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Abstract

Let1 < p < co. We characterise the clasges, Y') of all infinite matrices that
mapX intoY for X = w? (A) or X = wh(A) andY = wl (A), for X = wl (A)
andY = w? (A’), and forX = M, (A) andY = M;(A’), thes-duals ofw?, (A)
andw__(A’). As special cases, we obtain the characterisations of the classes of all
infinite matrices that map?, into wéo, andw” into w'. Furthermore, we prove
that the classe@u (A), ws (A)) and(w, w) are Banach algebras.

AMS Subject Classifications:46A45, 40HO5.
Keywords: Spaces of strongly\-summable and bounded sequences, matrix transfor-
mations, Banach algebras.

1 Introduction

Maddox [5] introduced the sebt” of all complex sequences = (xj);2, that are
strongly summable with index by the Cearo method of order 1; that is;” contains
all sequences for which lim o2 (z;¢) = 0 for some complex numbéer, where

n

1
ob(x; &) = e E |z — &P foralln =0,1,....
k=0

We will also consider the sets, andw?”, of all sequences that are strongly summable
to zero and strongly bounded, with index that is, the setssf andw?, contain all
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sequences for which lim ¢ (z;0) = 0 andsup o2 (x;0) < oo, respectively. Maddox

also established necessary and sufficient conditions on the entries of an infinite matrix to
mapw? into the space of all convergent sequences; his result is similar to the famous
classical result by Silverman—Toeplitz which characterises the @lagof all matrices

that mapc into ¢, the so-called conservative matrices .

Characterisations of classes of matrix transformations between sequence spaces con-
stitute a wide, interesting and important field in both summability and operator theory.
These results are needed to determine the corresponding subclasses of compact matrix
operators, for instance in [1,13], and more recently, of general linear operators between
the respective sequence spaces, for instance in [2,7]. They are also applied in studies on
the invertibility of operators and the solvability of infinite systems of linear equations,
for instance in [6, 8]. To be able to apply methods from the theory of Banach algebras to
the solution of those problems, it is essential to determine if a class of linear operators
of a sequence space into itself is a Banach algebra; this is nontrivialXf is a BK
space that does not haveX. Finally the characterisations of compact operators can
be used to establish sufficient conditions for an operator to be a Fredholm operator, as
in [3].

The spaces?” (A) andwf(A) for exponentially bounded sequenceandl < p <
oo were introduced in [10]; they are generalisations of the spaesndw}. Their
dual spaces were determined in [11]. In this paper, we establish the new characterisa-
tions of the classe&X, Y') of all infinite matrices that mai into Y for X = w?”_ (A)
or X = wh(A) andY = w! (A'), for X = w! (A) andY = w?_ (A"), and whenX is
the 3-dual of w”_(A) or wh(A) andY is the 3-dual of w! (A'). As a special case, we
obtain the characterisations of the classes of all infinite matrices thatfhapto w__,
andw? into w', the last result being similar to Maddox’s and the Silverman—Toeplitz
theorems. Furthermore, we prove that the clagges(A), w..(A)) and(w, w) are Ba-
nach algebras. Our results would be essential for further research in the areas mentioned
above.

2 Notations and Known Results

Let w denote the set of all sequences= (zx);2,, and/y, ¢o and¢ be the sets of all
bounded, null and finite complex sequences, respectively; alse, liet and

Ep:{xew:2|xk|p<oo} forl <p<oo

k=0
be the sets of all convergent, bounded and absolptelynmable series. We writeand
e™ (n = 0,1,...) for the sequences with, = 0 for all k, ande{™ = 1 ande(™ = 0
for k # n. A sequencéb,,) in a linear metric spacd is called a Schauder basis &f
if for every x € X there exists a unigue sequenggof scalars such that = Z by,

n



Banach Algebras of Matrix Transformations 93

A BK spaceX is a Banach sequence space with continuous coordifates = =,

(n € N) forall z € X; a BK spaceX O ¢ is said to havel K if z = > z,e® for
k=0
every sequence = (z),—, € X. Let X be a subset ab. Then the set

XP={acw:ar = (arz), € csforallz € X}

is called the3-dual of X. Let A = (a.;)s—, be an infinite matrix of complex numbers
andz = (3,)5%, € w. Then we writed,, = (a,:);% (n = 0,1,...) and A" = (a,)5°

n=0

(k=0,1,...) for the sequences in theth row and thek-th column ofA, and A,z =

Zankxk provided the series converges. Given any sub¥easdY of w, then(X,Y)
k=0

denotes the class of all infinite matricdghat mapX into Y, that is,A,, € X*# for all
n, andAz = (A,z)°, €Y.

Let X andY be Banach spaces aitk = {z € X : ||z|| < 1} denote the unit
ball in X. Then we writeB3(.X, Y") for the Banach space of all bounded linear operators
L : X — Y with the operator normiL|| = sup ||L(z)||. We write X* = B(X,C)

rE€Bx

for the continuous duabf X with the norm|f|| = sup |f(x)| forall f € X*. The

rE€Bx
following results and definitions are well known. Since we will frequently apply them,

we state them here for the reader’s convenience.
Proposition 2.1. Let X andY be BK spaces.

(@) Then we havéX,Y) C B(X,Y); this means that ifA € (X,Y), thenL, €
B(X,Y),whereL,(z) = Az (z € X)) (see [14, Theorem 4.2.8]).

(b) If X hasAK then we havé8(X,Y) C (X,Y); thismeans every € B(X,Y) is
given by a matrixA € (X,Y’) such thatL(z) = Az (z € X) (see [4, Theorem
1.9)).

A nondecreasing sequende= (\,).", of positive reals is calle@xponentially
boundedif there is an integern > 2 such that for all nonnegative integersthere
is at least one term\, in the intervalI'!) = [m” m"*' — 1] ([10]). It was shown
([10, Lemma 1]) that a nondecreasing sequekiee (\,):°, is exponentially bounded,
if and only if the following condition holds

0 There are reals < ¢ such that for some subsequerigg,)),
0<s< /\n(V)/)\n(,,+1) <t<l1 (V =0,1,.. .);

such a subsequence is calledamsociated subsequence

Example 2.2. A simple, but important exponentially bounded sequence is the sequence
Awith A\, =n+1forn =0,1,...; an associated subsequence is giveiQy, = 2",
v=20,1,...
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Throughout, lett < p < oo andq be the conjugate number pf that is,q = oo for
p=1landg=p/(p—1)forl < p < oco. Also let(u,);>, be a nondecreasing sequence
of positive reals tending to infinity. Furthermore let= (\,);, be an exponentially
bounded sequence, afl,,)),—, an associated subsequence withy = \o. We write
K=<"> (v = 0,1,...) for the set of all integers with n(v) < £ < n(r+1) — 1, and
define the sets

1 n
gy
i 1 ¢
wh (p) = {:B € w:sup (M_Z |xk|p> < oo} :

and

wfjo(A):{$€w:sgp ()\ ! Z |xk|P) <oo}.

n(v+1) ke K <v>

If p = 1, we omit the index throughout, that is, we writé () = @ (1) etc., for
short.

Proposition 2.3 (See [10, Theorem 1 (a), (b)])Let (1)~ , be a nondecreasing se-
quence of positive reals tending to infinity,= (\,)>>, be an exponentially bounded
sequence an@\,,)),—, be an associated subsequence.

(a) Thenwg(u) andw?, (1) are BK spaces with the sectional norim ||, defined by

1 1/p
2|, = sup <— > !l‘k!”)
n \Pn 5

andwj(p) hasAK.

(b) We havei}(A) = wh(A), @ (A) = wP (M), and the sectional norr - ||, and
the block norm| - || with

1 1/p
#]la = sup <A DD mi”)

n(v+1) keK <v>

are equivalent onvfj(A) and onw?_(A).



Banach Algebras of Matrix Transformations 95

Remark2.4.  (a) It can be shown that? (A) is not separable, and so has no Schauder
basis.

(b) It follows from [14, Corollary 4.2.4] and Proposition 2.3, thel(A) andw?, (A)
are BK spaces with the norrih- ||, and thatw(A) hasAK.

Example 2.5. We might also define the set
wP(A) =wh(A) @e={r €w:x—¢ e w) for some complex number}.
It can be shown that th&trong A-limit £ of anyx € w”(A) is unique if and only if

n(v+1) —n(v)

A = limsup > 0,
v—00 >\n(u+1)
and thatw?(A) C w? (A) if and only if
A= sup n(y i 1) — n(y) < Q.

v /\n(y+1)

In view of Proposition 2.3 (b) and Example 2.2, the sef$A) andw?” (A) reduce to

the BK spacesv) andw?, for \, = n+ 1forn = 0,1,...; itis also clear that then
A < oo andX > 0, and consequenthy” is a BK space and the strong limgtof each

sequence € w” is unique.

Throughout, we writé| - || = || - ||s, for short.
Theg-duals play a much more important role than the continuous duals in the theory
of sequence spaces and matrix transformationSa beta sequence and be a normed

sequence space. Then we wiijtg|y = sup |Zakxk| provided the expression on the
JJEBX k=0

right exists and is finite, which is the case whene¥eis a BK space and, € X*
by [14, Theorem 7.2.9]. IA\ is an exponentially bounded sequence with an associated

subsequencg,,y, then we Writemax andz for the maximum and sum taken over all

k € K<">. We denote by:<"> = Zxke v € Ny) thev-block of the sequence.

Parts (a) and (b) of the next result are [11, Theorem 5.5 (a), (b)], Part (c) is [11,
Theorem 5.7], and Parts (d) and (e) are [11, Theorem 5.8 (a), (b)].

Proposition 2.6. Suppose\ = (\,).>, is an exponentially bounded sequence and let
(An())ozo be an associated subsequence. We write

o0

Mp(A)Z{aéwtﬂaIIM =3 Q)" !<”>Hq<00}~

v=0
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(@) Then we havéw?(A))? = (w? (A))? = M,(A) and
I lvtp) = - Rz ay = - [ ay O M(A). (2.1)

(b) The continuous duabfj(A)* of wi(A) is norm isomorphic taM,(A) with the
norm || - [, a)-

(c) ThenM,(A) is a BK space withAK with respect td| - || v, (a)
(d) We havew?,(A))% = (w(A))* = w?,(A) and
I Py = 11 on (M (A))°. (2.2)

(e) The continuous dugM,(A))* of M,,(A) is norm isomorphic tav?, (A).
Remark2.7. (a) The continuous dual af.,(A) is not given by a sequence space.

(
(b) The setw?” (A)is p-perfect that is,(w? (A))?? = w?_(A).

3 Matrix Transformations on w?_(A) and w{(A)

LetA = (A\y)pe, andA’ = (X),)r°_, be exponentially bounded sequences@ngd,) )2
and(\,,,)),=, be associated subsequences. Furthermor& 16t (v = 0, 1,...) and
M<H=> (M =0,1,...) be the sets of all integefsandm with k(v) < k < k(v +1) —1
andm(u) < m < m(p+1) = 1. If A = (amr)y, k=0 IS @n infinite matrix andV =
(M,);2, is a sequence of subset§, of M=~ for 4 = 0,1,..., we write SM(A) for
the matrix with the rows

SM(A) = Y Ay, thatis,syi(A) = Y amforall pk=0,1,.. .

meM,, meM,,

Here we establish necessary and sufficient conditions for an infinite mataxbe in
the classesw?, (A), woo (A")), (wh(A), wao (A")) and(M,,(A), M(A")), and consider the
special cases afw?_ , w.,) and(w?, w). We also estimate the operator norms.of in
these cases. Those characterisations and estimates are needed in the proofs of our results
on Banach algebras of matrix transformations.
First we characterise the clasges_ (A), wo(A")) and (wh(A), ws(A")), and esti-
mate the operator norm @f, when the matrixA is a member of those classes.

Theorem 3.1.Let A = (\y)i2, and A" = (\,)>_, be exponentially bounded se-
quences and\.)),~, and ()=, be associated subsequences. Then we have
A € (WP (AN), ws(A)) if and only if

1
[Allaany = sup (X o, max |SM( )HMP(A)> < 00; (3.1)

(u+1)
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moreover, we havéw? (A), we(A)) = (wWh(A), we(A)). If A € (WP (A), wao(A)),
then the operator norm df 4, satisfies

Al aay < [|Lall < 4-][Allann- (3.2)

Proof. Throughout the proof, we writgA|| = || Al a», for short.

First we assume that the condition in (3.1) is satisfied.rbet N, be given. Then
there is a unique.,, € N, such thatn € M<#"~. We choosel/,,, = {m}, and it
follows from (3.1) that|A4,, || s,y < oo, thatis,A,, € (w2 (A))” by Proposition 2.6
(a). Thus we have shown,, € (ws(A))? for all m € Ny. Now letz € w? (A) be
given. For each € Ny, we write M,,(, for a subset of\/ <#~ for which

E A, x| = max E Anxl,
M, CM<p>

meMu(z) meM,,

and putM(x) = (M,@)),=o- Then we have by a well-known inequality (see [12]),
(2.1) and (3.2)

1 1
0 Apz| <4 —F—— A
)\;n(lu_‘_ 1) Z | mxl - M\ (N+ 1) Murél]\%[}iw Z m

meM <H> m meM,,

1 . 1 S
TG | 2 2t 4'mz< 7 )

mEMu(x) k=0 k=0 mEMﬂ(w)
1 M(x) 1 M(x)
1 M
<ty (s IS ) ) ol <4+ 4] - ol < oo or il

Hence it follows that

1
Az||=sup | ——— Apz| | <4-|A| - ||z|| < oo, (3.3)
|| ]| y (Mn(/ﬂrl) me;p! |> [A] - =]

and consequentlylz € we(A') for all z € w? (A). Thus, we have shown that if the

condition in (3.1) is satisfied, theft € (w2, (A), woo(A')) C (Wh(A), weo (A)).
Conversely, we assumé € (wf(A), ws(A)). Then we haved,, € (wh(A))? for

all m € Ny, hence|| A, || v, (a) < oo for all m by Proposition 2.6 (a). Sincej(A) and

ws(A') are aBK spaces by Remark 2.4 (b), it follows from Proposition 2.1 (a) that

La € B(wg(A), ws(A")), and so||L4|| < co. We also havely,, € (wg(A))” for all

M, c M~*> and ally € No, whereLyy, (x) = (1) - Y Apzforallz e

m(p+1
meM,
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wq(A). Since trivially | Ly, (z)] < [|[La(z)|| < ||Lall - ||| forall z € wi(A), all M, C
M=> and all € Ny, it follows by (2.1) in Proposition 2.6 (a) thaltZ,, | s, x) =
L lloeay < 1Ll forall M, C M=t andp € Ny, and so

1
(i Dl ) =0 | s | 3 b
B PRIV

= [[A[l < [|Lall < oo (3.4)

Thus we have shown thatif € (w)(A), ws(A")), then (3.3) is satisfied.
It remains to show that ifl € (w2 (A), ws(A")), then (3.2) holds. But the first and
second inequalities in (3.2) follow from (3.4) and (3.3), respectively. O

Now we characterise the clag$1,(A), M(A")), and estimate the operator norm of
L, whenA € (M,(A), M(A")). We writeT for the set of all sequences= (t,):°
such that for eacp = 0, 1, ... there is one and only ortg € M </~.

) pu=0

Theorem 3.2.Let A = (\y)i2, and A" = (\)>°_, be exponentially bounded se-
quences and\x));~, and ()=, be associated subsequences. Then we have
A e (My(A), M(A")) if and only if

| Al v (a), Mma7)) = Sup | sup Z A1) At < 00, (3.5)
N fiite € lluen A
where, of course,
p\ 1/p
Z A N+1)At“ sup <>\ Z A (1) Gy k ) .
HEN k(v 41) peg<v> |pen

If Ae (M,(A), M(A’)), then the operator norm af 4 satisfies
Al gy may) < [1Lall < 4 (A )M (3.6)

Proof. Throughout the proof, we writgA|| = || A[| (w1, (a),a1(a7)), fOr short.

First we assume that the condition in (3.5) is satisfied.rbet N, be given. Then
there is a unique,,, € N, such thatn € M~#"~. We chooseV = {m} andt,,, = m.
Then it follows from (3.5) that

1 1/p
[Auls =sup (— 3 faml
v k(v+1) keK<v>

Z )‘m(u +1) Atum

meN

- sup
(ltm +1) v

< 00,
A
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and soA,, € w?_ (A) = (M, (A))” by Proposition 2.6 (a) and (d). Now lgg € N, and
r € M,(A) be given. For each € Ny with 0 < p < pg, let m(y; ) be the smallest

integer |nM<“> such that max |Amz| = [Amuz |- Then we have by a well-known
me

inequality (see [12]) and (2.2) in Proposition 2.6 (d)

Ko Ho
Z )\,Tn(/.kFl max [Apz| = Z )‘/m(,u+1) | Am(usa) |
pn=0

meM<w>
pu=0

S 4. max Z )\;n(,u-l-l)A

pnEN

/
=4 NCI{%aX Z <Z /\m(#+1)am(u;x),k’) Ty

k=0 \penN
/

E :>‘ (u+1)Am () k

REN

p\ 1/p
) Hi’?HM,,(A)

<4. max sup
NcAo,..., ,u()} )\k(y+1 heR<v>

Z )‘Im(u+1)Am(u;w)

HEN

Z )\ lH-l)Atu

Sinceuy € Ny was arbitrary, we obtain

: HﬂCHMp(A)

A

<4.- sup sup
N C Ng teT
N finite

Nl a) = 4 - [ 2] aga) < oo

A

Ay < 4+ AL [l2]agy ) < o0 for all € My(A), 3.7)

and consequentiylz € M(A') for all z € M, (A). Thus we have shown that if the
condition in (3.5) is satisfied, thed € (M, (A), M(A")).

Conversely, we assumé € (M, (A), M(A')). ThenA,, € (M,(A))? = w’ (A)
for all m € Ny by Proposition 2.6 (a) and (d). Furthermore, sideg,(A) and M (A")
are BK spaces by Proposition 2.6 (c), it follows from Proposition 2.1 (a) fhate
B(M,(A), M(A")). We also haveLNt € (M,(A))* for all finite subsetsV of N, and

all sequences € 7, whereLy,(x) = Y X, 41 Ag for all 2 € M,(A). Since
HEN

trivially |L < A =||A n < ||L for all

ally [Ly,(z)] ZM(MH ax [Agz| = Azl < 1Lall - llzlla fora

finite subsetsV of N, and allt € 7, it follows by (2.2) in Proposition 2.6 (c) that

Z )\/ lH-l)Atu

nEN

< ||LA|| < Q.

1L, a) = 1 Lnvelly =
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Since this holds for all finite subsets of N, and allt € 7, we conclude

Z )\ m(pu+1) Atu

Thus we have shown thatif € (M, (A), M(A')), then (3.5) is satisfied.
Finally, if A € (M,(A), M(A")), then (3.6) follows from (3.8) and (3.7). O

N C Ny teT
N finite

|Al| = sup (sup

) < 1Ll < oo. (3.8)
A

Using the transposd” of a matrix A, we obtain an alternative characterisation of
the clasgw.. (A), w? (A")).

Theorem 3.3.We haved € (wy(A), w? (A")) if and only if

HAT” (Mp(A),M(A)) < OO (3.9)

Proof. Since X = wy(A) andZ = M,(A’) are BK spaces withAK by Remark
2.4 (b) and Proposition 2.6 (c), and = Z” = w?” (A’) by Proposition 2.6 (d), it
follows from [14, Theorem 8.3.9] that € (wy(A), w2 (A)) = (X,Y) = (XP)Y) =
(oo (A), wP_(A")) and A € ((wo(A),w?, (A))ifand only if AT € (Z, XP) = (M, (N),
M(A)), and, by (3.5) in Theorem 3.2, this is the case if and only if (3.9) holds. (I

We consider an application to the characterisations of the clés§esv.. ), (w?, w)
and (w.., w?,). LetA = A"and)\, = n+ 1forn = 0,1,... as in Examples 2.2 and
2.5. Then we may choose the subsequences givenby= 2" and),,(,) = 2" for all
v, =0,1,..., and consequently the seét&~"~ and M/ <*~ are the sets of all integeks
andm with 2 < k < 2"*!' — 1 and2* < m < 2**! — 1. We also writeM,, = M,,(A).

Remark3.4. (a) We obviously haveyy C w? C w?,.
(b) For eachr € w?, thestrong limit¢, that is, the complex numbérwith

1
Bim > Joe -l =0

v

is unique (see [5]).

(c) Every sequence = ()5~ € w” has a unique representation
r=E- e+2xk— " ([5D).

Example 3.5. (a) It follows from Theorem 3.1 thatl € (w? ,w.) = (wh, ws) if
and only if

> A

meM,,

< o0, (3.10)

||A|| woo woo - Sup Q_M MHCJ\/[<mu>

Mp
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where
( o0
v —
2 max | D, au (=1
v=0 meMy,
Z Am = - a\ /g
M,
et Mo 22”/7’ Z Z Ak (1 <p<o0).
([ v=0 keK<v> |meM,

(b) It follows from Part (a) and [14, 8.3.6, 8.3.7] that € (w”,w) if and only if

(3.10),
for eachk there exists a complex numbeg with
. 3.11
Jm e 3 ekl =0 -
meM <H>
and

o0
E amk—d

k=0

. 1
Jim S5 D

meM <>

= (0 for some comlex numbet (3.12)

hold.

(c) We obtain from Theorems 3.2 and 3.3, interchanging the roléé and K, and
pandy, thatA € (w.,, w?,) if and only if
) -
A

Z QVAtV
eK
Z 2V&m’ty

sup sup
K C Ny teT v
veK

K finite

where

Z 2VAty

veK

1
e 3

meM <>

) |

We also give a formula for the strong limit efz whenA € (w?, w) andz € w?.

Theorem 3.6.If A € (w”, w), then the strong limit) of Az for each sequence € w”
is given by

n=a-&+ Y agle—§), (3.13)
k=0

where¢ is the strong limit of the sequenag and the complex numbeésand «;, for
k=0,1,...aregiven by3.12)and (3.11)in Example 3.5 (b).
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Proof. We assumel € (w”,w) and write|| - || = || - || (2, w..), fOr short. The complex
numbersy anday, for k = 0,1, . .. exist by Example 3.5 (b).

First, we showay)72, € M,,. Letz € w? andk, € Ny be given. Then there exists
an integew (ko) with ky € K <"*0)> and we have by the inequality in [9, Lemma 1]

ko ko 1
> Joga] =Y (272|ak| : ka|)

k=0 k=0 m

ko v(ko)

%Z (Zlank — - \xk|> YD (2—12|ank| : |35k|>
k=0 1% v=0 v o

ko

(23] v S

v=0 v neMy,

| A

ko
1
3 5 9] RPERE PN D Rt

iz neM, M
P

ko
Letting 4. tend tooo, we obtain _ ajzx| < 044 - ||A|| < oo from (3.11) and (3.10).
k=0

Sincek, € N, was arbitrary, it follows thatzyakxk\ < oo for all z € w?, that is,

k=0
()2 € (W)’ = M. .
Now we write &(z) = Zakxk and B = (by,),_, for the matrix withb,,, =
k=0
ani — oy, for all n andk, and show
1
1 . _ D
Jim oo | Bur| = 0forall z € wf, (3.14)
nw

Letx € wj ande > 0 be given. Sinceuvf hasAK, there isk, € Ny such that

—zPl|| < 2 for alkol =
=50 < A T 1 Z‘”

It also follows from (3.11) that there j& € N, such that

k
2Bt = L3S b
" k=0

I

< eforall > pyp.

Let u > uo be given. Then we have

27;|an\ < 27; | Bl + 27; |B, (z — )]
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1 k

1
§6+4-Muréljzvx[>§w o Z B, Hx—x[k‘)]n <5-e.

Thus we have shown (3.14).
Finally, letz € w? be given. Then there is a unique complex numpsuch that
29 =2 — ¢ . e € wh, by Remark 3.4 (b), and we obtain by (3.14) and (3.12)

O<—Z|A —n| = ZAm(O)+§ A ( £+Zak:v0))‘
—QMZIM i >\+|s|-2%Z|Ane—oz|
o
1 - _
= 272“:|an(0)| + €| - Q—HZ Zank —

©w | k=0

—0+0=0 (u— 00).

This completes the proof. O

4 The Banach Algebra(w..(A), ws(A))

In this section, we show thatv.,(A), w-(A)) is a Banach algebra with respect to the
norm|| - || defined byj|A|| = ||L 4] for all A € (we(A), ws(A)). We also consider the
nontrivial special case dfv, w).

We need the following results.

Lemma4.1. (a) The matrix producB- A is defined foralld, B € (wy(A), weo(A));
in fact

> bummi| < || Bullaa) | A for all n andk. (4.1)

m=0
(b) Matrix multiplication is associative ifw. (A), we(A)).

(c) The spacéw..(A), w.(A)) is a Banach space with respect to

1
||A||(A7A) o (Am(ﬂ M;}gl]\%}g;o Z/\k’ v+1) kérfl(aé}5> Z Amk ) : (42)

H meMy,
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Proof. (a) LetA B € (wo(A), was(A)). First we observe that®) e w.(A) implies
Ae®) = (A€l )m o0 = (amr)_y = A* € wo(A) for all k. Therefore we have

m=0 —

1
| A¥|| = sup (A > |amk|> < oo for all k. (4.3)
M

m(p+1) meM<u>

FurthermoreB € (weo(A), wao(A)) implies B, € (ws(A))? = M(A) for all n, that is,
by Proposition 2.6 (a)

| Bl ma) Z)\ (ur1) MAX _ |by,| < oo forall n. (4.4)

meM<r>

Now it follows from (4.3) and (4.4) that

[Bx A’“\<Zlbnmamkl—2 > Musnlbul - 5

pu=0 meM<r>

1
< bnm m
Z[( ) max | \) (Amw > |>]

meM <H>

> 1
<Z <)‘m(u+1) X |bnm|>> 'Sllip ()\m Z |amk|)

u=0 (m)+1 meM<k>
= || Byl mca) - |A¥|| < oo for all n andk.

(b) LetA, B, C € (woo(A), weo(A)). We write forD € (woo(A), woo(A))

M"(D) = | D" || maymay =

sup sup | sup Z
K C Np teT H A m(pt1) | Chr<ps

K finite

IN

E )\ 1/+1 mtu

veK

)

and note that\/” (D) < oo by Theorem 3.3. We are going to show that the series

oo o0

Z Z anmbmici; are absolutely convergent for allandj. We fix n andj and write
k=0 m=0
s = A, andt = C’ for the sequences in theth row of A and thej-th column ofC.

Then we have € M(A) andt € w.(A). We define the matrio = (du ), o bY

1
de \bmk|foru,k:0,1,....
u Am(u+1) me;w
Furthermore, givem, € Ny, for everyry = 0,1,..., letk, = k,(u) € K="~ be the

smallest integer Wlth max d,x = d,k,. Then by the inequality in [9, Lemma 1],

K<v>

(i) Dl meay = ZAk(qul) Z b, |
v=0

meM <>
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<4- sup (Mfé‘ﬁ}iw Z/\k(u—H) Z bmku)

I;(%n?g veK mGMM
<4 sup Z Z >\k(u+1)bmk,, )
Ii(%ni]eo meM<r> |[veK
hence
ID,llamay <4-MT(B) < ooforp=0,1,.... (4.5)

It also follows that for, = 0,1, . ..

>, Z|bmktk| = Z’m |duk] < ([ Dpllamay - 112 (4.6)

(Wt1) ) pr<n> k=0

Therefore, we obtain from (4.6) and (4.5)

DD Ismbmtil < (SUP ( > Z |bmk:tk|>> sl
0

M m(u+1) meM<H> k=0

m=0 k=
<sup (1Dpullmeny) - NEl - sllaeay < 4- ME(B) - [1t]] - Isllmea) < oo
I
Thus we have shown thi Zsmbmktk is absolutely convergent, and consequently

m=0 k=0
matrix multiplication is associative ift., (A), weo (A)).

(c) We assume thatd'?)> is a Cauchy sequence {w..(A), w(A)). Since
(Woo(A), W (A)) = (wo(A), ws(A)) by Theorem 3.1 andy(A) hasAK by Remark
2.4 (b), it is a Cauchy sequence (itng(A), weo(A)) = B(wo(A), wee(A)), by Propo-
sition 2.1. Consequently there Isy € B(wo(A), we(A)) With L,y — La. Since
wo(A) hasAK there is a matrixd € (wy(A), ws(A)) by Proposition 2.1 (b) such that
Az = Ly(z) for all z € wo(A). Finally (wo(A), weo(A)) = (weo(A), wao(A)) implies
A € (Woo(A), wao(A)). O

The following result is obtained as an immediate consequence of Lemma 4.1.

Theorem 4.2.The classw..(A), ws(A)) is a Banach algebra with respect to the norm
|A]| = ||Lal| forall A € (woo(A), weo(A)).

The following example is obtained from Theorem 4.2.

Example 4.3.Let \, =n+ 1forn =0,1,... as in Examples 2.2, 2.5 and 3.5. Then
(weo, Wso ) IS @ Banach algebra withA|| = || L 4.

Finally, we show thatw, w) is a Banach algebra.
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Theorem 4.4. The clas§w, w) is a Banach algebra witf A|| = || L 4]|.
Proof. We have to show in view of Theorem 4.2 that

() (w,w) is complete;

(i) if A,B € (w,w),thenB - A € (w,w).

First we show (i). Let(A(j))J‘?‘;1 be a Cauchy sequence {,w). Since(w,w) C
(Woo; Woo) @nd the operator norm of(w.., W) is the same as that ofi(w, w), it
follows that (A“)%, is a Cauchy sequence {W., ws), and soA = lim AV €

j—oo
(Woo, Woo) Dy Lemma 4.1 (c). We have to shawe (w,w). Lete > 0 be given. Since
(A(J));’i1 is a Cauchy sequence [, w) there exists g, € N, such that

1AY — A9 e

1 ; €
— il ) — A© h ; .
= st;p P Mﬁ%}iw E (A — A <7 forall j, ¢ > jo; (4.7)
neM, M

Also, by (3.11) and (3.12), for each fixgdthere exist complex numbetéf) (k =
0,1,...) anda"” such that

. 1
Jim, (272

m

o] —af

) = 0 for eachk (4.8)

) ~0. (4.9)

Letj, ¢ > j, be given. Then we have for each fixed: N, by (4.7)

G ol _ 1 N
o

and

o0

Z a,(f}g — &

k=0

. 1
Jim, (52

m

1 W m ., L o ol 1 0 (©
S ou 2 |Tnk — % +272 “nk_&k‘+2_uz Uk~ Ok
2 2 Ju
< LN 00— 0] 4 LZ N a(e)‘
2 Ju
1 .
. L G) _ 4@ ()
M M;Elf}}iw 2 Z (A7) = A7) ()

neM,
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1 G o], 1 © ©
§2_MZ Uk — Yk +272 a’nk_ak‘
H W
4 1 AW — A0 (k)
" ‘Sl;p om M, CM<H> H HM [le™ ]
1 . 1
< 30 [al a3 |ald - ol | + e forall p e Ny,
H H

Letting © — oo, we obtain from (4.8)
‘a,(ﬁj) — Oz,(f)‘ < ceforall j,¢ > j.
Thus(a,ﬁj));";l is a Cauchy sequence of complex numbers for each fixedN, and so

ap = lim ozk) exists for eaclt € Nj,. (4.10)

Jj—0o0

Now let % € N be fixed. Then we obtain for all sufficiently largeand for all by
(4.10) and sincel = lim AY)

J—00

o D lans — ol < o ag) — Qx| + T a¥) — | + T ‘Olkz —a
I I I
1 , ,
<D A+ LS o]+

m

<2-e+ Z

Letting u — oo, we obtain from (4.8)

— (1
JLIEO (272|ank — ak|> <e.

m

nk_ak

Sinces > 0 was arbitrary, it follows that, satisfies the condition in (3.11) of Example
3.5 (b). Using exactly the same argument as before m&’;band oz,(j) replaced by

> "4l anda, and applying (4.9) instead of (4.8), we conclude that lim GV

k=0 I
exists and satisfies the condition in (3.12) of Example 3.5 (b). Findlly (ws, woo)
and (3.11) and (3.12) implyt € (w,w) by Example 3.5 (b). Thus we have shown that
(w,w) is complete. This completes the proof of (i).

Now we show thatd, B € (w,w) impliesB - A € (w,w). SinceA, B € (w,w),
by Example 3.5 (b), there are complex numbersa that satisfy (3.11) and (3.12), and
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complex numbers,, 3 that satisfy (3.11) and (3.12) with,,, 3, and3 instead ofa,.;;,
ai anda. Letz € w be given and be the strong limit ofc. We put

(= (B— Zm) : ((@— Zak) -§+Zakxk> +> BaAnr.
n=0 k=0 k=0 n=0

We observe thafoy )2, (8.)ne, € M by the proof of Theorem 3.6, and also trivially
M C ¢, C cs. Therefore all the series in the definition ¢fconverge. We write
C = B- A,y = Az, nfor the strong limit of the sequengg and(’ for the strong limit
of the sequence = By. SinceCz = B(Axz) by Lemma 4.1 (b), we obtain by (3.13) in
Theorem 3.6

|Comt = ¢ = [Bmy — (|

_ Bmy_ggnyn_ <B—§ﬂn> : ((&—iak> ~f+iakmk>
)

= |Zm — (Z Brn(Yn — 1) + 775) ‘ = |2, — ('] forall m,

n=0
hence
tim (o S (Gl = dim (o S e —¢l) =0
MLIEO QH m® _#520 ou Zm =G =0
meM<r> meM <n>
This shows thaC'x € w, and completes the proof of (ii). O
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