Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences

Eberhard Malkowsky

Fatih University Department of Mathematics 34500 Büyükçekmece, Istanbul, Turkey emalkowsky@fatih.edu.tr eberhard.malkowsky@math.uni-giessen.de

Abstract

Let $1 \leq p < \infty$. We characterise the classes (X, Y) of all infinite matrices that map X into Y for $X = w_{\infty}^{p}(\Lambda)$ or $X = w_{0}^{p}(\Lambda)$ and $Y = w_{\infty}^{1}(\Lambda')$, for $X = w_{\infty}^{1}(\Lambda)$ and $Y = w_{\infty}^{p}(\Lambda')$, and for $X = \mathcal{M}_{p}(\Lambda)$ and $Y = \mathcal{M}_{1}(\Lambda')$, the β -duals of $w_{\infty}^{p}(\Lambda)$ and $w_{\infty}^{1}(\Lambda')$. As special cases, we obtain the characterisations of the classes of all infinite matrices that map w_{∞}^{p} into w_{∞}^{1} , and w^{p} into w^{1} . Furthermore, we prove that the classes ($w_{\infty}(\Lambda), w_{\infty}(\Lambda)$) and (w, w) are Banach algebras.

AMS Subject Classifications: 46A45, 40H05.

Keywords: Spaces of strongly Λ -summable and bounded sequences, matrix transformations, Banach algebras.

1 Introduction

Maddox [5] introduced the set w^p of all complex sequences $x = (x_k)_{k=0}^{\infty}$ that are strongly summable with index p by the Cesàro method of order 1; that is, w^p contains all sequences x for which $\lim_{n\to\infty} \sigma_n^p(x;\xi) = 0$ for some complex number ξ , where

$$\sigma_n^p(x;\xi) = \frac{1}{n+1} \sum_{k=0}^n |x_k - \xi|^p$$
 for all $n = 0, 1, \dots$

We will also consider the sets w_0^p and w_∞^p of all sequences that are strongly summable to zero and strongly bounded, with index p; that is, the sets w_0^p and w_∞^p contain all

Received September 30, 2010; Accepted November 22, 2010 Communicated by Mališa R. Žižović

sequences x for which $\lim_{n\to\infty} \sigma_n^p(x;0) = 0$ and $\sup_n \sigma_n^p(x;0) < \infty$, respectively. Maddox also established necessary and sufficient conditions on the entries of an infinite matrix to map w^p into the space c of all convergent sequences; his result is similar to the famous classical result by Silverman–Toeplitz which characterises the class (c, c) of all matrices that map c into c, the so-called conservative matrices.

Characterisations of classes of matrix transformations between sequence spaces constitute a wide, interesting and important field in both summability and operator theory. These results are needed to determine the corresponding subclasses of compact matrix operators, for instance in [1,13], and more recently, of general linear operators between the respective sequence spaces, for instance in [2,7]. They are also applied in studies on the invertibility of operators and the solvability of infinite systems of linear equations, for instance in [6,8]. To be able to apply methods from the theory of Banach algebras to the solution of those problems, it is essential to determine if a class of linear operators of a sequence space X into itself is a Banach algebra; this is nontrivial if X is a BKspace that does not have AK. Finally the characterisations of compact operators can be used to establish sufficient conditions for an operator to be a Fredholm operator, as in [3].

The spaces $w_{\infty}^{p}(\Lambda)$ and $w_{0}^{p}(\Lambda)$ for exponentially bounded sequences Λ and $1 \leq p < \infty$ were introduced in [10]; they are generalisations of the spaces w_{∞}^{p} and w_{0}^{p} . Their dual spaces were determined in [11]. In this paper, we establish the new characterisations of the classes (X, Y) of all infinite matrices that map X into Y for $X = w_{\infty}^{p}(\Lambda)$ or $X = w_{0}^{p}(\Lambda)$ and $Y = w_{\infty}^{1}(\Lambda')$, for $X = w_{\infty}^{1}(\Lambda)$ and $Y = w_{\infty}^{p}(\Lambda')$, and when X is the β -dual of $w_{\infty}^{p}(\Lambda)$ or $w_{0}^{p}(\Lambda)$ and Y is the β -dual of $w_{\infty}^{1}(\Lambda')$. As a special case, we obtain the characterisations of the classes of all infinite matrices that map w_{∞}^{p} into w_{∞}^{1} , and w^{p} into w^{1} , the last result being similar to Maddox's and the Silverman–Toeplitz theorems. Furthermore, we prove that the classes $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$ and (w, w) are Banach algebras. Our results would be essential for further research in the areas mentioned above.

2 Notations and Known Results

Let ω denote the set of all sequences $x = (x_k)_{k=0}^{\infty}$, and ℓ_{∞} , c_0 and ϕ be the sets of all bounded, null and finite complex sequences, respectively; also let cs, bs and

$$\ell_p = \left\{ x \in \omega : \sum_{k=0}^{\infty} |x_k|^p < \infty \right\} \text{ for } 1 \le p < \infty$$

be the sets of all convergent, bounded and absolutely *p*-summable series. We write *e* and $e^{(n)}$ (n = 0, 1, ...) for the sequences with $e_k = 0$ for all *k*, and $e_n^{(n)} = 1$ and $e_k^{(n)} = 0$ for $k \neq n$. A sequence (b_n) in a linear metric space *X* is called a Schauder basis of *X* if for every $x \in X$ there exists a unique sequence λ_n of scalars such that $x = \sum_n \lambda_n b_n$.

A *BK* space X is a Banach sequence space with continuous coordinates $P_n(x) = x_n$ $(n \in \mathbb{N}_0)$ for all $x \in X$; a *BK* space $X \supset \phi$ is said to have *AK* if $x = \sum_{k=0}^{\infty} x_k e^{(k)}$ for every sequence $x = (x_k)_{k=0}^{\infty} \in X$. Let X be a subset of ω . Then the set

$$X^{\beta} = \{ a \in \omega : ax = (a_k x_k)_{k=0}^{\infty} \in cs \text{ for all } x \in X \}$$

is called the β -dual of X. Let $A = (a_{nk})_{k=0}^{\infty}$ be an infinite matrix of complex numbers and $x = (x_k)_{k=0}^{\infty} \in \omega$. Then we write $A_n = (a_{nk})_{k=0}^{\infty}$ (n = 0, 1, ...) and $A^k = (a_{nk})_{n=0}^{\infty}$ (k = 0, 1, ...) for the sequences in the *n*-th row and the *k*-th column of A, and $A_n x = \sum_{k=0}^{\infty} a_{nk} x_k$ provided the series converges. Given any subsets X and Y of ω , then (X, Y)denotes the class of all infinite matrices A that map X into Y, that is, $A_n \in X^{\beta}$ for all

n, and $Ax = (A_n x)_{n=0}^{\infty} \in Y$. Let X and Y be Banach spaces and $B_X = \{x \in X : ||x|| \le 1\}$ denote the unit ball in X. Then we write $\mathcal{B}(X, Y)$ for the Banach space of all bounded linear operators $L : X \to Y$ with the operator norm $||L|| = \sup_{x \in \mathcal{B}} ||L(x)||$. We write $X^* = \mathcal{B}(X, \mathbb{C})$

 $L: X \to Y$ with the operator norm $\|L\| = \sup_{x \in B_X} \|F(x)\|$ for all $f \in X^*$. The for the *continuous dual* of X with the norm $\|f\| = \sup_{x \in B_X} |f(x)|$ for all $f \in X^*$. The following results and definitions are well known. Since we will frequently apply them, we state them here for the reader's convenience.

Proposition 2.1. Let X and Y be BK spaces.

- (a) Then we have $(X,Y) \subset \mathcal{B}(X,Y)$; this means that if $A \in (X,Y)$, then $L_A \in \mathcal{B}(X,Y)$, where $L_A(x) = Ax$ $(x \in X)$ (see [14, Theorem 4.2.8]).
- (b) If X has AK then we have $\mathcal{B}(X,Y) \subset (X,Y)$; this means every $L \in \mathcal{B}(X,Y)$ is given by a matrix $A \in (X,Y)$ such that L(x) = Ax $(x \in X)$ (see [4, Theorem 1.9]).

A nondecreasing sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ of positive reals is called *exponentially* bounded if there is an integer $m \geq 2$ such that for all nonnegative integers ν there is at least one term λ_n in the interval $I_m^{(\nu)} = [m^{\nu}, m^{\nu+1} - 1]$ ([10]). It was shown ([10, Lemma 1]) that a nondecreasing sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ is exponentially bounded, if and only if the following condition holds

(I)
$$\begin{cases} \text{There are reals } s \leq t \text{ such that for some subsequence } (\lambda_{n(\nu)})_{\nu=0}^{\infty} \\ 0 < s \leq \lambda_{n(\nu)} / \lambda_{n(\nu+1)} \leq t < 1 \ (\nu = 0, 1, \ldots); \end{cases}$$

such a subsequence is called an associated subsequence.

Example 2.2. A simple, but important exponentially bounded sequence is the sequence Λ with $\lambda_n = n + 1$ for n = 0, 1, ...; an associated subsequence is given by $\lambda_{n(\nu)} = 2^{\nu}$, $\nu = 0, 1, ...$

Throughout, let $1 \le p < \infty$ and q be the conjugate number of p, that is, $q = \infty$ for p = 1 and q = p/(p-1) for $1 . Also let <math>(\mu_n)_{n=0}^{\infty}$ be a nondecreasing sequence of positive reals tending to infinity. Furthermore let $\Lambda = (\lambda_n)_{n=0}^{\infty}$ be an exponentially bounded sequence, and $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ an associated subsequence with $\lambda_{n(0)} = \lambda_0$. We write $K^{<\nu>}$ ($\nu = 0, 1, ...$) for the set of all integers k with $n(\nu) \le k \le n(\nu+1) - 1$, and define the sets

$$\tilde{w}_0^p(\mu) = \left\{ x \in \omega : \lim_{n \to \infty} \left(\frac{1}{\mu_n} \sum_{k=0}^n |x_k|^p \right) = 0 \right\},\$$

$$\tilde{w}_\infty^p(\mu) = \left\{ x \in \omega : \sup_n \left(\frac{1}{\mu_n} \sum_{k=0}^n |x_k|^p \right) < \infty \right\},\$$

$$w_0^p(\Lambda) = \left\{ x \in \omega : \lim_{\nu \to \infty} \left(\frac{1}{\lambda_{n(\nu+1)}} \sum_{k \in K^{<\nu>}} |x_k|^p \right) = 0 \right\},\$$

and

$$w_{\infty}^{p}(\Lambda) = \left\{ x \in \omega : \sup_{\nu} \left(\frac{1}{\lambda_{n(\nu+1)}} \sum_{k \in K^{<\nu>}} |x_{k}|^{p} \right) < \infty \right\}.$$

If p = 1, we omit the index p throughout, that is, we write $\tilde{w}_0(\mu) = \tilde{w}_{\infty}^1(\mu)$ etc., for short.

Proposition 2.3 (See [10, Theorem 1 (a), (b)]). Let $(\mu_n)_{n=0}^{\infty}$ be a nondecreasing sequence of positive reals tending to infinity, $\Lambda = (\lambda_n)_{n=0}^{\infty}$ be an exponentially bounded sequence and $(\lambda_{n(\nu)})_{n=0}^{\infty}$ be an associated subsequence.

(a) Then $\tilde{w}_0^p(\mu)$ and $\tilde{w}_{\infty}^p(\mu)$ are BK spaces with the sectional norm $\|\cdot\|_{\mu}$ defined by

$$||x||_{\mu}^{\tilde{}} = \sup_{n} \left(\frac{1}{\mu_{n}} \sum_{k=0}^{n} |x_{k}|^{p}\right)^{1/p}$$

and $\tilde{w}_0^p(\mu)$ has AK.

(b) We have $\tilde{w}_0^p(\Lambda) = w_0^p(\Lambda)$, $\tilde{w}_{\infty}^p(\Lambda) = w_{\infty}^p(\Lambda)$, and the sectional norm $\|\cdot\|_{\Lambda}$ and the block norm $\|\cdot\|_{\Lambda}$ with

$$||x||_{\Lambda} = \sup_{\nu} \left(\frac{1}{\lambda_{n(\nu+1)}} \sum_{k \in K^{<\nu>}} |x_k|^p \right)^{1/p}$$

are equivalent on $w_0^p(\Lambda)$ and on $w_\infty^p(\Lambda)$.

- *Remark* 2.4. (a) It can be shown that $w^p_{\infty}(\Lambda)$ is not separable, and so has no Schauder basis.
 - (b) It follows from [14, Corollary 4.2.4] and Proposition 2.3, that w^p₀(Λ) and w^p_∞(Λ) are BK spaces with the norm || · ||_Λ and that w^p₀(Λ) has AK.

Example 2.5. We might also define the set

$$w^p(\Lambda) = w_0^p(\Lambda) \oplus e = \{ x \in \omega : x - \xi \in w_0^p \text{ for some complex number } \xi \}.$$

It can be shown that the *strong* Λ -*limit* ξ of any $x \in w^p(\Lambda)$ is unique if and only if

$$\overline{\lambda} = \limsup_{\nu \to \infty} \frac{n(\nu+1) - n(\nu)}{\lambda_{n(\nu+1)}} > 0,$$

and that $w^p(\Lambda) \subset w^p_{\infty}(\Lambda)$ if and only if

$$\overline{\Lambda} = \sup_{\nu} \frac{n(\nu+1) - n(\nu)}{\lambda_{n(\nu+1)}} < \infty.$$

In view of Proposition 2.3 (b) and Example 2.2, the sets $w_0^p(\Lambda)$ and $w_{\infty}^p(\Lambda)$ reduce to the BK spaces w_0^p and w_{∞}^p for $\lambda_n = n + 1$ for $n = 0, 1, \ldots$; it is also clear that then $\overline{\Lambda} < \infty$ and $\overline{\lambda} > 0$, and consequently w^p is a BK space and the strong limit ξ of each sequence $x \in w^p$ is unique.

Throughout, we write $\|\cdot\| = \|\cdot\|_{\Lambda}$, for short.

The β -duals play a much more important role than the continuous duals in the theory of sequence spaces and matrix transformations. Let a be a sequence and X be a normed sequence space. Then we write $||a||_X^* = \sup_{x \in B_X} |\sum_{k=0}^{\infty} a_k x_k|$ provided the expression on the

right exists and is finite, which is the case whenever X is a BK space and $a \in X^{\beta}$ by [14, Theorem 7.2.9]. If Λ is an exponentially bounded sequence with an associated subsequence $\lambda_{n(\nu)}$, then we write \max_{ν} and \sum_{ν} for the maximum and sum taken over all

 $k \in K^{<\nu>}$. We denote by $x^{<\nu>} = \sum_{\nu} x_k e^{(k)} (\nu \in \mathbb{N}_0)$ the ν -block of the sequence x.

Parts (a) and (b) of the next result are [11, Theorem 5.5 (a), (b)], Part (c) is [11, Theorem 5.7], and Parts (d) and (e) are [11, Theorem 5.8 (a), (b)].

Proposition 2.6. Suppose $\Lambda = (\lambda_n)_{n=0}^{\infty}$ is an exponentially bounded sequence and let $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ be an associated subsequence. We write

$$\mathcal{M}_p(\Lambda) = \left\{ a \in \omega : \|a\|_{\mathcal{M}_p(\Lambda)} = \sum_{\nu=0}^{\infty} \left(\lambda_{n(\nu+1)}\right)^{1/p} \cdot \|a^{<\nu>}\|_q < \infty \right\}.$$

(a) Then we have $(w_0^p(\Lambda))^\beta = (w_\infty^p(\Lambda))^\beta = \mathcal{M}_p(\Lambda)$ and

$$\|\cdot\|_{\mathcal{M}_p(\Lambda)} = \|\cdot\|_{w^p_{\infty}(\Lambda)}^* = \|\cdot\|_{w^p_0(\Lambda)}^* \text{ on } \mathcal{M}_p(\Lambda).$$
(2.1)

- (b) The continuous dual $w_0^p(\Lambda)^*$ of $w_0^p(\Lambda)$ is norm isomorphic to $\mathcal{M}_p(\Lambda)$ with the norm $\|\cdot\|_{\mathcal{M}_p(\Lambda)}$.
- (c) Then $\mathcal{M}_p(\Lambda)$ is a BK space with AK with respect to $\|\cdot\|_{\mathcal{M}_p(\Lambda)}$.
- (d) We have $(w^p_{\infty}(\Lambda))^{\beta\beta} = (w^p_0(\Lambda))^{\beta\beta} = w^p_{\infty}(\Lambda)$ and

$$\|\cdot\|_{\mathcal{M}_p(\Lambda)}^* = \|\cdot\| on \left(\mathcal{M}_p(\Lambda)\right)^{\beta}.$$
(2.2)

(e) The continuous dual $(\mathcal{M}_p(\Lambda))^*$ of $\mathcal{M}_p(\Lambda)$ is norm isomorphic to $w^p_{\infty}(\Lambda)$.

Remark 2.7. (a) The continuous dual of $w_{\infty}(\Lambda)$ is not given by a sequence space.

(b) The set $w^p_{\infty}(\Lambda)$ is β -perfect, that is, $(w^p_{\infty}(\Lambda))^{\beta\beta} = w^p_{\infty}(\Lambda)$.

3 Matrix Transformations on $w^p_{\infty}(\Lambda)$ and $w^p_0(\Lambda)$

Let $\Lambda = (\lambda_k)_{k=0}^{\infty}$ and $\Lambda' = (\lambda'_m)_{m=0}^{\infty}$ be exponentially bounded sequences and $(\lambda_{k(\nu)})_{\nu=0}^{\infty}$ and $(\lambda'_{m(\mu)})_{\mu=0}^{\infty}$ be associated subsequences. Furthermore, let $K^{<\nu>}$ ($\nu = 0, 1, ...$) and $M^{<\mu>}$ ($\mu = 0, 1, ...$) be the sets of all integers k and m with $k(\nu) \le k \le k(\nu+1) - 1$ and $m(\mu) \le m \le m(\mu+1) - 1$. If $A = (a_{mk})_{m,k=0}^{\infty}$ is an infinite matrix and $\mathbf{M} = (M_{\mu})_{\mu=0}^{\infty}$ is a sequence of subsets M_{μ} of $M^{<\mu>}$ for $\mu = 0, 1, ...$, we write $S^{\mathbf{M}}(A)$ for the matrix with the rows

$$S^{\mathbf{M}}_{\mu}(A) = \sum_{m \in M_{\mu}} A_m$$
, that is, $s^{\mathbf{M}}_{\mu k}(A) = \sum_{m \in M_{\mu}} a_{mk}$ for all $\mu, k = 0, 1, \dots$

Here we establish necessary and sufficient conditions for an infinite matrix A to be in the classes $(w_{\infty}^{p}(\Lambda), w_{\infty}(\Lambda')), (w_{0}^{p}(\Lambda), w_{\infty}(\Lambda'))$ and $(\mathcal{M}_{p}(\Lambda), \mathcal{M}(\Lambda'))$, and consider the special cases of $(w_{\infty}^{p}, w_{\infty})$ and (w^{p}, w) . We also estimate the operator norms of L_{A} in these cases. Those characterisations and estimates are needed in the proofs of our results on Banach algebras of matrix transformations.

First we characterise the classes $(w_{\infty}^{p}(\Lambda), w_{\infty}(\Lambda'))$ and $(w_{0}^{p}(\Lambda), w_{\infty}(\Lambda'))$, and estimate the operator norm of L_{A} when the matrix A is a member of those classes.

Theorem 3.1. Let $\Lambda = (\lambda_k)_{k=0}^{\infty}$ and $\Lambda' = (\lambda'_m)_{m=0}^{\infty}$ be exponentially bounded sequences and $(\lambda_{k(\nu)})_{\nu=0}^{\infty}$ and $(\lambda'_{m(\mu)})_{\mu=0}^{\infty}$ be associated subsequences. Then we have $A \in (w_{\infty}^p(\Lambda), w_{\infty}(\Lambda'))$ if and only if

$$\|A\|_{(\Lambda,\Lambda')} = \sup_{\mu} \left(\frac{1}{\lambda'_{m(\mu+1)}} \max_{M_{\mu} \subset M^{<\mu>}} \left\| S^{\mathbf{M}}_{\mu}(A) \right\|_{\mathcal{M}_{p}(\Lambda)} \right) < \infty;$$
(3.1)

moreover, we have $(w^p_{\infty}(\Lambda), w_{\infty}(\Lambda')) = (w^p_0(\Lambda), w_{\infty}(\Lambda'))$. If $A \in (w^p_{\infty}(\Lambda), w_{\infty}(\Lambda'))$, then the operator norm of L_A satisfies

$$||A||_{(\Lambda,\Lambda')} \le ||L_A|| \le 4 \cdot ||A||_{(\Lambda,\Lambda')}.$$
 (3.2)

Proof. Throughout the proof, we write $||A|| = ||A||_{(\Lambda,\Lambda')}$, for short.

First we assume that the condition in (3.1) is satisfied. Let $m \in \mathbb{N}_0$ be given. Then there is a unique $\mu_m \in \mathbb{N}_0$ such that $m \in M^{<\mu_m>}$. We choose $M_{\mu_m} = \{m\}$, and it follows from (3.1) that $\|A_m\|_{\mathcal{M}_p(\Lambda)} < \infty$, that is, $A_m \in (w_{\infty}^p(\Lambda))^{\beta}$ by Proposition 2.6 (a). Thus we have shown $A_m \in (w_{\infty}(\Lambda))^{\beta}$ for all $m \in \mathbb{N}_0$. Now let $x \in w_{\infty}^p(\Lambda)$ be given. For each $\mu \in \mathbb{N}_0$, we write $M_{\mu(x)}$ for a subset of $M^{<\mu>}$ for which

$$\left|\sum_{m\in M_{\mu(x)}} A_m x\right| = \max_{M_{\mu}\subset M^{<\mu>}} \left|\sum_{m\in M_{\mu}} A_m x\right|,$$

and put $\mathbf{M}(\mathbf{x}) = (M_{\mu(x)})_{\mu=0}^{\infty}$. Then we have by a well-known inequality (see [12]), (2.1) and (3.1)

$$\begin{aligned} \frac{1}{\lambda'_{m}(\mu+1)} \sum_{m \in M^{<\mu>}} |A_{m}x| &\leq 4 \cdot \frac{1}{\lambda'_{m}(\mu+1)} \max_{M_{\mu} \subset M^{<\mu>}} \left| \sum_{m \in M_{\mu}} A_{m}x \right| \\ &= 4 \cdot \frac{1}{\lambda'_{m}(\mu+1)} \left| \sum_{m \in M_{\mu(x)}} \sum_{k=0}^{\infty} a_{mk}x_{k} \right| = 4 \cdot \frac{1}{\lambda'_{m}(\mu+1)} \left| \sum_{k=0}^{\infty} \left(\sum_{m \in M_{\mu(x)}} a_{mk} \right) x_{k} \right| \\ &\leq 4 \cdot \frac{1}{\lambda'_{m}(\mu+1)} \left| S_{\mu}^{\mathbf{M}(\mathbf{x})}(A)x \right| \leq 4 \cdot \frac{1}{\lambda'_{m}(\mu+1)} \left\| S_{\mu}^{\mathbf{M}(\mathbf{x})}(A) \right\|_{\mathcal{M}_{p}(\Lambda)} \cdot \|x\| \\ &\leq 4 \cdot \frac{1}{\lambda'_{m}(\mu+1)} \cdot \left(\max_{M_{\mu} \subset M^{<\mu>}} \left\| S_{\mu}^{\mathbf{M}}(A) \right\|_{\mathcal{M}_{p}(\Lambda)} \right) \cdot \|x\| \leq 4 \cdot \|A\| \cdot \|x\| < \infty \text{ for all } \mu. \end{aligned}$$

Hence it follows that

$$||Ax|| = \sup_{\mu} \left(\frac{1}{\lambda'_m(\mu+1)} \sum_{m \in M^{<\mu>}} |A_m x| \right) \le 4 \cdot ||A|| \cdot ||x|| < \infty,$$
(3.3)

and consequently $Ax \in w_{\infty}(\Lambda')$ for all $x \in w_{\infty}^{p}(\Lambda)$. Thus, we have shown that if the condition in (3.1) is satisfied, then $A \in (w_{\infty}^{p}(\Lambda), w_{\infty}(\Lambda')) \subset (w_{0}^{p}(\Lambda), w_{\infty}(\Lambda'))$.

Conversely, we assume $A \in (w_0^p(\Lambda), w_{\infty}(\Lambda'))$. Then we have $A_m \in (w_0^p(\Lambda))^{\beta}$ for all $m \in \mathbb{N}_0$, hence $||A_m||_{\mathcal{M}_p(\Lambda)} < \infty$ for all m by Proposition 2.6 (a). Since $w_0^p(\Lambda)$ and $w_{\infty}(\Lambda')$ are a BK spaces by Remark 2.4 (b), it follows from Proposition 2.1 (a) that $L_A \in \mathcal{B}(w_0^p(\Lambda), w_{\infty}(\Lambda'))$, and so $||L_A|| < \infty$. We also have $L_{M_{\mu}} \in (w_0^p(\Lambda))^*$ for all $M_{\mu} \subset M^{<\mu>}$ and all $\mu \in \mathbb{N}_0$, where $L_{M_{\mu}}(x) = (\lambda'_{m(\mu+1)})^{-1} \cdot \sum_{m \in M_{\mu}} A_m x$ for all $x \in$ $w_0^p(\Lambda)$. Since trivially $|L_{M_\mu}(x)| \leq ||L_A(x)|| \leq ||L_A|| \cdot ||x||$ for all $x \in w_0^p(\Lambda)$, all $M_\mu \subset M^{<\mu>}$ and all $\mu \in \mathbb{N}_0$, it follows by (2.1) in Proposition 2.6 (a) that $||L_{M_\mu}||_{\mathcal{M}_p(\Lambda)} = ||L_{M_\mu}||_{w_0^p(\Lambda)}^* \leq ||L_A||$ for all $M_\mu \subset M^{<\mu>}$ and $\mu \in \mathbb{N}_0$, and so

$$\sup_{\mu} \left(\max_{M_{\mu} \subset M^{<\mu>}} \left\| L_{M_{\mu}} \right\|_{\mathcal{M}_{p}(\Lambda)} \right) = \sup_{\mu} \left(\frac{1}{\lambda'_{m(\mu+1)}} \max_{M_{\mu} \subset M^{<\mu>}} \left\| \sum_{m \in M_{\mu}} A_{m} \right\|_{\mathcal{M}_{p}(\Lambda)} \right)$$
$$= \|A\| \le \|L_{A}\| < \infty.$$
(3.4)

Thus we have shown that if $A \in (w_0^p(\Lambda), w_\infty(\Lambda'))$, then (3.3) is satisfied.

It remains to show that if $A \in (w_{\infty}^{p}(\Lambda), w_{\infty}(\Lambda'))$, then (3.2) holds. But the first and second inequalities in (3.2) follow from (3.4) and (3.3), respectively.

Now we characterise the class $(\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$, and estimate the operator norm of L_A when $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$. We write \mathcal{T} for the set of all sequences $t = (t_\mu)_{\mu=0}^{\infty}$ such that for each $\mu = 0, 1, \ldots$ there is one and only one $t_\mu \in M^{<\mu>}$.

Theorem 3.2. Let $\Lambda = (\lambda_k)_{k=0}^{\infty}$ and $\Lambda' = (\lambda'_m)_{m=0}^{\infty}$ be exponentially bounded sequences and $(\lambda_{k(\nu)})_{\nu=0}^{\infty}$ and $(\lambda'_{m(\mu)})_{\mu=0}^{\infty}$ be associated subsequences. Then we have $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$ if and only if

$$\|A\|_{(\mathcal{M}_{p}(\Lambda),\mathcal{M}(\Lambda'))} = \sup_{N \subset \mathbb{N}_{0} \atop N \text{ finite}} \left(\sup_{t \in \mathcal{T}} \left\| \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t_{\mu}} \right\|_{\Lambda} \right) < \infty,$$
(3.5)

where, of course,

$$\left\|\sum_{\mu\in N}\lambda'_{m(\mu+1)}A_{t_{\mu}}\right\|_{\Lambda} = \sup_{\nu}\left(\frac{1}{\lambda_{k(\nu+1)}}\sum_{k\in K^{<\nu>}}\left|\sum_{\mu\in N}\lambda'_{m(\mu+1)}a_{t_{\mu},k}\right|^{p}\right)^{1/p}$$

If $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$, then the operator norm of L_A satisfies

$$\|A\|_{(\mathcal{M}_p(\Lambda),\mathcal{M}(\Lambda'))} \le \|L_A\| \le 4 \cdot \|A\|_{(\mathcal{M}_p(\Lambda),\mathcal{M}(\Lambda'))}.$$
(3.6)

Proof. Throughout the proof, we write $||A|| = ||A||_{(\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))}$, for short.

First we assume that the condition in (3.5) is satisfied. Let $m \in \mathbb{N}_0$ be given. Then there is a unique $\mu_m \in \mathbb{N}_0$ such that $m \in M^{<\mu_m>}$. We choose $N = \{m\}$ and $t_{\mu_m} = m$. Then it follows from (3.5) that

$$\|A_m\|_{\Lambda} = \sup_{\nu} \left(\frac{1}{\lambda_{k(\nu+1)}} \sum_{k \in K^{<\nu>}} |a_{mk}|^p \right)^{1/p}$$
$$= \frac{1}{\lambda'_{m(\mu_m+1)}} \cdot \sup_{\nu} \left\| \sum_{m \in N} \lambda'_{m(\mu_m+1)} A_{t\mu_m} \right\|_{\Lambda} < \infty,$$

and so $A_m \in w_{\infty}^p(\Lambda) = (\mathcal{M}_p(\Lambda))^{\beta}$ by Proposition 2.6 (a) and (d). Now let $\mu_0 \in \mathbb{N}_0$ and $x \in \mathcal{M}_p(\Lambda)$ be given. For each $\mu \in \mathbb{N}_0$ with $0 \leq \mu \leq \mu_0$, let $m(\mu; x)$ be the smallest integer in $M^{<\mu>}$ such that $\max_{m \in M^{<\mu>}} |A_m x| = |A_{m(\mu;x)}x|$. Then we have by a well-known inequality (see [12]) and (2.2) in Proposition 2.6 (d)

$$\begin{split} &\sum_{\mu=0}^{\mu_{0}} \lambda'_{m(\mu+1)} \max_{m \in M^{<\mu>}} |A_{m}x| = \sum_{\mu=0}^{\mu_{0}} \lambda'_{m(\mu+1)} |A_{m(\mu;x)}x| \\ &\leq 4 \cdot \max_{N \subset \{0,...,\mu_{0}\}} \left| \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{m(\mu;x)}x \right| \\ &= 4 \cdot \max_{N \subset \{0,...,\mu_{0}\}} \left| \sum_{k=0}^{\infty} \left(\sum_{\mu \in N} \lambda'_{m(\mu+1)} a_{m(\mu;x),k} \right) x_{k} \right| \\ &\leq 4 \cdot \max_{N \subset \{0,...,\mu_{0}\}} \left[\sup_{\nu} \left(\frac{1}{\lambda_{k(\nu+1)}} \sum_{k \in K^{<\nu>}} \left| \sum_{\mu \in N} \lambda'_{m(\mu+1)} a_{m(\mu;x),k} \right|^{p} \right)^{1/p} \right] \|x\|_{\mathcal{M}_{p}(\Lambda)} \\ &\leq 4 \cdot \max_{N \subset \{0,...,\mu_{0}\}} \left(\left\| \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{m(\mu;x)} \right\|_{\Lambda} \right) \cdot \|x\|_{\mathcal{M}_{p}(\Lambda)} \\ &\leq 4 \cdot \sup_{N \subset \{0,...,\mu_{0}\}} \left(\sup_{t \in \mathcal{T}} \left\| \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t_{\mu}} \right\|_{\Lambda} \right) \cdot \|x\|_{\mathcal{M}_{p}(\Lambda)} = 4 \cdot \|A\| \cdot \|x\|_{\mathcal{M}_{p}(\Lambda)} < \infty. \end{split}$$

Since $\mu_0 \in \mathbb{N}_0$ was arbitrary, we obtain

$$\|Ax\|_{\mathcal{M}(\Lambda')} \le 4 \cdot \|A\| \cdot \|x\|_{\mathcal{M}_p(\Lambda)} < \infty \text{ for all } x \in \mathcal{M}_p(\Lambda), \tag{3.7}$$

and consequently $Ax \in \mathcal{M}(\Lambda')$ for all $x \in \mathcal{M}_p(\Lambda)$. Thus we have shown that if the condition in (3.5) is satisfied, then $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$.

Conversely, we assume $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$. Then $A_m \in (\mathcal{M}_p(\Lambda))^{\beta} = w_{\infty}^p(\Lambda)$ for all $m \in \mathbb{N}_0$ by Proposition 2.6 (a) and (d). Furthermore, since $\mathcal{M}_p(\Lambda)$ and $\mathcal{M}(\Lambda')$ are BK spaces by Proposition 2.6 (c), it follows from Proposition 2.1 (a) that $L_A \in \mathcal{B}(\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$. We also have $L_{N,t} \in (\mathcal{M}_p(\Lambda))^*$ for all finite subsets N of \mathbb{N}_0 and all sequences $t \in \mathcal{T}$, where $L_{N,t}(x) = \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t_{\mu}} x$ for all $x \in \mathcal{M}_p(\Lambda)$. Since

trivially $|L_{N,t}(x)| \leq \sum_{\mu=0}^{\infty} \lambda'_{m(\mu+1)} \max_{m \in M^{<\mu>}} |A_m x| = ||Ax||_{\mathcal{M}(\Lambda')} \leq ||L_A|| \cdot ||x||_{\Lambda}$ for all finite subsets N of \mathbb{N}_0 and all $t \in \mathcal{T}$, it follows by (2.2) in Proposition 2.6 (c) that

$$\|L_{N,t}\|_{\mathcal{M}_{p}(\Lambda)}^{*} = \|L_{N,t}\|_{\Lambda} = \left\|\sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t_{\mu}}\right\|_{\Lambda} \le \|L_{A}\| < \infty.$$

Since this holds for all finite subsets N of \mathbb{N}_0 and all $t \in \mathcal{T}$, we conclude

$$\|A\| = \sup_{N \subset \mathbb{N}_0 \atop N \text{ finite}} \left(\sup_{t \in \mathcal{T}} \left\| \sum_{\mu \in N} \lambda'_{m(\mu+1)} A_{t_{\mu}} \right\|_{\Lambda} \right) \le \|L_A\| < \infty.$$
(3.8)

Thus we have shown that if $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$, then (3.5) is satisfied.

Finally, if $A \in (\mathcal{M}_p(\Lambda), \mathcal{M}(\Lambda'))$, then (3.6) follows from (3.8) and (3.7).

Using the transpose A^T of a matrix A, we obtain an alternative characterisation of the class $(w_{\infty}(\Lambda), w_{\infty}^p(\Lambda'))$.

Theorem 3.3. We have $A \in (w_{\infty}(\Lambda), w_{\infty}^{p}(\Lambda'))$ if and only if

$$\left\|A^{T}\right\|_{\left(\mathcal{M}_{p}(\Lambda'),\mathcal{M}(\Lambda)\right)}<\infty.$$
(3.9)

Proof. Since $X = w_0(\Lambda)$ and $Z = \mathcal{M}_p(\Lambda')$ are BK spaces with AK by Remark 2.4 (b) and Proposition 2.6 (c), and $Y = Z^\beta = w_\infty^p(\Lambda')$ by Proposition 2.6 (d), it follows from [14, Theorem 8.3.9] that $A \in (w_0(\Lambda), w_\infty^p(\Lambda')) = (X, Y) = (X^{\beta\beta}, Y) = (w_\infty(\Lambda), w_\infty^p(\Lambda'))$ and $A \in ((w_0(\Lambda), w_\infty^p(\Lambda'))$ if and only if $A^T \in (Z, X^\beta) = (\mathcal{M}_p(\Lambda'), \mathcal{M}(\Lambda))$, and, by (3.5) in Theorem 3.2, this is the case if and only if (3.9) holds. \Box

We consider an application to the characterisations of the classes $(w_{\infty}^{p}, w_{\infty}), (w^{p}, w)$ and $(w_{\infty}, w_{\infty}^{p})$. Let $\Lambda = \Lambda'$ and $\lambda_{n} = n + 1$ for n = 0, 1, ... as in Examples 2.2 and 2.5. Then we may choose the subsequences given by $\lambda_{k(\nu)} = 2^{\nu}$ and $\lambda_{m(\mu)} = 2^{\mu}$ for all $\nu, \mu = 0, 1, ...$, and consequently the sets $K^{<\nu>}$ and $M^{<\mu>}$ are the sets of all integers kand m with $2^{\nu} \leq k \leq 2^{\nu+1} - 1$ and $2^{\mu} \leq m \leq 2^{\mu+1} - 1$. We also write $\mathcal{M}_{p} = \mathcal{M}_{p}(\Lambda)$. *Remark* 3.4. (a) We obviously have $w_{0}^{p} \subset w^{p} \subset w_{\infty}^{p}$.

(b) For each $x \in w^p$, the strong limit ξ , that is, the complex number ξ with

$$\lim_{\nu \to \infty} \frac{1}{2^{\nu}} \sum_{\nu} |x_k - \xi|^p = 0$$

is unique (see [5]).

(c) Every sequence $x = (x_k)_{k=0}^{\infty} \in w^p$ has a unique representation

$$x = \xi \cdot e + \sum_{k=0}^{\infty} (x_k - \xi) e^{(k)}$$
 ([5]).

Example 3.5. (a) It follows from Theorem 3.1 that $A \in (w_{\infty}^p, w_{\infty}) = (w_0^p, w_{\infty})$ if and only if

$$\|A\|_{(w_{\infty}^{p},w_{\infty})} = \sup_{\mu} \left(\frac{1}{2^{\mu}} \max_{M_{\mu} \subset M^{\langle mu \rangle}} \left\| \sum_{m \in M_{\mu}} A_{m} \right\|_{\mathcal{M}_{p}} \right) < \infty,$$
(3.10)

where

$$\left\|\sum_{m \in M_{\mu}} A_{m}\right\|_{\mathcal{M}_{p}} = \begin{cases} \sum_{\nu=0}^{\infty} 2^{\nu} \max_{k \in K^{<\nu>}} \left|\sum_{m \in M_{\mu}} a_{mk}\right| & (p=1) \\ \sum_{\nu=0}^{\infty} 2^{\nu/p} \left(\sum_{k \in K^{<\nu>}} \left|\sum_{m \in M_{\mu}} a_{mk}\right|^{q}\right)^{1/q} & (1$$

(b) It follows from Part (a) and [14, 8.3.6, 8.3.7] that $A \in (w^p, w)$ if and only if (3.10),

$$\left\{ \begin{array}{c}
\text{for each } k \text{ there exists a complex number } \alpha_k \text{ with } \\
\lim_{\mu \to \infty} \frac{1}{2^{\mu}} \sum_{m \in M^{<\mu>}} |a_{mk} - \alpha_k| = 0 \end{array} \right\}$$
(3.11)

and

$$\lim_{\mu \to \infty} \frac{1}{2^{\mu}} \sum_{m \in M^{<\mu>}} \left| \sum_{k=0}^{\infty} a_{mk} - \tilde{\alpha} \right| = 0 \text{ for some comlex number } \tilde{\alpha}$$
(3.12)

hold.

(c) We obtain from Theorems 3.2 and 3.3, interchanging the roles of N and K, and μ and ν , that $A \in (w_{\infty}, w_{\infty}^p)$ if and only if

$$\sup_{K \subset \mathbb{N}_{0} \atop K \text{ finite}} \left(\sup_{t \in \mathcal{T}} \left\| \sum_{\nu \in K} 2^{\nu} A^{t_{\nu}} \right\|_{\Lambda} \right) < \infty,$$

where

$$\left\|\sum_{\nu\in K} 2^{\nu} A^{t_{\nu}}\right\|_{\Lambda} = \sup_{\mu} \left(\frac{1}{2^{\mu}} \sum_{m\in M^{<\mu>}} \left|\sum_{\nu\in K} 2^{\nu} a_{m,t_{\nu}}\right|\right).$$

We also give a formula for the strong limit of Ax when $A \in (w^p, w)$ and $x \in w^p$.

Theorem 3.6. If $A \in (w^p, w)$, then the strong limit η of Ax for each sequence $x \in w^p$ is given by

$$\eta = \tilde{\alpha} \cdot \xi + \sum_{k=0}^{\infty} \alpha_k (x_k - \xi), \qquad (3.13)$$

where ξ is the strong limit of the sequence x, and the complex numbers $\tilde{\alpha}$ and α_k for k = 0, 1, ... are given by (3.12) and (3.11) in Example 3.5 (b).

Proof. We assume $A \in (w^p, w)$ and write $\|\cdot\| = \|\cdot\|_{(w^p_{\infty}, w_{\infty})}$, for short. The complex numbers $\tilde{\alpha}$ and α_k for $k = 0, 1, \ldots$ exist by Example 3.5 (b).

First, we show $(\alpha_k)_{k=0}^{\infty} \in \mathcal{M}_p$. Let $x \in w^p$ and $k_0 \in \mathbb{N}_0$ be given. Then there exists an integer $\nu(k_0)$ with $k_0 \in K^{<\nu(k_0)>}$ and we have by the inequality in [9, Lemma 1]

$$\begin{split} &\sum_{k=0}^{k_0} |\alpha_k x_k| = \sum_{k=0}^{k_0} \left(\frac{1}{2^{\mu}} \sum_{\mu} |\alpha_k| \cdot |x_k| \right) \\ &\leq \frac{1}{2^{\mu}} \sum_{k=0}^{k_0} \left(\sum_{\mu} |a_{nk} - \alpha_k| \cdot |x_k| \right) + \sum_{\nu=0}^{\nu(k_0)} \sum_{\nu} \left(\frac{1}{2^{\mu}} \sum_{\mu} |a_{nk}| \cdot |x_k| \right) \\ &\leq \sum_{k=0}^{k_0} \left(\frac{1}{2^{\mu}} \sum_{\mu} |a_{nk} - \alpha_k| \right) \cdot |x_k| + 4 \cdot \max_{M_{\mu} \in M^{<\mu}} \sum_{\nu=0}^{\infty} \sum_{\nu} \left(\frac{1}{2^{\mu}} \left| \sum_{n \in M_{\mu}} a_{nk} \right| \cdot |x_k| \right) \\ &\leq \sum_{k=0}^{k_0} \left(\frac{1}{2^{\mu}} \sum_{\mu} |a_{nk} - \alpha_k| \right) \cdot |x_k| + 4 \cdot \sup_{\mu} \left(\frac{1}{2^{\mu}} \max_{M_{\mu} \subset M^{<\mu}} \left\| \sum_{n \in M_{\mu}} A_n \right\|_{\mathcal{M}_p} \right) \cdot \|x\|. \end{split}$$

Letting μ tend to ∞ , we obtain $\sum_{k=0}^{\kappa_0} |\alpha_k x_k| \le 0 + 4 \cdot ||A|| < \infty$ from (3.11) and (3.10).

Since $k_0 \in \mathbb{N}_0$ was arbitrary, it follows that $\sum_{k=0}^{\infty} |\alpha_k x_k| < \infty$ for all $x \in w^p$, that is,

 $(\alpha_k)_{k=1}^{\infty} \in (w^p)^{\beta} = \mathcal{M}_p.$ Now we write $\hat{\alpha}(x) = \sum_{k=0}^{\infty} \alpha_k x_k$ and $B = (b_{nk})_{n,k=0}^{\infty}$ for the matrix with $b_{nk} = a_{nk} - \alpha_k$ for all n and k, and show

$$\lim_{\mu \to \infty} \frac{1}{2^{\mu}} \sum_{\mu} |B_n x| = 0 \text{ for all } x \in w_0^p.$$
(3.14)

Let $x \in w_0^p$ and $\varepsilon > 0$ be given. Since w_0^p has AK, there is $k_0 \in \mathbb{N}_0$ such that

$$||x - x^{[k_0]}|| < \frac{\varepsilon}{||A|| + ||(\alpha_k)_{k=0}^{\infty}||_{\mathcal{M}_p} + 1} \text{ for } x^{[k_0]} = \sum_{k=0}^{\kappa_0} x_k e^{(k)}.$$

It also follows from (3.11) that there is $\mu_0 \in \mathbb{N}_0$ such that

$$\frac{1}{2^{\mu}}\sum_{\mu}\left|B_{n}x^{[k_{0}]}\right| = \frac{1}{2^{\mu}}\sum_{\mu}\left|\sum_{k=0}^{k_{0}}b_{nk}x_{k}\right| < \varepsilon \text{ for all } \mu \ge \mu_{0}.$$

Let $\mu \ge \mu_0$ be given. Then we have

$$\frac{1}{2^{\mu}}\sum_{\mu}|B_{n}x| \leq \frac{1}{2^{\mu}}\sum_{\mu}\left|B_{n}x^{[k_{0}]}\right| + \frac{1}{2^{\mu}}\sum_{\mu}\left|B_{n}\left(x - x^{[k_{0}]}\right)\right|$$

Banach Algebras of Matrix Transformations

$$<\varepsilon + 4 \cdot \max_{M_{\mu} \subset M^{<\mu>}} \left(\frac{1}{2^{\mu}} \left\| \sum_{n \in M_{\mu}} B_n \left(x - x^{[k_0]} \right) \right\| \right)$$
$$\leq \varepsilon + 4 \cdot \max_{M_{\mu} \subset M^{<\mu>}} \left(\frac{1}{2^{\mu}} \left\| \sum_{n \in M_{\mu}} B_n \right\|_{\mathcal{M}_p} \right) \left\| x - x^{[k_0]} \right\| < 5 \cdot \varepsilon.$$

Thus we have shown (3.14).

Finally, let $x \in w^p$ be given. Then there is a unique complex number ξ such that $x^{(0)} = x - \xi \cdot e \in w_0^p$, by Remark 3.4 (b), and we obtain by (3.14) and (3.12)

$$0 \leq \frac{1}{2^{\mu}} \sum_{\mu} |A_n x - \eta| = \frac{1}{2^{\mu}} \sum_{\mu} \left| A_n x^{(0)} + \xi \cdot A_n(e) - \left(\tilde{\alpha} \cdot \xi + \sum_{k=0}^{\infty} \alpha_k x^{(0)} \right) \right| \\ \leq \frac{1}{2^{\mu}} \sum_{\mu} \left| A_n x^{(0)} - \hat{\alpha}(x^{(0)}) \right| + |\xi| \cdot \frac{1}{2^{\mu}} \sum_{\mu} |A_n e - \tilde{\alpha}| \\ = \frac{1}{2^{\mu}} \sum_{\mu} |B_n x^{(0)}| + |\xi| \cdot \frac{1}{2^{\mu}} \sum_{\mu} \left| \sum_{k=0}^{\infty} a_{nk} - \tilde{\alpha} \right| \to 0 + 0 = 0 \ (\mu \to \infty).$$

This completes the proof.

4 The Banach Algebra $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$

In this section, we show that $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$ is a Banach algebra with respect to the norm $\|\cdot\|$ defined by $\|A\| = \|L_A\|$ for all $A \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$. We also consider the nontrivial special case of (w, w).

We need the following results.

Lemma 4.1. (a) The matrix product $B \cdot A$ is defined for all $A, B \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$; in fact

$$\sum_{m=0}^{\infty} |b_{nm}a_{mk}| \le ||B_n||_{\mathcal{M}(\Lambda)} ||A^k|| \text{ for all } n \text{ and } k.$$

$$(4.1)$$

- (b) Matrix multiplication is associative in $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$.
- (c) The space $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$ is a Banach space with respect to

$$||A||_{(\Lambda,\Lambda)} = \sup_{\mu} \left(\frac{1}{\lambda_{m(\mu+1)}} \max_{M_{\mu} \subset M^{<\mu>}} \sum_{\nu=0}^{\infty} \lambda_{k(\nu+1)} \max_{k \in K^{<\nu>}} \left| \sum_{m \in M_{\mu}} a_{mk} \right| \right).$$
(4.2)

Proof. (a) Let $A, B \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$. First we observe that $e^{(k)} \in w_{\infty}(\Lambda)$ implies $Ae^{(k)} = (A_m e^{(k)})_{m=0}^{\infty} = (a_{mk})_{m=0}^{\infty} = A^k \in w_{\infty}(\Lambda)$ for all k. Therefore we have

$$\|A^k\| = \sup_{\mu} \left(\frac{1}{\lambda_{m(\mu+1)}} \sum_{m \in M^{<\mu>}} |a_{mk}| \right) < \infty \text{ for all } k.$$

$$(4.3)$$

Furthermore $B \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$ implies $B_n \in (w_{\infty}(\Lambda))^{\beta} = \mathcal{M}(\Lambda)$ for all n, that is, by Proposition 2.6 (a)

$$||B_n||_{\mathcal{M}(\Lambda)} = \sum_{\mu=0}^{\infty} \lambda_{m(\mu+1)} \max_{m \in M^{<\mu>}} |b_{nm}| < \infty \text{ for all } n.$$
(4.4)

Now it follows from (4.3) and (4.4) that

$$\begin{split} \left| B_n A^k \right| &\leq \sum_{m=0}^{\infty} \left| b_{nm} a_{mk} \right| = \sum_{\mu=0}^{\infty} \sum_{m \in M^{<\mu>}} \lambda_{m(\mu+1)} \left| b_{nm} \right| \cdot \frac{1}{\lambda_{m(\mu+1)}} \left| a_{mk} \right| \\ &\leq \sum_{\mu=0}^{\infty} \left[\left(\lambda_{m(\mu+1)} \max_{m \in M^{<\mu>}} \left| b_{nm} \right| \right) \cdot \left(\frac{1}{\lambda_{m(\mu+1)}} \sum_{m \in M^{<\mu>}} \left| a_{mk} \right| \right) \right] \\ &\leq \left(\sum_{\mu=0}^{\infty} \left(\lambda_{m(\mu+1)} \max_{m \in M^{<\mu>}} \left| b_{nm} \right| \right) \right) \cdot \sup_{\mu} \left(\frac{1}{\lambda_{m(\mu)+1}} \sum_{m \in M^{<\mu>}} \left| a_{mk} \right| \right) \\ &= \left\| B_n \right\|_{\mathcal{M}(\Lambda)} \cdot \left\| A^k \right\| < \infty \text{ for all } n \text{ and } k. \end{split}$$

(b) Let
$$A, B, C \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$$
. We write for $D \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$

$$M^{T}(D) = \|D^{T}\|_{(\mathcal{M}(\Lambda),\mathcal{M}(\Lambda))} = \sup_{\substack{K \subset \mathbb{N}_{0} \\ K \text{ finite}}} \left(\sup_{t \in \mathcal{T}} \left(\sup_{\mu} \frac{1}{\lambda_{m(\mu+1)}} \sum_{m \in M^{<\mu>}} \left| \sum_{\nu \in K} \lambda_{n(\nu+1)} d_{m,t_{\nu}} \right| \right) \right)$$

and note that $M^T(D) < \infty$ by Theorem 3.3. We are going to show that the series $\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} a_{nm} b_{mk} c_{kj}$ are absolutely convergent for all n and j. We fix n and j and write $s = A_n$ and $t = C^j$ for the sequences in the n-th row of A and the j-th column of C.

Then we have $s \in \mathcal{M}(\Lambda)$ and $t \in w_{\infty}(\Lambda)$. We define the matrix $D = (d_{\mu k})_{\mu,k=0}^{\infty}$ by

$$d_{\mu k} = \frac{1}{\lambda_{m(\mu+1)}} \sum_{m \in M^{<\mu>}} |b_{mk}| \text{ for } \mu, k = 0, 1, \dots$$

Furthermore, given $\mu \in \mathbb{N}_0$, for every $\nu = 0, 1, ...$, let $k_{\nu} = k_{\nu}(\mu) \in K^{<\nu>}$ be the smallest integer with $\max_{k \in K^{<\nu>}} d_{\mu k} = d_{\mu k_{\nu}}$. Then by the inequality in [9, Lemma 1],

$$\lambda_{m(\mu+1)} \| D_{\mu} \|_{\mathcal{M}(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{k(\nu+1)} \sum_{m \in M^{<\mu>}} |b_{mk_{\nu}}|$$

$$\leq 4 \cdot \sup_{\substack{K \subset \mathbb{N}_0 \\ K \text{ finite}}} \left(\max_{\substack{M_{\mu} \subset M^{<\mu} > \\ K \in K}} \left| \sum_{\nu \in K} \lambda_{k(\nu+1)} \sum_{m \in M_{\mu}} b_{mk_{\nu}} \right| \right)$$
$$\leq 4 \cdot \sup_{K \subset \mathbb{N}_0 \atop K \text{ finite}} \left| \sum_{m \in M^{<\mu} > } \left| \sum_{\nu \in K} \lambda_{k(\nu+1)} b_{mk_{\nu}} \right|,$$

hence

$$\|D_{\mu}\|_{\mathcal{M}(\Lambda)} \le 4 \cdot M^{T}(B) < \infty \text{ for } \mu = 0, 1, \dots$$
(4.5)

It also follows that for $\mu = 0, 1, \ldots$

$$\frac{1}{\lambda_{m(\mu+1)}} \sum_{m \in M^{<\mu>}} \sum_{k=0}^{\infty} |b_{mk}t_k| = \sum_{k=0}^{\infty} |t_k| \cdot |d_{\mu k}| \le \|D_{\mu}\|_{\mathcal{M}(\Lambda)} \cdot \|t\|.$$
(4.6)

Therefore, we obtain from (4.6) and (4.5)

$$\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} |s_m b_{mk} t_k| \le \left(\sup_{\mu} \left(\frac{1}{\lambda_{m(\mu+1)}} \sum_{m \in M^{<\mu>}} \sum_{k=0}^{\infty} |b_{mk} t_k| \right) \right) \cdot \|s\|_{\mathcal{M}(\Lambda)}$$
$$\le \sup_{\mu} \left(\|D_{\mu}\|_{\mathcal{M}(\Lambda)} \right) \cdot \|t\| \cdot \|s\|_{\mathcal{M}(\Lambda)} \le 4 \cdot M^T(B) \cdot \|t\| \cdot \|s\|_{\mathcal{M}(\Lambda)} < \infty.$$

Thus we have shown that $\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} s_m b_{mk} t_k$ is absolutely convergent, and consequently matrix multiplication is associative in $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$.

(c) We assume that $(A^{(j)})_{j=0}^{\infty}$ is a Cauchy sequence in $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$. Since $(w_{\infty}(\Lambda), w_{\infty}(\Lambda)) = (w_0(\Lambda), w_{\infty}(\Lambda))$ by Theorem 3.1 and $w_0(\Lambda)$ has AK by Remark 2.4 (b), it is a Cauchy sequence in $(w_0(\Lambda), w_{\infty}(\Lambda)) = \mathcal{B}(w_0(\Lambda), w_{\infty}(\Lambda))$, by Proposition 2.1. Consequently there is $L_A \in \mathcal{B}(w_0(\Lambda), w_{\infty}(\Lambda))$ with $L_{A^{(j)}} \to L_A$. Since $w_0(\Lambda)$ has AK there is a matrix $A \in (w_0(\Lambda), w_{\infty}(\Lambda))$ by Proposition 2.1 (b) such that $Ax = L_A(x)$ for all $x \in w_0(\Lambda)$. Finally $(w_0(\Lambda), w_{\infty}(\Lambda)) = (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$ implies $A \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$.

The following result is obtained as an immediate consequence of Lemma 4.1.

Theorem 4.2. The class $(w_{\infty}(\Lambda), w_{\infty}(\Lambda))$ is a Banach algebra with respect to the norm $||A|| = ||L_A||$ for all $A \in (w_{\infty}(\Lambda), w_{\infty}(\Lambda))$.

The following example is obtained from Theorem 4.2.

Example 4.3. Let $\lambda_n = n + 1$ for n = 0, 1, ... as in Examples 2.2, 2.5 and 3.5. Then (w_{∞}, w_{∞}) is a Banach algebra with $||A|| = ||L_A||$.

Finally, we show that (w, w) is a Banach algebra.

Theorem 4.4. The class (w, w) is a Banach algebra with $||A|| = ||L_A||$.

Proof. We have to show in view of Theorem 4.2 that

- (i) (w, w) is complete;
- (ii) if $A, B \in (w, w)$, then $B \cdot A \in (w, w)$.

First we show (i). Let $(A^{(j)})_{j=1}^{\infty}$ be a Cauchy sequence in (w, w). Since $(w, w) \subset (w_{\infty}, w_{\infty})$ and the operator norm on $\mathcal{B}(w_{\infty}, w_{\infty})$ is the same as that on $\mathcal{B}(w, w)$, it follows that $(A^{(j)})_{j=1}^{\infty}$ is a Cauchy sequence in (w_{∞}, w_{∞}) , and so $A = \lim_{j \to \infty} A^{(j)} \in (w_{\infty}, w_{\infty})$ by Lemma 4.1 (c). We have to show $A \in (w, w)$. Let $\varepsilon > 0$ be given. Since $(A^{(j)})_{j=1}^{\infty}$ is a Cauchy sequence in (w, w) there exists a $j_0 \in \mathbb{N}_0$ such that

$$\|A^{(j)} - A^{(\ell)}\|_{(w_{\infty}, w_{\infty})} = \sup_{\mu} \left(\frac{1}{2^{\mu}} \max_{M_{\mu} \subset M^{<\mu>}} \left\| \sum_{n \in M_{\mu}} (A_{n}^{(j)} - A_{n}^{(\ell)}) \right\|_{\mathcal{M}} \right) < \frac{\varepsilon}{4} \text{ for all } j, \ell \ge j_{0}; \quad (4.7)$$

Also, by (3.11) and (3.12), for each fixed j there exist complex numbers $\alpha_k^{(j)}$ (k = 0, 1, ...) and $\tilde{\alpha}^{(j)}$ such that

$$\lim_{\mu \to \infty} \left(\frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - \alpha_k^{(j)} \right| \right) = 0 \text{ for each } k$$
(4.8)

and

$$\lim_{\mu \to \infty} \left(\frac{1}{2^{\mu}} \sum_{\mu} \left| \sum_{k=0}^{\infty} a_{nk}^{(j)} - \tilde{\alpha}^{(j)} \right| \right) = 0.$$
(4.9)

Let $j, \ell \geq j_0$ be given. Then we have for each fixed $k \in \mathbb{N}_0$ by (4.7)

$$\begin{split} \left| \alpha_{k}^{(j)} - \alpha_{k}^{(\ell)} \right| &= \frac{1}{2^{\mu}} \sum_{\mu} \left| \alpha_{k}^{(j)} - \alpha_{k}^{(\ell)} \right| \\ &\leq \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - \alpha_{k}^{(j)} \right| + \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(\ell)} - \alpha_{k}^{(\ell)} \right| + \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - a_{nk}^{(\ell)} \right| \\ &\leq \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - \alpha_{k}^{(j)} \right| + \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(\ell)} - \alpha_{k}^{(\ell)} \right| \\ &\quad + 4 \cdot \max_{M_{\mu} \subset M^{<\mu>}} \left| \frac{1}{2^{\mu}} \sum_{n \in M_{\mu}} \left(A_{n}^{(j)} - A_{n}^{(\ell)} \right) (e^{(k)}) \right| \end{split}$$

Banach Algebras of Matrix Transformations

$$\leq \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - \alpha_{k}^{(j)} \right| + \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(\ell)} - \alpha_{k}^{(\ell)} \right|$$

$$+ 4 \cdot \sup_{\mu} \left(\frac{1}{2^{\mu}} \max_{M_{\mu} \subset M^{<\mu>}} \left\| A^{(j)} - A^{(\ell)} \right\|_{\mathcal{M}} \right) \left\| e^{(k)} \right\|$$

$$\leq \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - \alpha_{k}^{(j)} \right| + \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(\ell)} - \alpha_{k}^{(\ell)} \right| + \varepsilon \text{ for all } \mu \in \mathbb{N}_{0}.$$

Letting $\mu \to \infty$, we obtain from (4.8)

$$\left|\alpha_{k}^{(j)} - \alpha_{k}^{(\ell)}\right| \leq \varepsilon \text{ for all } j, \ell \geq j_{0}$$

Thus $(\alpha_k^{(j)})_{j=1}^{\infty}$ is a Cauchy sequence of complex numbers for each fixed $k \in \mathbb{N}_0$ and so

$$\alpha_k = \lim_{j \to \infty} \alpha_k^{(j)} \text{ exists for each } k \in \mathbb{N}_0.$$
(4.10)

Now let $k \in \mathbb{N}_0$ be fixed. Then we obtain for all sufficiently large j and for all μ by (4.10) and since $A = \lim_{j \to \infty} A^{(j)}$

$$\begin{aligned} \frac{1}{2^{\mu}} \sum_{\mu} |a_{nk} - \alpha_k| &\leq \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - a_{nk} \right| + \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - \alpha_k^{(j)} \right| + \frac{1}{2^{\mu}} \sum_{\mu} \left| \alpha_k - \alpha_k^{(j)} \right| \\ &\leq \left\| A^{(j)} - A \right\|_{(w_{\infty}, w_{\infty})} + \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - \alpha_k^{(j)} \right| + \varepsilon \\ &< 2 \cdot \varepsilon + \frac{1}{2^{\mu}} \sum_{\mu} \left| a_{nk}^{(j)} - \alpha_k^{(j)} \right|. \end{aligned}$$

Letting $\mu \to \infty$, we obtain from (4.8)

$$\overline{\lim_{\mu \to \infty}} \left(\frac{1}{2^{\mu}} \sum_{\mu} |a_{nk} - \alpha_k| \right) \le \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, it follows that α_k satisfies the condition in (3.11) of Example 3.5 (b). Using exactly the same argument as before with $a_{nk}^{(j)}$ and $\alpha_k^{(j)}$ replaced by $\sum_{k=0}^{\infty} a_{nk}^{(j)}$ and $\tilde{\alpha}^{(j)}$, and applying (4.9) instead of (4.8), we conclude that $\tilde{\alpha} = \lim_{j \to \infty} \tilde{\alpha}^{(j)}$ exists and satisfies the condition in (3.12) of Example 3.5 (b). Finally $A \in (w_{\infty}, w_{\infty})$ and (3.11) and (3.12) imply $A \in (w, w)$ by Example 3.5 (b). Thus we have shown that (w, w) is complete. This completes the proof of (i).

Now we show that $A, B \in (w, w)$ implies $B \cdot A \in (w, w)$. Since $A, B \in (w, w)$, by Example 3.5 (b), there are complex numbers $\alpha_k, \tilde{\alpha}$ that satisfy (3.11) and (3.12), and

complex numbers β_k , $\tilde{\beta}$ that satisfy (3.11) and (3.12) with b_{nk} , $\tilde{\beta}_k$ and $\tilde{\beta}$ instead of a_{nk} , $\tilde{\alpha}_k$ and $\tilde{\alpha}$. Let $x \in w$ be given and ξ be the strong limit of x. We put

$$\zeta = \left(\tilde{\beta} - \sum_{n=0}^{\infty} \beta_n\right) \cdot \left(\left(\tilde{\alpha} - \sum_{k=0}^{\infty} \alpha_k\right) \cdot \xi + \sum_{k=0}^{\infty} \alpha_k x_k\right) + \sum_{n=0}^{\infty} \beta_n A_n x_n$$

We observe that $(\alpha_k)_{k=0}^{\infty}, (\beta_n)_{n=0}^{\infty} \in \mathcal{M}$ by the proof of Theorem 3.6, and also trivially $\mathcal{M} \subset \ell_1 \subset cs$. Therefore all the series in the definition of ζ converge. We write $C = B \cdot A, y = Ax, \eta$ for the strong limit of the sequence y, and ζ' for the strong limit of the sequence z = By. Since Cx = B(Ax) by Lemma 4.1 (b), we obtain by (3.13) in Theorem 3.6

$$\begin{aligned} |C_m x - \zeta| &= |B_m y - \zeta| \\ &= \left| B_m y - \sum_{n=0}^{\infty} \beta_n y_n - \left(\tilde{\beta} - \sum_{n=0}^{\infty} \beta_n \right) \cdot \left(\left(\tilde{\alpha} - \sum_{k=0}^{\infty} \alpha_k \right) \cdot \xi + \sum_{k=0}^{\infty} \alpha_k x_k \right) \right| \\ &= \left| B_m y - \sum_{n=0}^{\infty} \beta_n y_n - \left(\tilde{\beta} - \sum_{n=0}^{\infty} \beta_n \right) \cdot \eta \right| \\ &= \left| z_m - \left(\sum_{n=0}^{\infty} \beta_n (y_n - \eta) + \eta \tilde{\beta} \right) \right| = |z_m - \zeta'| \text{ for all } m, \end{aligned}$$

hence

$$\lim_{\mu \to \infty} \left(\frac{1}{2^{\mu}} \sum_{m \in M^{<\mu>}} |C_m x - \zeta| \right) = \lim_{\mu \to \infty} \left(\frac{1}{2^{\mu}} \sum_{m \in M^{<\mu>}} |z_m - \zeta'| \right) = 0.$$

This shows that $Cx \in w$, and completes the proof of (ii).

References

- [1] L. W. Cohen, N. Dunford, Transformations on sequence spaces, *Duke Mathematical Journal*, 3 no. 4: 689–701, 1937.
- [2] I. Djolović, E. Malkowsky, A note on compact operators on matrix domains, J. *Math. Anal. Appl.*, 73(1-2):193–213, 2008.
- [3] I. Djolović, E. Malkowsky, A note on Fredholm operators on $(c_0)_T$ Applied Mathematics Letters, 22:1734–1739, 2009.
- [4] A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, *Filomat*, 17:59–78, 2003.

- [5] I. J. Maddox, On Kuttner's theorem, J. London Math. Soc., 2(1):316–322, 1968.
- [6] B. de Malafosse, E. Malkowsky, Sequence spaces and inverse of an infinite matrix, *Rend. del Circ. Mat. di Palermo*, Serie II 51:277–294, 2002.
- [7] B. de Malafosse, E. Malkowsky, V. Rakočević, Measure on noncompactness and matrices on the spaces *c* and *c*₀, *Int. J. Math & Math. Sci.*, Volume 2006:1–5, 2006.
- [8] B. de Malafosse, V. Rakočević, Application of measure of noncompactness in operators on the spaces s_{α} , s_{α}^{0} , $s_{\alpha}^{(c)}$, ℓ_{α}^{p} , J. Math. Anal. Appl., 323(1):131–145, 2006.
- [9] E. Malkowsky, *Matrix transformations in a new class of sequence spaces that includes spaces of absolutely and summable sequences*, Habilitationsschrift, Giessen, 1988.
- [10] E. Malkowsky, The continuous duals of the spaces $c_0(\Lambda)$ and $c(\Lambda)$ for exponentially bounded sequences Λ , *Acta Sci. Math. (Szeged)*, 61:241–250, 1995.
- [11] E. Malkowsky, V. Veličkovć, The graphical representation of neighbourhoods in certain topologies, *Topology Appl.*, to appear.
- [12] A. Peyerimhoff, Über ein Lemma von Herrn Chow, J. London Math. Soc., 32:33– 36, 1957.
- [13] W. L. C. Sargent, On compact matrix transformations between sectionally bounded BK-spaces, J. London Math. Soc., 41:79-87, 1966.
- [14] A. Wilansky, Summability through Functional Analysis, Mathematics Studies 85, North–Holland, Amsterdam, 1984.