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Abstract

In this paper we extend some of our recent results given in [15], so we consider
a matrix transformatiomt = (ax),, >, and say that a sequende= (), is
A-statistically convergent t € V with respect to the intuitionistic fuzzy normed
space (IFNSY if

lim ~|{k<n:v(AX], — L) >corl — u([AX], — L.t) > e}| = 0

n—oo N

foranye > 0. The aim of this paper is to give conditions &nto haveA-statistical
convergence on IFNE". Then, among other things, we consider the cases when
Ais either of the matriced/, ., Ny, NpyNg, D1/, A (), or C (A).

AMS Subject Classifications:40C05, 40J05, 46A15.
Keywords: Matrix transformations, intuitionistic fuzzy normed space, statistical con-
vergence, operator of weighted mean.

1 Introduction

Fuzzy set theorwas introduced in 1965 by Zadeh [22] and used to obtain many results
in set theory.Fuzzy logicwas used among other things in the study of nonlinear dy-
namical systems [12], icontrol of chaod6], in population dynamics [1]. Thé&zzy
topologyhas many applications iquantum particle physi¢csee [4].

In this paper we consider the notion iotuitionistic fuzzy normed spaderiefly
IFNS), and we define and deal with-statistical convergence on IFN@hereA =
(ank)n’k>1 is an infinite matrix. Then we give applications to the cases wheneither
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of the matricesV, ., N, N,N,, Dy/-A (X), orC (X). These results extend in a certain
sense those given in [15].

First recall some notations and definitions used in this paper. In the following we
will write I = [0, 1].

Definition 1.1. The mapT : I x I — I is said to be of type (N) if it satisfies the
conditions

a) T is associative,
b) T is continuous and commutative,
c) foreverya, b, ¢, d € I, the conditionn < ¢ andb < d implies

alb < cld.

Definition 1.2 (See [20]).The map« : I x I — I is said to be a continuousnorm if
itis of type (N) witha x1 =aforalla € I.

Definition 1.3 (See [20]).The map$> : I x I — I is said to be a continuousconorm
if it is of type (N) with a0 = a for all a € I.

There are some examples of maps that are continkousms or continuoug-
conorms. Consider the case when= R, a * b = ab, a * b = min {a, b}, adb =
min{a + b,1} anda)b = max {a, b} forall a, b € I.

Definition 1.4. Let V' be a vector space,be a continuoug-norm and> a continuous
t-conorm andu, v be fuzzy sets ol x (0,00) (thatis,u, v : V' x (0,00) — [0, 1]).
We say thatV, i, v, %, {) is an intuitionistic fuzzy normed space (IFNS) if for every
y € V ands, t > 0 we have

a) pu(z,t)+v(zt) <1,

b) p(x,t) >

c) u(x,t) =1lifandonlyifz =0,

d) p(az,t) = p(z,t/|af) forall a # 0,
€) w(x,t)*xp(y,s) <px+yt+s),
f) w(z,.):(0,00) — Iis continuous,

g) tlim p(z,t) =1 and%inol,u(:c,t) =0,

h) v(x,t) <1,
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i) v(z,t)=0ifand onlyifz =0,

) v(ax,t)=v(z,t/|a])forall a # 0,
K) v(z,t) Qv (y,s) >v(z+y,t+s),
) v(z,.):(0,00) — I is continuous,
m) thl?oy (z,t) =0 andlii%y (x,t) =1.

In this case(u, v) is called an intuitionistic fuzzy norm (briefly IFN). We give a
standard example.

Example 1.5.Let VV be a vector space with norp|| and leta * b = ab anda>b =
min {a +b,1} foralla, b € I. Put

andv (z,t) = el forall z € V andt > 0.

t+ [z
It can be easily be shown th@t) 4, v, %, ) is an IFNS.

w0 = )

2 Convergence with Respect to the IFNy, v/)

2.1 Convergence on IFNS

We write s (V') for the set of all complex sequences @nand writes for the set of all
complex or real sequences.

Definition 2.1 (See [20]).Let (V, i, v, *, ) be an IFNS. A sequencE = (z,,),, €
s (V) is said to be convergent tb € V with respect to the IFNp, v) if for every e,
t > 0 there isky, € N depending o andt such that

p(zy — L,t) >1—candv (z — L, t) < eforall k > k.

Then we write(y, v) — lim X = L or z, ) g (k — o0).

In the same way we will say that— lim X = L orz;, % L (k — oo) if for every
e, t > 0 there isky € N depending om andt such that

p(xy — L,t) > 1—ceforall k > k.
For a given sequenck < s (V), L € V ande, t > 0, put

L. (X,e,t)={keN:pu(xy,—L,t)>1—candv(z; — L,t) < e},
I'(X,e,t)={keN:v(x,— L, t) <e}
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and

I',(X,e,t)={keN:pu(xy—L,t)>1—¢}.

It can easily be seen thag ) (k — o0) if for everye, t > 0 there isk, such that

[kl]? +OO[ C FM,I/ (Xa £, t) .

Similarly, z;, & L (k — oo) if for all £,¢ > 0 there iskq with [kg, +o00[ C I, (X, e, t).
To simplify we writel",, , (X)), T, (X) andT’,, (X) instead of",, , (X, ¢,1), ', (X, 1)
andl', (X, e,t). We state the following elementary lemma.

Lemma 2.2. Let (V, u, v, *, ) be an IFNS. Then for giveX € s(V), L € V ande,
t > 0 we have
., (X)="I,(X)andl, (X)cT,(X).

Proof. Trivially T, , (X) C T', (X). Now takek € T, (X). Thenu (zy — L,t) > 1—¢
and from Definition 1.4 a) we have

v(eg — Lt) <1—p(xp— Lt) <e.

This shows thatt € T',, (X) andT', (X) c T',, (X). We concludel',,, (X) =
I',(X). ThentriviallyT',, (X) =T, (X) c I, (X). This completes the proof. [

As a direct consequence of Lemma 2.2, we obtain the next lemma.

Lemma 2.3. Let (V, i, v, x,<$) be an IFNS. Then ) (k — oo) if and only if
zp 5 L (k— o).
Proof. If w9 (k — oo) for everye, t > 0, then there i, such thatfk,, +-oo[ C

I, (X), and sincel',, (X) = T, (X), we deducer, > L. The converse can be
shown similarly. O

Remark2.4. The convergencéu, ) —lim X = L is equivalent to the convergenge-

lim X = L, and it is not necessary to introduce the first convergence. In this paper, we
introduce the first convergence, mainly to keep the conventional approach. Furthermore,
in the special case, in Example 1(%, v)-convergence and norm convergence for the
sequenceéz,,),>; are equivalent.

Remark2.5. Let us remark that the notion of intuitionistic fuzzy metric spaces was
introduced by Park in [18]. In Gregori, Romaguera, Veeramani [11] (see also Saadati,
Sedghi, Shobe [19]), it was shown that Park’s definition of intuitionistic fuzzy metric
spaces contains extra conditions and can be derived, in an equivalent manner, from the
definition of fuzzy metric spaces.
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2.2 Statistical Convergence on IFNS
2.2.1 Statistical Convergence

The notion ofstatistical convergenosas first introduced by Steinhaus in 1949, see [21],
and studied by several authors such as Fast, Fridy [5, 7-10] and Connor. The idea of
statistical convergence suggests many other possible lines of investigation. We men-
tion here that recently Di Maio and Kmac [2] introduced and investigated statistical
convergence in topological and uniform spaces and showed how this convergence can
be applied to selection principles theory, function spaces and hyperspaces. Di Maio,
Djurgic, Koginac andZizovic [3] considered the set of sequences of positive real num-
bers in the context of statistical convergence and showed that some of its subclasses
have certain nice selection and game-theoretic properties.

A sequenceX = (z,),-, tends statistically td. if for eache > 0 we have

K (Xne) =0(1) (0 o0),

whereK (X,n,e) = {k < n:|zy — L| > ¢} and the symbo|-| denotes the number of
elements in the enclosed set. In this case we wrjte— L (S). To simplify we put
K (X,n) =K (X,n,e).

For the convenience of the reader, we recall the following well-known lemma.

Lemma 2.6. Let K, and K, be two subsets &f with K| C K5 then

JLII;O%HkSnzkEKQ}\:0:>T}LIIC>10%\{k§n:k€K1}|:0.
Remark2.7. 1t is to be noted (see [10]) that every convergent sequence is statistically
convergent with the same limit so that statistical convergence is a natural generalization
of the usual convergence of sequences. A sequence which is statistically convergent
may neither be convergent nor bounded. This is also demonstrated by the following
example. Let us consider the sequefneg;~; whose terms aréewheni = »? for all

n = 1,2,3, anda; = 1/i otherwise. Then, the sequenge);>; is divergent in the
ordinary sense, while is the statistical limit ofa;),>,. Not all properties of convergent
sequences are true for statistical convergence. It is well known that a subsequence of a
convergent sequence is convergent, however, for statistical convergence this is not true.
The sequencé;);>, whose terms arg i = 1,2, 3, is a subsequence of the statistically
convergent sequence;);>1, and(b;);>; is statistically divergent.

2.2.2 Statistical Convergence with respect to the IFN

Lete,t > 0,n € Nand let(V, u, v, x, <) be an IFNS. For giveiX € sandL € V, put

K,(X,net)={k<n:1—p(zy—L,t) >ec},
K, (X,n,e,t)={k<n:v(z,—L,t) >¢c}
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and
K,,(X,net)={k<n:v(zy—L,t)>corl —pu(z, — L, t) >e}.

To simplify we write K, (X, n), K, (X,n) and K, , (X,n) instead ofK, (X,n,¢,t),
K, (X,n,e t)andK,, (X,n,¢,t).

Definition 2.8. Let (V, u, v, %, <) be an IFNS. A sequenck is said to be statistically
convergent ta. € V' with respect to the IFNu, v) provided that for every, ¢ > 0 we
have

1
= K (X,m)| = 0(1) (n— o).
In this case we write, — L, (5) .

Definition 2.9. We say thatr, — L, (S) if for eache, ¢ > 0 we have

I (X,m)] =0 (1) (n— o0).

2.2.3 Condition(y) on IFNS

In the case whelr is a set of scalar® or C, we say that an IFN, ) satisfies condition
() if there is a functionp : 0, co| — |0, oo[ such that for every € V andt > 0

plz,t) >1—@(t) |zl (2.1)

Consider the classical example whéfe= R, a x b = ab, a{>b = min {a + b,1} and

2]
z,t)= —— v(z,t)=1—pu(zx,t) = —— forallz € R andt > 0.
pant) = v o) = 1= let) =
We have
2] 1
vz, t) = < =z
t+ ]z — ¢t

and sop (t) = 1/t.

Lemma 2.10.Let(V, u, v, %, ) beanIFNSandleX € s, L € V,e,t > 0 andn € N.
Then

) a) K,,(X,n)=K,(X,n)andK, (X,n) C K, (X,n);
b) x, — L, (S)ifand only ifz;, — L, (S5);
c) xy — L, (S) impliesz, — L, (5).

ii) If V is a set of scalars anflu, ) satisfies conditiotiy), then

KM (X,n,ggp(t),t) C K(X7n7€)‘
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Proof. We first show i). Také: € K, , (X, n). By Definition 1.4 a) we have
L—p(zp—Lt) 2 vz — L) (2.2)

Then for any givere,t > 0, v (zy — L,t) > e implies1 — p(zy — L, t) > ¢ and
K,,(X,n) C K, (X,n). By definition of K, , (X, n), it is obvious thati, (X,n) C
K, ., (X,n). Thus, we conclud&’, , (X,n) = K, (X,n). Now we showk, (X,n) C
K, (X,n). For this we také: € K, (X,n). We havev (x;, — L,t) > ¢, and since (2.2)
holds we concludé ¢ K,, (X,n) = K, (X,n). This proves a), while b) and c) are
direct consequences of a) and Lemma 2.6.

Next we show ii). For each integérand¢ > 0 we havel — p(xp — L,t) <
@ (t) |z — L| with ¢ : ]0,00[ — ]0,00[. S0k € K, (X,n,ep(t),t) means thal —
w(zy — L,t) > ep(t) and by (2.1)

joh = LI 2 [T = p(an = L )] Jo (1) 2 ep (1) /o (1) =&,

thatis,k € K (X,n,¢). O

3 A-Statistical Convergence with Respect to IFNyu, v)

In this section we deal with-statistical convergence with respect to the INv). For
this we recall some results on matrix transformations@hdThen we give conditions
ensuringe, — L, (S (4)).

3.1 Matrix Transformations

For a given infinite matrixd = (a,.x), x>1 We define the operator$, for anyn € N by
An (X) = Z AnkTi, (31)
k=1

whereX = (z,,).>1, the series intervening in the second member being convergent. So
we are led to the study of the infinite linear system

A (X)=b, neN, (3.2)

whereb = (b,,),>1 is @ one-column matrix and is the unknown. System (3.2) can be
written in the formAX = b, whereAX = (4, (X)),-,. In this paper we also consider
A as an operator from a sequence space into another sequence space. \igfarite
the sets of null sequences. Hor F' C s we will denote by(E, F') the set of all matrix
transformationsi = <a”k)n,k:>1 that mapFE to F, see [16].

A Banach spacé of complex sequences with the notpi| , is aBK spacsf each
projectionP, : X — P,X = z, is continuous. A BK spacé& C s is said to haveAK
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if every sequenceél = (x,),>1 € E has a unique representatioh=» _ x,¢,, where

n=1
e IS the sequence within then-th position, and) otherwise. For giver¥' C s and a
given matrixA, we will put

F(A)={X€s: AX € F}.

The matrixT" is a triangle if[T"],,, # 0 for all n and[77,, = 0 for k > n. Here we use
triangles represented ly (\) andA (\) for a given sequence with \,, # 0 for all n.
We defineC' (A) = (cuk),, 151 DY

1 .

- <
o = " if £k <mn,

0 otherwise.

It was proved in [13] that the matri& (\) = (¢ with

nm)n,mz 1

An if £k =n,

Gr =14 —An-1 if Kk =n—1andn > 2,
0 otherwise

is the inverse of” (\). Using the notatiorr = (1,1,...), we write A = A (e) and

X =C(e).

In the following we use the operators represented’ti)\) and A (\). Let U be
the set of all sequenceés,,), ., with u,, # 0 for all n. We define the trianglé€’ (\) =
(Cum)yy sy TOFX = (A\n),5; € U by = 1/, for k < n. It can be proved that
the triangleA () with [A(M)],,, = A, for all n, [A(A)],,.., = —A._1 forn > 2,
is the inverse of” (\), see [13]. Denote by/* the set of all sequences = (z,),
such thatz,, > 0 for all n. We also use the sét of all sequencest ¢ U™ with
lim,, oo (Tn_1/20) < 1.

When)\,, = n for all n, we get the well known spaae’ (or w,) studied by Maddox
(seee.g., []), i.e.,

1 n
w’ = {X: (xp), : lim — E |k :O}.
n—oo M
k=1

It is well known thatw® normed by

1 n
|.X|| = sup (; Z |37k|>
" k=1

is a BK space with AK. It can easily be deduced that the c(aéS w0) is aBanach
algebra(see [15]) normed by

* ||AX||>
A|l" = sup (— : (3.3)
1AV = s \
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In the following we will apply these results.

Obviously,c, € w°. Actually, c, is a proper subset af°. For example, the follow-
ing sequencéz,, ), is inw’ but not incy: x,, = 1if n is prime number, and,, = 1/n
otherwise.

3.2 A-Statistical Convergence on IFNS

In this subsection we extend some results obtained in [15] where we dealtAwith
statistical convergence.

First recall some definitions used in [15]. Lbtbe a scalar andl € (E, F'). For
e > 0, we will use the notation

K(X,n,A)={k<n:|[AX], — L| > ¢}

(where we assume that every serjes\], = A, (X) = Z AgmTm fOr k> 11s

m=1
convergent). We say thaf = (z,,),., € s A-statistically convergent td if for every
e > 0, we have

1
lim — |K (X,n,A)| =0.

n—oomn,

We then writer, — L (S (A)).
Now let X € s and let(V, u, v, %, ) be an IFNS. For giveilh, € V ande > 0, put

K,,(X,n,A)={k<n:v([AX], —L,t) >corl — p([AX], — L,t) > ¢}
We say thatX = (z,),., is A-statistically convergent td. with respect to the IFN
(u,v) if for everye, t > 0, we have

% Ky (X1, A)] = 0(1) (n— o0).

We then writex, — L, , (S(A)). As an immediate consequence of Lemma 2.2, we
have
K,,(X,nA)=K,(X,n A) andK, (X,n,A) C K,(X,n,A).

Now we state a lemma where for a given subvector sgace s and for € V, we
write L +® for the set of all sequences of the fokh= Le + Y with Y € ®. Let us
recall thatw® (A) is defined in Subsection 3.1.

Lemma 3.1. Let V' be a set of scalars and IV, i, v, %, ) be an IFNS and assume
(u, v) satisfies conditiory).

i) If ), — L(S), thenzy, — L, (5).
i) Let A be an infinite matrix. Ifc, — L (S (A)), thenz, — L, (S (A)).
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iii) Let A be atriangle. IfX € LA™ e +w" (A), then

Ty — LM,V (S (A)) .

Proof. SinceK, (X,n) C K (X,n)andzy — L (S), we haver, — L, , (S). Thusi)
holds.
Fore > 0, the inequalities

() |[[AX], — L] 21— p([AX], — L,t) > €

imply
K,,(X,nA)=K,(X,n A C K(X,n,A).

Now z, — L (S (A)) meanslim |K (X,n,A)|/n = 0, and by Lemma 2.6, we have
lim |K,, (X,n,A)| /n=0andz, — L,, (S (A)). Thusii) holds.

SinceA is a triangle, we put = A~ 'e. Putting\ = (n),>1, We obtain

€W JAX — e, =~ S [[AX], ~ 1]
andC (\) |AX — Le| = C'(\) )A (X - LZ) ) Thus

[C(N)|AX — Le|], = %iHA (X_sz]k‘

1 n
= EZ |[AX]k — L
k=1

LS jax), -

kEK(X,n,A)

> K (X, n,A).
n

Vv

ThenX e LI+ w° (A) means

R
Jim 25 2[4 (x - 2D)] | =0
and we deduce from the preceding that
1
lim — |K (X,n,A)| =0
n—oo M,

andz, — L (S (A)). By partii), we conclude:, — L, , (S (A)). Thusiii) holds. [
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4 N,,-,N,andN,N,-Statistical Convergence on IFNS

In this section we give conditions on the sequence= (z,),., guaranteeing; —
L,, (S (NQ,X>), Where]\~/q7x is a matrix band. Similarly we obtain conditions anto

successively have, — L,, (S (N,)) andz, — L,, (S (N,N,)), whereN, is the
matrix of weighted means.

4.1 N, -Statistical Convergence on IFNS

To state the next result, we will use an infinite matrix band defined for giverN and

qe U" by
q1 qX
= . = 0
Q Q

q7X -

IR
Q " Q

X
with Q = ~ gx. Then we obtain the next resuit.
k=1

Proposition 4.1. Let (V, 1, v, %, <) be an IFNS withy = 1 — p. If

1 n
lim EZV(:ck —L,t)$ - Qv (wpy—1 — L, t) =0,
k=1

thenz, — L, , (S (]Vq,x>>, that is, for every, t > 0,

1 1 &
{kﬁn:y (@Zqz‘%ﬂ'—l —L,t> 28}‘ =0.
i=1

lim —
n—oo M,

Proof. We have

~ 1 &
[N%XX} L @ Z Gty forall X € s,
i=1

X
and sinceg) = Z qi, we deduce
=1

~ X X
[NonX | L= % (g Qi1 — QL> = %g ¢ (w1 — L),  (41)
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and by Definition 1.4 j), we get

<Q qu Thti—1 — > =V (qu Tlgi—1 — Qt) (42)

By Definition 1.4 k), we get

<Z i (Tptio1 — Qt> =v (Z Qi (Tpyi-1 — )aitqz)
=1
V(g (vp = L), qit) & -+ Qv (g (Thix—1 — L) s qyt)
and by Definition 1.4 ), we have
v(gi(xp — L), qt) =v (g — Lyqt/q;) =v(xp, — L,t), i=1,2,...,x.

Then

(Z @i (Thyio — Qt) <v(rg—L,t) Q- QU (Tpyy1 — Lit) . (4.3)

Now put, = v (zp — L,t) & -+ - Qv (pyy—1 — L, t). Sincek), <X, n, N%x) C [1,n],
by (4.1), (4.2) and (4.3), we obtain

1 — 1 ~
el > _
nZOk — n V([NQ’XL L’t>
k=1
1
n

>

> )Kl, (X.m N )|

So the conditior(<>,€),€21 € wy implies
1 !/
- |K, (X,n,N, )| =0 (n— o)
andz, — L, (S (Né,x))' l

4.2 Applications to A-Statistical Convergence on IFNS

To studyN,- and N,,N,-statistical convergence, we need to state some results on the
setsW? (C (\)) andW? (A ().
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4.2.1 The SetdV? (A (N) and WP (C (N))

For a given sequence = (7,),., € U™, we define the infinite diagonal matrix, =
(TnOnm), m>1- FOr any subsek of s, we will write D E for the set of sequencés,,), -,

such tha(z,,/7,),~, € Fand putW; = D w" for 7 € U*. The space

W, = {X:supZ@ <oo}
n Tk
k=1

is called the set of sequences that are strongtpnvergent to zero. Then we will
explicitly give the set$V? (C (\)) andW? (A (\)). Note that we have

WHEO) = {X:,}EEO%Z<ﬁZw)<oo},

k=1
0 - 1.1
WT (A ()\)) = X : lim | — Z — |)\I<:37k: — )\k—lzk—1| <0 p.

For a given sequenge= (p,),,~,, we will consider the trianglé\ , defined byA | =
1 foralln, [A,], . , = —p, foralln > 2. Recall the next result which is a direct
consequence of [14, Theorem 5.1 and Theorem 5.12].

Lemma 4.2. If o
lim |p,| <1, (4.4)

then for any giver € «’, the equatiom\ , X = b has a unique solution in’.
We immediately deduce the following result.
Lemma4.3.Let\,7 € UT. Then
(i) If 7 € T, then the operatora and¥. are bijective fromi?? into itself, and
WP (A)=W7, W2(Z) =W

(i) a) If \xr €T, thenW?(C()\)) =Wy.
b) If 7 € T, thenW? (A (X)) = W),

Proof. (i) By Lemma 2.2, where,, = 7,,_, /7, and\,, = n for all n, we easily see that
if

m Th—1

n—oo Tn
that is,7 € I, thenD,,,AD, is bijective fromw® to itself. This means thaf is
bijective from D" to itself. SinceX is also bijective fromD,w" to itself, this shows
W2 (A) = W2 andW? (%) = W2 (i) We haveX € W?(C ()\) if and only if
YX € Dy,w’ = Wy . This means thaX € W} (%) and by (i) the condition\r € T
implies Wy () = Wy,. ThenW? (C()\)) = Wy andC ()) is bijective fromWW;_
to WP, SinceA (\) = C'(\)~" we concludeA ()\) is bijective fromT° to W and
Wy (A (X)) = W?. We deduce that for € I we havelV; (A (X)) = W)),. O

T

<1,
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422 N, and N,N-Statistical Convergence on IFNS

The operator of weighted mean, is defined fory € U andQ,, = Z g for all n by

k=1

Wq} nk

n

qk
— for k <n,
Q -

0 otherwise.

First we state the following result.

Proposition 4.4. LetV be a set of scalars and I€t:, ) be an IFN satisfying condition

(). If
1 k
klim1 E>1
thenz, — L, (5 (N,)) -
Proof. First we have
X e LN, e+u(N,). (4.6)

SinceN,e = e implies thatﬁq_le = e, condition (4.6) means that, (X — Le) €
w” and (4.5) holds. We conclude by Lemma 3.1 iii) thgt— L, (S (N,)). This
concludes the proof. O

Example 4.5. Consider the classical example, whéfe= R, a « b = ab, adb =
min {a +b,1} and

t 2]

r,t)=—, vz, t)=1—pu(z,t)=
Pt = g vl =1= a0 = 2o

for all z € R andt > 0.

Assume for every > 0 we have

q,|$z' — L
v <%IiQ;kL,t) = t+qi’§ik_ I < tékqi|xi—L| fori =1,2,...,k,
Qr
and by Proposition 4.4, the condition
R A T
fim 52 g (2w = D) =0

impliesz, — L., (S (N,)).
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Now among other things we consider the case when) is an IFN satisfying
condition(yp).

Theorem 4.6. i) Let@ = (Qn),>, € I'. Then
zr — L (S (N,)) forall X € L+ Dgju’.

i) Let V' be a set of scalars and Iét, ) be an IFN satisfying conditiofiy). Then

a)
2 — Ly (S (N,)) forall X € L+ Dojgu®,
that is,
li — L] =0.
Jlim ~ Z o — L] =
Hence

{k<n M( (qu)— >§1—5H20(1) (n — 00).

b) LetP, PQ/p c T. If
Xel+ DpQ/pqu, thenz;, — Lu,u (S (Npﬁq)) ,

that is,

. 1 Prqk
lim — x,— L|=0.
n—oo 1 £~ FpQx | |

Thus, for every,t > 0,

(enn (w28 (Som) -20) <1-¢f

:%}{kﬁn:M(WquX]k_Lﬂt)31_5}}20(1) (n = 00).

Proof. i) is a direct consequence of [15, Corollary 3, pp. 381-382]. ii) a) By Lemma
3.1v), if there isp : ]0, 00[ — ]0, 00[ such that (2.1) holds, then, — L (S (N,))

impliesz, — L, (S (N,)) . b) We have

N,N X — Le = NN, [X = L(N,N,) " e| = N,N, (X - Le)

Mu

S|

since(ﬁpﬁq)_1 e= Nq_l (W;le) = Nq_le = e. ThenN,N,X — Le € w" if and only
if
X — Leeuw’ (Npﬁq) .
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We can explicitly givew’ (N,N,). For this note that
_71 _ _
N, = (Dl/QZDQ) = D12 1DQ

and sincex™! = A we deduceZ_\fq_1 = Dy,,ADg = Dy;,A(Q). Similarly we ob-
viously haveN;1 = Dy,ADp = Dy;,A(P). By Lemma 4.3, since® € T, we
immediately ge\Wp = Wp and

——1

Np Wy = Dl/pAWg = Dl/pW]g = ng/p
So — — ——1—1 ——1

w’ (N,Ng) =N, N, w’ =N, WP, =Dy, AQ) W},

SincePQ/p € T by Lemma 4.3 ii) b)

we conclude o
w’ (NpyNg) = Wpope:

Finally X — Le € w° (N,N,) meansthak — Le € Wp,, ,, andz, — L (S (N,N,)).
Because there ig : ]0,00[ — ]0,00[ such that (2.1) holds, we conclude —
Ly (S (N,Ny)). O

We also obtain the following result which is a direct consequence of the preceding.
Corollary 4.7. Let (C, i, v, %,<) be an IFNS satisfying conditiofp). Letl < a < b

and put
1 a’ 4 i

Then

! {kgn:,u<yk—L(a_1;dzb_1),t)gl—e}':O(l) (n—o0). (4.7)

n

Proof. Itis enough to take = (") _, andq = (b*),_ . So trivially

PQr 1 aMt—abktt —p (ab)F*! o abt!
pe af a—1 b—1 (a—1)(b—1)a* (a—1)(b—1)

andPQ/p € T'. The calculation gives

ab —
yk:(a—l)(b—l)[ pNoX],.

Then puttingl’ = Lab/ (a — 1) (b — 1), by Theorem 4.6 ii) b), we conclude, —
L,, (S (N,N,)) and (4.7) holds. O
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5 Other Applications

In this section we deal witl), ;A (\)- andC (\)-statistical convergence on IFNS.
Theorem 5.1. Let V' be a set of scalars and I¢f;, ) be an IFN satisfying condition
().

i) Letr €T If

1w M\
oD

k=1

T+ ...+ Tk

" — 0 (n — 00), (5.1)

l’k—L

thenzy, — L, (S (D1/+A()))). Thus

1 — A\ 1Tk—
—{kﬁn:,u()\kxk A 1xk1—L,t>§1—5H:O(1) (n — 00).
n Tk

ii) Let\ € I, If

ﬂ_L<1_)\k_1)'—>()(n—>oo), (5.2)

thenz, — L, , (S(C(X))). Thus

%'{kgn:%%j“—w)s1—a}]=o<1> (n— 00).

Proof. i) We havez, — L, (S (D1/-A (X)) if
Dy A(N) X — Le € v’ (5.3)

Further (5.3) holds ifD; ;A (\) (X — LC () D.e) € v’ thatis,X — LC (\) D.e €
w’ (D1/-A (V). Butw’ (Dy,,A (X)) = W, (A (X)) and sincer € T, we deduce by
Lemma 4.3 ii) thats” (D ;A (V) = W7),. Then

[C'(\) Dye], = Nttt
An
andX — LC (\) D,e € WB/A is equivalent to (5.1). This concludes the proof of i). ii)
Herex, — L,, (S (C (N)) if
CANX—-Le=C(\) (X —LA(\)e) €’ (5.4)

Since) € I" and from Lemma 4.3 ii) condition (5.4) is equivalentXo— LA (\) e €
w’ (C'(N) = WY{. Now[A (M) e], = A\, — Apq @andX — LA (\) e € WY means that
(5.2) holds. This concludes the proof of ii). O
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