{ a \in \omega : \| a \|_{\mathcal{M}_p(\Lambda)} = \sum_{\nu=0}^\infty \left(\lambda_n(\nu+1) \right)^{1/p} \cdot \| a^{<\nu} \|_q < \infty \right\}. \]
(a) Then we have \((w_0^p(\Lambda))^\beta = (w_\infty^p(\Lambda))^\beta = \mathcal{M}_p(\Lambda)\) and
\[
\| \cdot \|_{\mathcal{M}_p(\Lambda)} = \| \cdot \|_{w_0^p(\Lambda)} = \| \cdot \|_{w_\infty^p(\Lambda)} \text{ on } \mathcal{M}_p(\Lambda).
\] (2.1)

(b) The continuous dual \(w_0^p(\Lambda)^*\) of \(w_0^p(\Lambda)\) is norm isomorphic to \(\mathcal{M}_p(\Lambda)\) with the norm \(\| \cdot \|_{\mathcal{M}_p(\Lambda)}\).

(c) Then \(\mathcal{M}_p(\Lambda)\) is a BK space with AK with respect to \(\| \cdot \|_{\mathcal{M}_p(\Lambda)}\).

(d) We have \((w_\infty^p(\Lambda))^\beta = (w_0^p(\Lambda))^\beta = w_\infty^p(\Lambda)\) and
\[
\| \cdot \|_{\mathcal{M}_p(\Lambda)} = \| \cdot \| \text{ on } (\mathcal{M}_p(\Lambda))^\beta.
\] (2.2)

(e) The continuous dual \((\mathcal{M}_p(\Lambda))^*\) of \(\mathcal{M}_p(\Lambda)\) is norm isomorphic to \(w_\infty^p(\Lambda)\).

Remark 2.7.
(a) The continuous dual of \(w_\infty(\Lambda)\) is not given by a sequence space.

(b) The set \(w_\infty^p(\Lambda)\) is \(\beta\)-perfect, that is, \((w_\infty^p(\Lambda))^\beta = w_\infty^p(\Lambda)\).

3 Matrix Transformations on \(w_\infty^p(\Lambda)\) and \(w_0^p(\Lambda)\)

Let \(\Lambda = (\lambda_k)_{k=0}^\infty\) and \(\Lambda' = (\lambda'_m)_{m=0}^\infty\) be exponentially bounded sequences and \((\lambda_{k(\nu)})_{\nu=0}^\infty\) and \((\lambda'_{m(\mu)})_{\mu=0}^\infty\) be associated subsequences. Furthermore, let \(K^{<\nu>} = (\nu = 0, 1, \ldots)\) and \(M^{<\mu>} = (\mu = 0, 1, \ldots)\) be the sets of all integers \(k\) and \(m\) with \(k(\nu) \leq k \leq k(\nu + 1) - 1\) and \(m(\mu) \leq m \leq m(\mu + 1) - 1\). If \(A = (a_{m,k})_{m,k=0}^\infty\) is an infinite matrix and \(M = (M_\mu)_{\mu=0}^\infty\) is a sequence of subsets \(M_\mu\) of \(M^{<\mu>}\) for \(\mu = 0, 1, \ldots\), we write \(S^M(A)\) for the matrix with the rows
\[
S^M_{\mu}(A) = \sum_{m \in M_\mu} A_m, \text{ that is, } S^M(\mu)(A) = \sum_{m \in M_\mu} a_{m,k} \text{ for all } \mu, k = 0, 1, \ldots
\]

Here we establish necessary and sufficient conditions for an infinite matrix \(A\) to be in the classes \((w_\infty^p(\Lambda), w_\infty(\Lambda'))\), \((w_0^p(\Lambda), w_\infty(\Lambda'))\) and \((\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))\), and consider the special cases of \((w_\infty^p, w_\infty)\) and \((w_0^p, w_\infty)\). We also estimate the operator norms of \(L_A\) in these cases. Those characterisations and estimates are needed in the proofs of our results on Banach algebras of matrix transformations.

First we characterise the classes \((w_\infty^p(\Lambda), w_\infty(\Lambda'))\) and \((w_0^p(\Lambda), w_\infty(\Lambda'))\), and estimate the operator norm of \(L_A\) when the matrix \(A\) is a member of those classes.

Theorem 3.1. Let \(\Lambda = (\lambda_k)_{k=0}^\infty\) and \(\Lambda' = (\lambda'_m)_{m=0}^\infty\) be exponentially bounded sequences and \((\lambda_{k(\nu)})_{\nu=0}^\infty\) and \((\lambda'_{m(\mu)})_{\mu=0}^\infty\) be associated subsequences. Then we have \(A \in (w_\infty^p(\Lambda), w_\infty(\Lambda'))\) if and only if
\[
\| A \|_{(\Lambda, \Lambda')} = \sup_{\mu} \left(\frac{1}{\lambda_{m(\mu+1)}} \max_{M_\mu \subseteq M^{<\mu}} \| S^M_{\mu}(A) \|_{\mathcal{M}(\Lambda)} \right) < \infty;
\] (3.1)
moreover, we have \((w^p_0(\Lambda), w_\infty(\Lambda')) = (w^p_0(\Lambda), w_\infty(\Lambda')).\) If \(A \in (w^p_\infty(\Lambda), w_\infty(\Lambda'))\), then the operator norm of \(L_A\) satisfies

\[
\|A\|_{(\Lambda,\Lambda')} \leq \|L_A\| \leq 4 \cdot \|A\|_{(\Lambda,\Lambda')},
\]

(3.2)

Proof. Throughout the proof, we write \(\|A\| = \|A\|_{(\Lambda,\Lambda')},\) for short.

First we assume that the condition in (3.1) is satisfied. Let \(m \in \mathbb{N}_0\) be given. Then there is a unique \(\mu_m \in \mathbb{N}_0\) such that \(m \in M^{<\mu_m}>.\) We choose \(M_{\mu_m} = \{m\},\) and it follows from (3.1) that \(\|A_m\|_{M_{p}(\Lambda)} < \infty,\) that is, \(A_m \in (w^p_\infty(\Lambda))^\beta\) by Proposition 2.6 (a). Thus we have shown \(A_m \in (w_\infty(\Lambda))^\beta\) for all \(m \in \mathbb{N}_0.\) Now let \(x \in w^p_\infty(\Lambda)\) be given. For each \(\mu \in \mathbb{N}_0,\) we write \(M_\mu(x)\) for a subset of \(M^{<\mu}>\) for which

\[
\left| \sum_{m \in M_\mu(x)} A_m x \right| = \max_{M_\mu \subset M^{<\mu>} \sup_{m \in M_\mu} \left| \sum_{m \in M_\mu} A_m x \right|,
\]

and put \(M(x) = (M_\mu(x))_{\mu=0}^{\infty}.\) Then we have by a well-known inequality (see [12], (2.1) and (3.1)

\[
\frac{1}{\lambda_m'((\mu + 1))} \sum_{m \in M^{<\mu>}} |A_m x| \leq 4 \cdot \frac{1}{\lambda_m'((\mu + 1))} \max_{M_\mu \subset M^{<\mu>}} \sum_{m \in M_\mu} A_m x,
\]

\[
= 4 \cdot \frac{1}{\lambda_m'((\mu + 1))} \left| \sum_{m \in M_\mu(x)} \sum_{k=0}^\infty a_{mk} x_k \right| = 4 \cdot \frac{1}{\lambda_m'((\mu + 1))} \left| \sum_{k=0}^\infty \left(\sum_{m \in M_\mu(x)} a_{mk} \right) x_k \right| \leq 4 \cdot \frac{1}{\lambda_m'((\mu + 1))} \| S_\mu^M(x) (A) \| \cdot \| x \|
\]

\[
\leq 4 \cdot \frac{1}{\lambda_m'((\mu + 1))} \cdot \left(\max_{M_\mu \subset M^{<\mu>}} \| S_\mu^M (x) \| \cdot \| M_{p}(\Lambda) \| \right) \cdot \| x \| \leq 4 \cdot \| A \| \cdot \| x \| < \infty \text{ for all } \mu.
\]

Hence it follows that

\[
\| A x \| = \sup_{\mu} \left(\frac{1}{\lambda_m'((\mu + 1))} \sum_{m \in M^{<\mu>}} |A_m x| \right) \leq 4 \cdot \| A \| \cdot \| x \| < \infty,
\]

(3.3)

and consequently \(A x \in w_\infty(\Lambda')\) for all \(x \in w^p_\infty(\Lambda).\) Thus, we have shown that if the condition in (3.1) is satisfied, then \(A \in (w^p_\infty(\Lambda), w_\infty(\Lambda')) \subset (w^p_\infty(\Lambda), w_\infty(\Lambda')).\)

Conversely, we assume \(A \in (w^p_\infty(\Lambda), w_\infty(\Lambda')).\) Then we have \(A_m \in (w^p_\infty(\Lambda))^\beta\) for all \(m \in \mathbb{N}_0,\) hence \(\|A_m\|_{M_{p}(\Lambda)} < \infty\) for all \(m\) by Proposition 2.6 (a). Since \(w^p_\infty(\Lambda)\) and \(w_\infty(\Lambda')\) are a \(BK\) spaces by Remark 2.4 (b), it follows from Proposition 2.1 (a) that \(L_A \in \mathcal{B}(w^p_\infty(\Lambda), w_\infty(\Lambda'))\), and so \(\|L_A\| < \infty.\) We also have \(L_{M_\mu} \in (w^p_\infty(\Lambda))^\beta\) for all \(M_\mu \subset M^{<\mu>}\) and all \(\mu \in \mathbb{N}_0,\) where \(L_{M_\mu}(x) = (\lambda_m'((\mu + 1))^{-1} \cdot \sum_{m \in M_\mu} A_m x\) for all \(x \in \)
Then it follows from (3.5) that
\[A \]
Thus we have shown that if \(\mu \) is the unique \(\Lambda = (\lambda_k)_{k=0}^{\infty} \), then (3.3) is satisfied.

It remains to show that if \(A \in (w_0^p(\Lambda), w_{\infty}(\Lambda')) \), then (3.2) holds. But the first and second inequalities in (3.2) follow from (3.4) and (3.3), respectively.

Now we characterise the class \((\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda')) \), and estimate the operator norm of \(L_A \) when \(A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda')) \). We write \(T \) for the set of all sequences \(t = (t_\mu)_{\mu=0}^{\infty} \) such that for each \(\mu = 0, 1, \ldots \) there is one and only one \(t_\mu \in M^{<\mu>} \).

Theorem 3.2. Let \(\Lambda = (\lambda_k)_{k=0}^{\infty} \) and \(\Lambda' = (\lambda'_m)_{m=0}^{\infty} \) be exponentially bounded sequences and \((\lambda_k(\nu))_{\nu=0}^{\infty} \) and \((\lambda'_m(\mu))_{\mu=0}^{\infty} \) be associated subsequences. Then we have \(A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda')) \) if and only if

\[
\| A \|_{(\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))} = \sup_{N \in \mathbb{N}_0} \left(\sup_{\mu \in \mathcal{N}} \left(\sum_{\mu \in \mathcal{N}} \lambda'_m(\mu+1) A_{t_\mu} \right) \right) < \infty, \tag{3.5}
\]

where, of course,

\[
\left\| \sum_{\mu \in \mathcal{N}} \lambda'_m(\mu+1) A_{t_\mu} \right\|_{\Lambda} = \sup_{\nu} \left(\frac{1}{\lambda_k(\nu+1)} \sum_{k \in K^{<\nu>}} \left| \sum_{\mu \in \mathcal{N}} \lambda'_m(\mu+1) A_{t_{\mu,k}} \right| \right)^{1/p}.
\]

If \(A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda')) \), then the operator norm of \(L_A \) satisfies

\[
\| A \|_{(\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))} \leq \| L_A \| \leq 4 \cdot \| A \|_{(\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))}. \tag{3.6}
\]

Proof. Throughout the proof, we write \(\| A \| = \| A \|_{(\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))} \), for short.

First we assume that the condition in (3.5) is satisfied. Let \(m \in \mathbb{N}_0 \) be given. Then there is a unique \(\mu_m \in \mathbb{N}_0 \) such that \(m \in M^{<\mu_m>} \). We choose \(N = \{ m \} \) and \(t_{\mu_m} = m \). Then it follows from (3.5) that

\[
\| A_m \|_{\Lambda} = \sup_{\nu} \left(\frac{1}{\lambda_k(\nu+1)} \sum_{k \in K^{<\nu>}} |a_{\nu,k}|^p \right)^{1/p}
\]

\[
= \frac{1}{\lambda'_m(\mu_m+1)} \cdot \sup_{\nu} \left\| \sum_{\mu \in \mathcal{N}} \lambda'_m(\mu_m+1) A_{t_{\mu_m}} \right\|_{\Lambda} < \infty,
\]

since trivially \(|L_{M_\mu}(x)| \leq \| L_A \| \cdot \| x \| \) for all \(x \in w_0^p(\Lambda) \), all \(M_\mu \in M^{<\mu>} \) and all \(\mu \in \mathbb{N}_0 \), it follows by (2.1) in Proposition 2.6 (a) that

\[
\| L_{M_\mu} \|_{\mathcal{M}_p(\Lambda)} = \| L_{M_\mu} \|_{w_0^p(\Lambda)} \leq \| L_A \| \text{ for all } M_\mu \in M^{<\mu>} \text{ and } \mu \in \mathbb{N}_0,
\]

and so

\[
\sup_{\mu \in M^{<\mu>}} \left(\max_{M_\mu \in M^{<\mu>}} \| L_{M_\mu} \|_{\mathcal{M}_p(\Lambda)} \right) = \sup_{\mu \in M^{<\mu>}} \left(\frac{1}{\lambda'_m(\mu+1)} \max_{M_\mu \in M^{<\mu>}} \left\| \sum_{\mu \in M_\mu} A_\mu \right\|_{\mathcal{M}_p(\Lambda)} \right)
\]

\[
= \| A \| \leq \| L_A \| < \infty. \tag{3.4}
\]
and so $A_m \in w_p^\infty(\Lambda) = (\mathcal{M}_p(\Lambda))^\beta$ by Proposition 2.6 (a) and (d). Now let $\mu_0 \in \mathbb{N}_0$ and $x \in \mathcal{M}_p(\Lambda)$ be given. For each $\mu \in \mathbb{N}_0$ with $0 \leq \mu \leq \mu_0$, let $m(\mu; x)$ be the smallest integer in $M^{<\mu}$ such that $\max_{m \in M^{<\mu}} |A_m x| = |A_{m(\mu; x)} x|$. Then we have by a well-known inequality (see [12]) and (2.2) in Proposition 2.6 (d)

$$\sum_{\mu=0}^{\mu_0} \lambda'_{m(\mu+1)} \max_{m \in M^{<\mu}} |A_m x| = \sum_{\mu=0}^{\mu_0} \lambda'_{m(\mu+1)} |A_{m(\mu; x)} x|$$

$$\leq 4 \cdot \max_{N \subseteq \{0, \ldots, \mu_0\}} \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{m(\mu; x)} x$$

$$= 4 \cdot \max_{N \subseteq \{0, \ldots, \mu_0\}} \left| \sum_{k=0}^{\infty} \left(\sum_{\mu \in N} \lambda'_{m(\mu+1)} a_{m(\mu; x), k} \right) x_k \right|$$

$$\leq 4 \cdot \max_{N \subseteq \{0, \ldots, \mu_0\}} \left(\sup_{p} \left(\frac{1}{\lambda_k(\mu+1)} \sum_{k \in K^{<\mu}} \left| \sum_{\mu \in N} \lambda'_{m(\mu+1)} a_{m(\mu; x), k} \right|^p \right)^{1/p} \right) \|x\|_{\mathcal{M}_p(\Lambda)}$$

$$\leq 4 \cdot \max_{N \subseteq \{0, \ldots, \mu_0\}} \left(\sup_{t \in T} \left(\sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t, \Lambda} x \right) \right) \cdot \|x\|_{\mathcal{M}_p(\Lambda)}$$

$$\leq 4 \cdot \sup_{N \subseteq \mathbb{N}_0, \mu_0} \left(\sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t, \Lambda} x \right) \cdot \|x\|_{\mathcal{M}_p(\Lambda)} = 4 \cdot \|A\| \cdot \|x\|_{\mathcal{M}_p(\Lambda)} < \infty.$$

Since $\mu_0 \in \mathbb{N}_0$ was arbitrary, we obtain

$$\|Ax\|_{\mathcal{M}(\Lambda')} \leq 4 \cdot \|A\| \cdot \|x\|_{\mathcal{M}_p(\Lambda)} < \infty \text{ for all } x \in \mathcal{M}_p(\Lambda), \quad (3.7)$$

and consequently $Ax \in \mathcal{M}(\Lambda')$ for all $x \in \mathcal{M}_p(\Lambda)$. Thus we have shown that if the condition in (3.5) is satisfied, then $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$.

Conversely, we assume $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$. Then $A_m \in (\mathcal{M}_p(\Lambda))^{\beta} = w_p^\infty(\Lambda)$ for all $m \in \mathbb{N}_0$ by Proposition 2.6 (a) and (d). Furthermore, since $\mathcal{M}_p(\Lambda)$ and $\mathcal{M}(\Lambda')$ are BK spaces by Proposition 2.6 (c), it follows from Proposition 2.1 (a) that $L_A \in B(\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$. We also have $L_{N,t} \in (\mathcal{M}_p(\Lambda))^\ast$ for all finite subsets N of \mathbb{N}_0 and all sequences $t \in T$, where $L_{N,t}(x) = \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t, \Lambda} x$ for all $x \in \mathcal{M}_p(\Lambda)$. Since

$$|L_{N,t}(x)| \leq \sum_{\mu=0}^{\infty} \lambda'_{m(\mu+1)} \max_{m \in M^{<\mu}} |A_m x| = \|Ax\|_{\mathcal{M}(\Lambda')} \leq \|L_A\| \cdot \|x\|_{\Lambda}$$

for all finite subsets N of \mathbb{N}_0 and all $t \in T$, it follows by (2.2) in Proposition 2.6 (c) that

$$\|L_{N,t}\|_{\Lambda}^* = \|L_{N,t}\|_{\Lambda} = \left\| \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t, \Lambda} \right\|_{\Lambda} \leq \|L_A\| < \infty.$$
Since this holds for all finite subsets N of \mathbb{N}_0 and all $t \in T$, we conclude

$$
\|A\| = \sup_{N \subset \mathbb{N}_0} \left(\sup_{t \in T} \left\| \sum_{\mu \in N} \lambda'_\mu A_{\mu t} \right\|_A \right) \leq \|L\| < \infty. \tag{3.8}
$$

Thus we have shown that if $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$, then (3.5) is satisfied.

Finally, if $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$, then (3.6) follows from (3.8) and (3.7).

Using the transpose A^T of a matrix A, we obtain an alternative characterisation of the class $(w_\infty(\Lambda), w^p_\infty(\Lambda'))$.

Theorem 3.3. We have $A \in (w_\infty(\Lambda), w^p_\infty(\Lambda'))$ if and only if

$$
\|A^T\|_{(\mathcal{M}_p(\Lambda'), \mathcal{M}(\Lambda))} < \infty. \tag{3.9}
$$

Proof. Since $X = w_0(\Lambda)$ and $Z = \mathcal{M}_p(\Lambda')$ are BK spaces with AK by Remark 2.4 (b) and Proposition 2.6 (c), and $Y = Z^\beta = w^p_\infty(\Lambda')$ by Proposition 2.6 (d), it follows from [14, Theorem 8.3.9] that $A \in (w_0(\Lambda), w^p_\infty(\Lambda')) = (X, Y) = (X^\beta, Y) = (w_\infty(\Lambda), w^p_\infty(\Lambda'))$ and $A \in ((w_0(\Lambda), w^p_\infty(\Lambda'))$ if and only if $A^T \in (Z, X^\beta) = (\mathcal{M}_p(\Lambda'), \mathcal{M}(\Lambda))$, and, by (3.5) in Theorem 3.2, this is the case if and only if (3.9) holds.

We consider an application to the characterisations of the classes (w^p_∞, w_∞), (w^p, w) and (w_∞, w^p_∞). Let $\Lambda = \Lambda'$ and $\lambda_n = n + 1$ for $n = 0, 1, \ldots$ as in Examples 2.2 and 2.5. Then we may choose the subsequences given by $\lambda_k(\nu) = 2^\nu$ and $\lambda_m(\mu) = 2^\mu$ for all $\nu, \mu = 0, 1, \ldots$, and consequently the sets $K^{<\nu>}$ and $M^{<\mu>}$ are the sets of all integers k and m with $2^\nu \leq k \leq 2^{\nu+1} - 1$ and $2^\mu \leq m \leq 2^{\mu+1} - 1$. We also write $\mathcal{M}_p = \mathcal{M}_p(\Lambda)$.

Remark 3.4. (a) We obviously have $w_0^p \subset w^p \subset w^p_\infty$.

(b) For each $x \in w^p$, the strong limit ξ, that is, the complex number ξ with

$$
\lim_{\nu \to \infty} \frac{1}{2^\nu} \sum_{\nu} |x_k - \xi|^p = 0
$$

is unique (see [5]).

(c) Every sequence $x = (x_k)_{k=0}^\infty \in w^p$ has a unique representation

$$
x = \xi \cdot e + \sum_{k=0}^{\infty} (x_k - \xi)e^{(k)} \tag{[5]).
$$

Example 3.5. (a) It follows from Theorem 3.1 that $A \in (w^p_\infty, w_\infty) = (w_0^p, w_\infty)$ if and only if

$$
\|A\|_{(w^p_\infty, w_\infty)} = \sup_{\mu} \left(\frac{1}{2^\mu} \max_{M_\mu \subset M^{<\mu>}} \left\| \sum_{m \in M_\mu} A_m \right\|_{\mathcal{M}_p} \right) < \infty, \tag{3.10}
$$
where

\[
\left\| \sum_{m \in M_\mu} A_m \right\|_{\mathcal{M}_p} = \begin{cases}
\sum_{\nu=0}^{\infty} 2^{\nu} \max_{k \in K^{<\nu>}} \left| \sum_{m \in M_\mu} a_{mk} \right| & (p = 1) \\
\sum_{\nu=0}^{\infty} 2^{\nu/p} \left(\sum_{k \in K^{<\nu>}} \sum_{m \in M_\mu} a_{mk} \right)^{q/2} & (1 < p < \infty).
\end{cases}
\]

(b) It follows from Part (a) and \([14, 8.3.6, 8.3.7]\) that \(A \in (w^p, w)\) if and only if

\[
\begin{cases}
\text{for each } k \text{ there exists a complex number } \alpha_k \text{ with } \\
\lim_{\mu \to \infty} 2^{\nu} \sum_{m \in M^{<\nu>}} |a_{mk} - \alpha_k| = 0
\end{cases}
\]

and

\[
\lim_{\mu \to \infty} 2^{\nu} \sum_{m \in M^{<\nu>}} \left| \sum_{k=0}^{\infty} a_{mk} - \hat{\alpha} \right| = 0 \text{ for some complex number } \hat{\alpha}
\]

hold.

(c) We obtain from Theorems 3.2 and 3.3, interchanging the roles of \(N\) and \(K\), and \(\mu\) and \(\nu\), that \(A \in (w^\infty, w^p_\infty)\) if and only if

\[
\sup_{K \subset \text{finite}} \left(\sup_{t \in T} \left\| \sum_{\nu \in K} 2^\nu A^{t\nu} \right\|_\Lambda \right) < \infty,
\]

where

\[
\left\| \sum_{\nu \in K} 2^\nu A^{t\nu} \right\|_\Lambda = \sup_{\mu} \left(\frac{1}{2^\mu} \sum_{m \in M^{<\mu>}} \left| \sum_{\nu \in K} 2^\nu a_{m,tk} \right| \right).
\]

We also give a formula for the strong limit of \(Ax\) when \(A \in (w^p, w)\) and \(x \in w^p\).

Theorem 3.6. If \(A \in (w^p, w)\), then the strong limit \(\eta\) of \(Ax\) for each sequence \(x \in w^p\) is given by

\[
\eta = \hat{\alpha} \cdot \xi + \sum_{k=0}^{\infty} \alpha_k (x_k - \xi),
\]

where \(\xi\) is the strong limit of the sequence \(x\), and the complex numbers \(\hat{\alpha}\) and \(\alpha_k\) for \(k = 0, 1, \ldots\) are given by (3.12) and (3.11) in Example 3.5 (b).
Proof. We assume \(A \in (w^p, w) \) and write \(\| \cdot \| = \| \cdot \|_{(w^p, w)} \), for short. The complex numbers \(\tilde{o} \) and \(\alpha_k \) for \(k = 0, 1, \ldots \) exist by Example 3.5 (b).

First, we show \((\alpha_k)_{k=0}^{\infty} \in \mathcal{M}_p\). Let \(x \in w^p \) and \(k_0 \in \mathbb{N}_0 \) be given. Then there exists an integer \(\nu(k_0) \) with \(k_0 \in K^{<\nu(k_0)>} \) and we have by the inequality in [9, Lemma 1]

\[
\sum_{k=0}^{k_0} |\alpha_k x_k| = \sum_{k=0}^{k_0} \left(\frac{1}{2^\mu} \sum_\mu |\alpha_k| \cdot |x_k| \right)
\leq \frac{1}{2^\mu} \sum_{k=0}^{k_0} \left(\sum_\mu |a_{nk} - \alpha_k| \cdot |x_k| \right) + \nu(k_0) \left(\frac{1}{2^\mu} \sum_\mu |a_{nk}| \cdot |x_k| \right)
\leq \sum_{k=0}^{k_0} \left(\frac{1}{2^\mu} \sum_\mu |a_{nk} - \alpha_k| \right) \cdot |x_k| + 4 \cdot \max_{\mu \in M_{<\nu>}} \sum_{\nu=0}^{\infty} \sum_\nu \left(\frac{1}{2^\mu} \sum_\mu |a_{nk}| \cdot |x_k| \right)
\leq \sum_{k=0}^{k_0} \left(\frac{1}{2^\mu} \sum_\mu |a_{nk} - \alpha_k| \right) \cdot |x_k| + 4 \cdot \sup_\mu \left(\frac{1}{2^\mu} \max_{\mu \in M_{<\nu>}} \left\| \sum_{n \in M_{\mu}} A_n \right\|_{\mathcal{M}_p} \right) \cdot \|x\|.
\]

Letting \(\mu \) tend to \(\infty \), we obtain \(\sum_{k=0}^{k_0} |\alpha_k x_k| \leq 0 + 4 \cdot \|A\| < \infty \) from (3.11) and (3.10).

Since \(k_0 \in \mathbb{N}_0 \) was arbitrary, it follows that \(\sum_{k=0}^{\infty} |\alpha_k x_k| < \infty \) for all \(x \in w^p \), that is, \((\alpha_k)_{k=0}^{\infty} \in (w^p)^\beta = \mathcal{M}_p\).

Now we write \(\hat{o}(x) = \sum_{k=0}^{\infty} \alpha_k x_k \) and \(B = (b_{nk})_{n,k=0}^{\infty} \) for the matrix with \(b_{nk} = a_{nk} - \alpha_k \) for all \(n \) and \(k \), and show

\[
\lim_{\mu \to \infty} \frac{1}{2^\mu} \sum_\mu |B_n x| = 0 \quad \text{for all} \quad x \in w^p_0.
\] (3.14)

Let \(x \in w^p_0 \) and \(\varepsilon > 0 \) be given. Since \(w^p_0 \) has \(AK \), there is \(k_0 \in \mathbb{N}_0 \) such that

\[
\|x - x^{[k_0]}\| < \frac{\varepsilon}{\|A\| + \|(\alpha_k)_{k=0}^{\infty}\|_{\mathcal{M}_p} + 1} \quad \text{for} \quad x^{[k_0]} = \sum_{k=0}^{k_0} x_k e^{(k)}.
\]

It also follows from (3.11) that there is \(\mu_0 \in \mathbb{N}_0 \) such that

\[
\frac{1}{2^\mu} \sum_\mu |B_n x^{[k_0]}| = \frac{1}{2^\mu} \sum_\mu \left| \sum_{k=0}^{k_0} b_{nk} x_k \right| < \varepsilon \quad \text{for all} \quad \mu \geq \mu_0.
\]

Let \(\mu \geq \mu_0 \) be given. Then we have

\[
\frac{1}{2^\mu} \sum_\mu |B_n x| \leq \frac{1}{2^\mu} \sum_\mu |B_n x^{[k_0]}| + \frac{1}{2^\mu} \sum_\mu |B_n (x - x^{[k_0]})| \]

\[
\langle \varepsilon + 4 \cdot \max_{M, \mu \in M^{<\mu}} \left(\frac{1}{2\mu} \sum_{n \in M, n \mu} B_n \left(x - x^{[k_0]} \right) \right) \rangle \\
\leq \varepsilon + 4 \cdot \max_{M, \mu \in M^{<\mu}} \left(\frac{1}{2\mu} \sum_{n \in M, n \mu} B_n \right) \| x - x^{[k_0]} \| < 5 \cdot \varepsilon.
\]

Thus we have shown (3.14).

Finally, let \(x \in w^p \) be given. Then there is a unique complex number \(\xi \) such that \(x^{(0)} = x - \xi \cdot e \in w_0^p \), by Remark 3.4 (b), and we obtain by (3.14) and (3.12)

\[
0 \leq \frac{1}{2\mu} \sum_{\mu} |A_n x - \eta| = \frac{1}{2\mu} \sum_{\mu} \left(A_n x^{(0)} + \xi \cdot A_n(e) - \left(\tilde{\alpha} \cdot \xi + \sum_{k=0}^{\infty} \alpha_k x^{(0)} \right) \right) \\
\leq \frac{1}{2\mu} \sum_{\mu} |A_n x^{(0)} - \tilde{\alpha}(x^{(0)})| + |\xi| \cdot \frac{1}{2\mu} \sum_{\mu} |A_n e - \tilde{\alpha}| \\
= \frac{1}{2\mu} \sum_{\mu} |B_n x^{(0)}| + |\xi| \cdot \frac{1}{2\mu} \sum_{\mu} \left| \sum_{k=0}^{\infty} a_{nk} - \tilde{\alpha} \right| \rightarrow 0 + 0 = 0 \ (\mu \rightarrow \infty).
\]

This completes the proof. \(\square \)

4 The Banach Algebra \((w_\infty(L), w_\infty(L)) \)

In this section, we show that \((w_\infty(L), w_\infty(L)) \) is a Banach algebra with respect to the norm \(\| \cdot \| \) defined by \(\| A \| = \| L_A \| \) for all \(A \in (w_\infty(L), w_\infty(L)) \). We also consider the nontrivial special case of \((w, w^p) \).

We need the following results.

Lemma 4.1.

(a) The matrix product \(B \cdot A \) is defined for all \(A, B \in (w_\infty(L), w_\infty(L)) \); in fact

\[
\sum_{m=0}^{\infty} |b_{nm} a_{mk}| \leq \| B_n \|_{M(L)} \| A_k \| \text{ for all } n \text{ and } k.
\]

(b) Matrix multiplication is associative in \((w_\infty(L), w_\infty(L)) \).

(c) The space \((w_\infty(L), w_\infty(L)) \) is a Banach space with respect to

\[
\| A \|_{(\Lambda, \Lambda)} = \sup_{\mu} \left(\frac{1}{\lambda_{m(\mu+1)}} \max_{M, \mu \in M^{<\mu}} \sum_{\nu=0}^{\infty} \lambda_{k(\nu+1)} \max_{k \in K^{<\nu}} \left| \sum_{m \in M, m \mu} a_{mk} \right| \right). \]

(4.2)
Proof. (a) Let $A, B \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$. First we observe that $e^{(k)} \in w_{\infty}(\Lambda)$ implies $Ae^{(k)} = (A_{m}e^{(k)})_{m=0} = (a_{mk})_{m=0} = A^{k} \in w_{\infty}(\Lambda)$ for all k. Therefore we have

$$\|A^{k}\| = \sup_{\mu} \left(\frac{1}{\lambda_{m}(\mu+1)} \sum_{m \in M^{\nu}} |a_{mk}| \right) < \infty \text{ for all } k. \quad (4.3)$$

Furthermore $B \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$ implies $B_{n} \in (w_{\infty}(\Lambda))^{\nu} = M(\Lambda)$ for all n, that is, by Proposition 2.6 (a)

$$\|B_{n}\|_{M(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{m}(\mu+1) \max_{m \in M^{\nu}} |b_{nm}| < \infty \text{ for all } n. \quad (4.4)$$

Now it follows from (4.3) and (4.4) that

$$|B_{n}A^{k}| \leq \sum_{m=0}^{\infty} \sum_{m \in M^{\nu}} |b_{nm}a_{mk}| = \sum_{\mu=0}^{\infty} \sum_{m \in M^{\nu}} \lambda_{m}(\mu+1) |b_{nm}| \cdot \frac{1}{\lambda_{m}(\mu+1)} |a_{mk}|$$

$$\leq \sum_{\mu=0}^{\infty} \left(\lambda_{m}(\mu+1) \max_{m \in M^{\nu}} |b_{nm}| \right) \cdot \frac{1}{\lambda_{m}(\mu+1)} \sum_{m \in M^{\nu}} |a_{mk}|$$

$$\leq \left(\sum_{\mu=0}^{\infty} \lambda_{m}(\mu+1) \max_{m \in M^{\nu}} |b_{nm}| \right) \cdot \sup_{\mu} \left(\frac{1}{\lambda_{m}(\mu+1)} \sum_{m \in M^{\nu}} |a_{mk}| \right)$$

$$= \|B_{n}\|_{M(\Lambda)} \cdot \|A^{k}\| < \infty \text{ for all } n \text{ and } k.$$

(b) Let $A, B, C \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$. We write for $D \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$

$$M^{T}(D) = \|D^{T}\|_{(M(\Lambda), M(\Lambda))} = \sup_{K \subset \mathbb{N}_{0}} \left(\sup_{t \in T} \left(\sup_{\nu \in K} \left(\frac{1}{\lambda_{m}(\mu+1)} \sum_{m \in M^{\nu}} \left| \sum_{\nu \in K} \lambda_{m}(\nu+1) d_{m,t_{\nu}} \right| \right) \right) \right)$$

and note that $M^{T}(D) < \infty$ by Theorem 3.3. We are going to show that the series $\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} a_{mk} b_{mk} c_{kj}$ are absolutely convergent for all n and j. We fix n and j and write $s = A_{n}$ and $t = C^{j}$ for the sequences in the n-th row of A and the j-th column of C. Then we have $s \in M(\Lambda)$ and $t \in w_{\infty}(\Lambda)$. We define the matrix $D = (d_{\mu k})_{\mu,k=0}^{\infty}$ by

$$d_{\mu k} = \frac{1}{\lambda_{m}(\mu+1)} \sum_{m \in M^{\nu}} |b_{mk}| \text{ for } \mu, k = 0, 1, \ldots.$$

Furthermore, given $\mu \in \mathbb{N}_{0}$, for every $\nu = 0, 1, \ldots$, let $k_{\nu} = k_{\nu}(\mu) \in K^{\nu}$ be the smallest integer with $\max_{k \in K^{\nu}} d_{\mu k} = d_{\mu k_{\nu}}$. Then by the inequality in [9, Lemma 1],

$$\lambda_{m}(\mu+1) \|D_{\mu}\|_{M(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{k_{\nu}(\nu+1)} \sum_{m \in M^{\nu}} |b_{mk_{\nu}}|.$$
\[\leq 4 \cdot \sup_{K \subset \mathbb{N}_0 \text{ finite}} \left(\max_{M_{\mu} \subset \mathcal{M}^{\lambda}} \left| \sum_{\nu \in K} \lambda_{k(\nu+1)} \sum_{m \in M_{\mu}} b_{mk} \right| \right) \]

\[\leq 4 \cdot \sup_{K \subset \mathbb{N}_0 \text{ finite}} \sum_{m \in M^{\lambda}} \left| \sum_{\nu \in K} \lambda_{k(\nu+1)} b_{mk} \right| . \]

hence

\[\|D_{\mu}\| \leq 4 \cdot M^T(B) < \infty \text{ for } \mu = 0, 1, \ldots \] (4.5)

It also follows that for \(\mu = 0, 1, \ldots \)

\[\frac{1}{\lambda_{m(\mu+1)}} \sum_{m \in M^{\lambda}} \sum_{k=0}^{\infty} |b_{mk} t_k| = \sum_{k=0}^{\infty} |t_k| \cdot |d_{\mu k}| \leq \|D_{\mu}\| \cdot \|t\|. \] (4.6)

Therefore, we obtain from (4.6) and (4.5)

\[\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} |s_m b_{mk} t_k| \leq \left(\sup_{\mu} \left(\frac{1}{\lambda_{m(\mu+1)}} \sum_{m \in M^{\lambda}} \sum_{k=0}^{\infty} |b_{mk} t_k| \right) \right) \cdot \|s\| \leq \sup_{\mu} \left(\|D_{\mu}\| \cdot \|t\| \cdot \|s\| \right) \leq 4 \cdot M^T(B) \cdot \|t\| \cdot \|s\| < \infty. \]

Thus we have shown that \(\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} s_m b_{mk} t_k \) is absolutely convergent, and consequently matrix multiplication is associative in \((w_\infty(\Lambda), w_\infty(\Lambda))\).

(c) We assume that \((A^{(j)})_{j=0}^{\infty}\) is a Cauchy sequence in \((w_\infty(\Lambda), w_\infty(\Lambda))\). Since \((w_\infty(\Lambda), w_\infty(\Lambda)) = (w_0(\Lambda), w_\infty(\Lambda))\) by Theorem 3.1 and \(w_0(\Lambda)\) has AK by Remark 2.4 (b), it is a Cauchy sequence in \((w_0(\Lambda), w_\infty(\Lambda)) = B(w_0(\Lambda), w_\infty(\Lambda))\), by Proposition 2.1. Consequently there is \(L_A \in B(w_0(\Lambda), w_\infty(\Lambda))\) with \(L_A^{(j)} \to L_A\). Since \(w_0(\Lambda)\) has AK there is a matrix \(A \in (w_0(\Lambda), w_\infty(\Lambda))\) by Proposition 2.1 (b) such that \(Ax = L_A(x)\) for all \(x \in w_0(\Lambda)\). Finally \(w_0(\Lambda), w_\infty(\Lambda)) = (w_\infty(\Lambda), w_\infty(\Lambda))\) implies \(A \in (w_\infty(\Lambda), w_\infty(\Lambda))\).

The following result is obtained as an immediate consequence of Lemma 4.1.

Theorem 4.2. The class \((w_\infty(\Lambda), w_\infty(\Lambda))\) is a Banach algebra with respect to the norm \(\|A\| = \|L_A\|\) for all \(A \in (w_\infty(\Lambda), w_\infty(\Lambda))\).

The following example is obtained from Theorem 4.2.

Example 4.3. Let \(\lambda_n = n + 1\) for \(n = 0, 1, \ldots\) as in Examples 2.2, 2.5 and 3.5. Then \((w_\infty, w_\infty)\) is a Banach algebra with \(\|A\| = \|L_A\|\).

Finally, we show that \((w, w)\) is a Banach algebra.
Theorem 4.4. The class \((w, w)\) is a Banach algebra with \(\|A\| = \|L_A\|\).

Proof. We have to show in view of Theorem 4.2 that

(i) \((w, w)\) is complete;

(ii) if \(A, B \in (w, w)\), then \(B \cdot A \in (w, w)\).

First we show (i). Let \((A^j)_{j=1}^\infty\) be a Cauchy sequence in \((w, w)\). Since \((w, w) \subset (w_\infty, w_\infty)\) and the operator norm on \(B(w_\infty, w_\infty)\) is the same as that on \(B(w, w)\), it follows that \((A^j)_{j=1}^\infty\) is a Cauchy sequence in \((w_\infty, w_\infty)\), and so \(A = \lim_{j \to \infty} A^j \in (w_\infty, w_\infty)\) by Lemma 4.1 (c). We have to show \(A \in (w, w)\). Let \(\varepsilon > 0\) be given. Since \((A^j)_{j=1}^\infty\) is a Cauchy sequence in \((w, w)\) there exists a \(j_0 \in \mathbb{N}_0\) such that

\[
\|A^j - A^\ell\|_{(w_\infty, w_\infty)} = \sup_{\mu} \left(\frac{1}{2^\mu} \max_{M_\mu \subseteq M < \mu} \left\| \sum_{n \in M_\mu} (A^j_n - A^\ell_n) \right\|_M \right) < \frac{\varepsilon}{4} \text{ for all } j, \ell \geq j_0; \quad (4.7)
\]

Also, by (3.11) and (3.12), for each fixed \(j\) there exist complex numbers \(\alpha_k^j\) \((k = 0, 1, \ldots)\) and \(\tilde{\alpha}_k^j\) such that

\[
\lim_{\mu \to \infty} \left(\frac{1}{2^\mu} \sum_{\mu} \left| a_{nk}^j - \alpha_k^j \right| \right) = 0 \text{ for each } k \quad (4.8)
\]

and

\[
\lim_{\mu \to \infty} \left(\frac{1}{2^\mu} \sum_{\mu} \sum_{k=0}^{\infty} \left| a_{nk}^j - \tilde{\alpha}_k^j \right| \right) = 0. \quad (4.9)
\]

Let \(j, \ell \geq j_0\) be given. Then we have for each fixed \(k \in \mathbb{N}_0\) by (4.7)

\[
\left| \alpha_k^j - \alpha_k^\ell \right| = \frac{1}{2^\mu} \sum_{\mu} \left| a_{nk}^j - \alpha_k^j \right| \leq \frac{1}{2^\mu} \sum_{\mu} \left| a_{nk}^j - \alpha_k^j \right| + \frac{1}{2^\mu} \sum_{\mu} \left| a_{nk}^\ell - \alpha_k^\ell \right| + \frac{1}{2^\mu} \sum_{\mu} \left| a_{nk}^j - a_{nk}^\ell \right| \leq \frac{1}{2^\mu} \sum_{\mu} \left| a_{nk}^j - \alpha_k^j \right| + \frac{1}{2^\mu} \sum_{\mu} \left| a_{nk}^\ell - \alpha_k^\ell \right| + 4 \cdot \max_{M_\mu \subseteq M < \mu} \left| \sum_{n \in M_\mu} (A_n^j - A_n^\ell)(e^{(k)}) \right|
\]
\[\leq \frac{1}{2\mu} \sum_{\mu} |a_{nk}^{(j)} - \alpha_k^{(j)}| + \frac{1}{2\mu} \sum_{\mu} |a_{nk}^{(\ell)} - \alpha_k^{(\ell)}| \\
+ 4 \cdot \sup_{\mu} \left(\frac{1}{2\mu} \max_{M_{\mu} \subset M^{<\mu}} \| A^{(j)} - A^{(\ell)} \|_M \right) \| e^{(k)} \| \\
\leq \frac{1}{2\mu} \sum_{\mu} |a_{nk}^{(j)} - \alpha_k^{(j)}| + \frac{1}{2\mu} \sum_{\mu} |a_{nk}^{(\ell)} - \alpha_k^{(\ell)}| + \varepsilon \text{ for all } \mu \in \mathbb{N}_0. \]

Letting \(\mu \to \infty \), we obtain from (4.8)

\[|\alpha_k^{(j)} - \alpha_k^{(\ell)}| \leq \varepsilon \text{ for all } j, \ell \geq j_0. \]

Thus \((\alpha_k^{(j)})_{j=1}^{\infty} \) is a Cauchy sequence of complex numbers for each fixed \(k \in \mathbb{N}_0 \) and so

\[\alpha_k = \lim_{j \to \infty} \alpha_k^{(j)} \text{ exists for each } k \in \mathbb{N}_0. \quad (4.10) \]

Now let \(k \in \mathbb{N}_0 \) be fixed. Then we obtain for all sufficiently large \(j \) and for all \(\mu \) by (4.10) and since \(A = \lim_{j \to \infty} A^{(j)} \)

\[\frac{1}{2\mu} \sum_{\mu} |a_{nk} - \alpha_k| \leq \frac{1}{2\mu} \sum_{\mu} |a_{nk}^{(j)} - a_{nk}| + \frac{1}{2\mu} \sum_{\mu} |a_{nk}^{(\ell)} - \alpha_k^{(j)}| + \frac{1}{2\mu} \sum_{\mu} |\alpha_k - \alpha_k^{(j)}| \\
\leq \| A^{(j)} - A \|_{(w, w)} + \frac{1}{2\mu} \sum_{\mu} |a_{nk}^{(j)} - \alpha_k^{(j)}| + \varepsilon \\
< 2 \cdot \varepsilon + \frac{1}{2\mu} \sum_{\mu} |a_{nk}^{(j)} - \alpha_k^{(j)}|. \]

Letting \(\mu \to \infty \), we obtain from (4.8)

\[\lim_{\mu \to \infty} \left(\frac{1}{2\mu} \sum_{\mu} |a_{nk} - \alpha_k| \right) \leq \varepsilon. \]

Since \(\varepsilon > 0 \) was arbitrary, it follows that \(\alpha_k \) satisfies the condition in (3.11) of Example 3.5 (b). Using exactly the same argument as before with \(a_{nk}^{(j)} \) and \(\alpha_k^{(j)} \) replaced by \(\sum_{k=0}^{\infty} a_{nk}^{(j)} \) and \(\tilde{\alpha}^{(j)} \), and applying (4.9) instead of (4.8), we conclude that \(\tilde{\alpha} = \lim_{j \to \infty} \tilde{\alpha}^{(j)} \)
exists and satisfies the condition in (3.12) of Example 3.5 (b). Finally \(A \in (w, w) \) and (3.11) and (3.12) imply \(A \in (w, w) \) by Example 3.5 (b). Thus we have shown that \((w, w) \) is complete. This completes the proof of (i).

Now we show that \(A, B \in (w, w) \) implies \(B \cdot A \in (w, w) \). Since \(A, B \in (w, w) \), by Example 3.5 (b), there are complex numbers \(\alpha_k, \tilde{\alpha} \) that satisfy (3.11) and (3.12), and
complex numbers $\beta_k, \tilde{\beta}$ that satisfy (3.11) and (3.12) with $b_{nk}, \tilde{\beta}_k$ and $\tilde{\beta}$ instead of $a_{nk}, \tilde{\alpha}_k$ and $\tilde{\alpha}$. Let $x \in w$ be given and ξ be the strong limit of x. We put
\[
\zeta = \left(\tilde{\beta} - \sum_{n=0}^{\infty} \beta_n \right) \cdot \left(\left(\tilde{\alpha} - \sum_{k=0}^{\infty} \alpha_k \right) \cdot \xi + \sum_{k=0}^{\infty} \alpha_k x_k \right) + \sum_{n=0}^{\infty} \beta_n A_n x.
\]
We observe that $(\alpha_k)_{k=0}^{\infty}, (\beta_n)_{n=0}^{\infty} \in \mathcal{M}$ by the proof of Theorem 3.6, and also trivially $\mathcal{M} \subset \ell_1 \subset cs$. Therefore all the series in the definition of ζ converge. We write $C = B \cdot A$, $y = Ax$, η for the strong limit of the sequence y, and ζ' for the strong limit of the sequence $z = By$. Since $Cx = B(Ax)$ by Lemma 4.1 (b), we obtain by (3.13) in Theorem 3.6
\[
\left| C_m x - \zeta \right| = \left| B_m y - \zeta \right|
\]
\[
= \left| B_m y - \sum_{n=0}^{\infty} \beta_n y_n - \left(\tilde{\beta} - \sum_{n=0}^{\infty} \beta_n \right) \cdot \left(\left(\tilde{\alpha} - \sum_{k=0}^{\infty} \alpha_k \right) \cdot \xi + \sum_{k=0}^{\infty} \alpha_k x_k \right) \right|
\]
\[
= \left| B_m y - \sum_{n=0}^{\infty} \beta_n y_n - \left(\tilde{\beta} - \sum_{n=0}^{\infty} \beta_n \right) \cdot \eta \right|
\]
\[
= \left| z_m - \sum_{n=0}^{\infty} \beta_n (y_n - \eta) + \eta \tilde{\beta} \right| = \left| z_m - \zeta' \right| \text{ for all } m,
\]
hence
\[
\lim_{\mu \to \infty} \left(\frac{1}{2^\mu} \sum_{m \in M<\mu>} \left| C_m x - \zeta \right| \right) = \lim_{\mu \to \infty} \left(\frac{1}{2^\mu} \sum_{m \in M<\mu>} \left| z_m - \zeta' \right| \right) = 0.
\]
This shows that $Cx \in w$, and completes the proof of (ii).

References

