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Abstract

This paper deals with a special type of delayed integral inequalities of Bihary
type for scalar functions of two variables. The integrals involve the maximum of
the unknown function over a past time interval. Several nonlinear types of integral
inequalities are solved. The importance of these integral inequalities is based on
their wide applications to the qualitative investigations of various properties of
solutions of partial differential equations with “maxima” and it is illustrated by
some direct applications.
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1 Introduction

In the last few decades, great attention has been paid to automatic control systems
and their applications to computational mathematics and modeling. Many problems
in control theory correspond to the maximal deviation of the regulated quantity and
they are adequately modeled by differential equations with “maxima” [13]. The quali-
tative investigation of properties of differential equations with “maxima” [2, 4, 6, 8-10]
requires building of an appropriate mathematical apparatus. One of the main math-
ematical tools, employed successfully for studying existence, unigueness, continuous
dependence, comparison, perturbation, boundedness and stability of solutions of differ-
ential and integral equations, is the method of integral inequalities [1, 5, 14-17]. The
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development of the theory of partial differential equations with “maxima” [3, 7, 12] re-
quires solving linear and nonlinear integral inequalities that involve the maximum of the
unknown scalar function of two variables [11].

This paper deals with nonlinear integral inequalities which involve the maximum
of the unknown scalar function of two variables. Various cases of nonlinear integral
inequalities are solved. The form of the solution depends significantly on the type of
nonlinear function in the integral. These results generalize the classical integral in-
equalities of Gronwall-Belman and Bihari type. The importance of the solved integral
inequalities is illustrated on some direct applications to partial differential equations
with “maxima”.

2 Main Results

Leth > 0 be a constantyy, yo, X, Y be fixed points such that< z, < X < oo and
0< Yo < Y < 0.

Definition 2.1. We will say that the functiom € C*([zo, X),R,) is from the classF
if it is a nondecreasing function andzx) < z for z € [z(, X).

Let the functionsy;, 3; € Ffori=1, 2,..., n, j =1, 2,..., m. Denote

J = min (éniign a;(zo), 1gnjugnm 6j(:c0)) .
Consider the sets, ¥, A defined by

G = {(m,y) ER*: 7€ [19,X), y € [youy)}7
U={(z,y) eR*:x €[]~ hxo], y € [y0.Y)},
A= {(x,y) cR*:2c[J—nX), yc [yO,Y)} =GUV.

Theorem 2.2. Let the following conditions be fulfilled:

1. The functionsy;, 3; € Ffori=1,2,...,n, 7=1,2,..., m.
2. The functionsf;, g; € C([J.X) x [yo,Y),Ry) fori = 1,2, ..., n, j =
1,2, ..., m.

3. The functiory € C(V, [0, k]) wherek = const > 0.

4. The functions);, @; € C(R4, R, ) are nondecreasingy;(x) > 0, @;(x) > 0 for
r>0,i=1,2,...,n,j=1,2, ..., m.
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5. The function: € C'(A, R, ) and satisfies the inequalities

ul(z, y) <k+2/ ZO)/ fzsth< (s, t))dtds

(2.1)
+ t)w t) |dtds for (z,y) € G,
Z/on /g]s ( r[nax}u(f )) s (z, )
u(z,y) < d(z,y),  for(z,y) e V. (2.2)
Then for(z,y) € Gy, the inequality
u(z,y) < ( +Z/ / fi(s, t)dtds
- (o) (2.3)
—I—Z/ /gjstdtds>
5 (z0)
holds, wherdV ! is the inverse function of
" ds
W(r):/—<oo, 0<rg<k<r, (2.4)
ro W(5)
w(t) = max (éﬂla%cn wi(t), pax @; (t)) (2.5)

Glz{(xy)EG Wk +Z/z /fzstdtds

/ /gjstdtds eDom(W 1)}
i (o)

Proof. Define a functior: : A — R, by the equalities

n ai(z)  py
k+ Z / / fi(s, t)w; <u(s, t))dt ds
a; (o)
Z(I‘ y) _ [3] (z) (.ﬁl}',y) € G7
e (s,t)@ max u(&,t) |dtds,
(o »TO)/ gj (56[5 h, s (£ >>
(r,y) € V.

\

The functionz(z,y) is nondecreasing in its both argument$z,,y) = k for y €
[v0,Y), andu(z,y) < z(z,y) for (z,y) € A. Note that€ I[na;f ]z(é,y) = z(s,y) for
€ls—nh,s
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s € [Bj(xo), B;(X)), 7=1,2, ..., mandy € [y, Y ). Then from inequality (2.1) and

the definition of the functio (¢ ) we get for(z,y) € G

z(x,y) <k:+ / /fzst dtds
i=1 (677 [L'
/ /g]st dtds.
i (z0) Yyo

Define a functionk” : G — [k, oo) by the equality

a:y—k:—l—Z/ /flst dtds
(z0)

zla

Bj(z
/ / gj s, Hw dt ds.
(z0)

(2.6)

2.7)

Note thatK (z,y) is an increasmg function and the inequality:, y) < K(z,y) holds
for (z,y) € G. From (2.7) and condition 1 of Theorem 2.2, we obtain for the partial

derivative K (=, y) with respect tac

K/ (z,y) = Z/y fi(ou(z), t)w z(a(m),t)) (ai(x))/dt

i=1 Y Yo

+Z/%@ o (208,00, (8 )

j=1 7Y

< ;/ fi(au(z ( (az(:c),t)) (i) dt
Z/y 95 (Bj(= K(B;(z), )) (5j($))/dt

xy(Z/ﬁ% ()t

i=1 Y Yo

+Z/%@ )6 )

=1 Y Y0

From inequality (2.8), we get

(2.8)

(2.9)
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Integrate inequality (2.9) with respecttdrom x, to x, = € [z(, X ), change the variable
n=a;(s) (i =1, ..., n)in the first sum of integrals, angd= 3;(s) (j =1, ..., m)
in the second sum of integrals, use the definition (2.4), the equalities

TE(s,y)ds (MUY du o
/rvo w(K(z,y)) _/k w(u) W(K(z,y)) - W(k)

and the inequality(z, y) < K(z,y), and obtain fo(z,y) € G

w (k) s+ | (()) J
1 a;(To Yo

SinceW ! is increasing, from inequalities (2.10) antlr, y) < z(z,y) < K(z,y) we
obtain the required inequality (2.3) fér, y) € G;. ]

5;() (2.10)

Yy
/ g;(n, t)dt dn.
Yo

i (z0)

Define the following class of functions.
Definition 2.3. The functionw € C(R,,RR,) is said to be from the clagg, if
(i) w(x) > 0forz > 0and itis a nondecreasing function;
(i) w(tz) > tw(z)foro <t < 1.

In the case when the nonlinear functions in the integrals, additionally to the condi-
tions of Theorem 2.2, are submultiplicative, then the constantnequality (2.1) may
be substituted by an increasing function.

Theorem 2.4. Let the following conditions be fulfilled:
1. The conditions 1 and 2 of Theorem 2.2 are satisfied.
2. The functiork € C(G, [1, 00)) is nondecreasing in its both arguments.
3. The functions € C(, [0, k]), wherek = k(z, o).
4. The functionsy;, @; € ,i=1,2,...,n, 7=1,2,..., m.
5. The function: € C'(A, R, ) and satisfies the inequalities

o)

u(z,y) < k(x,y) + zj: /yy fi(s, t)w; (u(s,t))dt ds

a; (o)

ol A (2.11)
* ;/ /y 9i(s, )05 (gegléng]U(é,t))dt ds for (z,y) € G,

5 (z0)
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u(z,y) < d(x,y), for(z,y) € V. (2.12)
Then for(z,y) € G, the inequality

u(z,y) < k(x,y) x W1 ( —1—2/ )/ fi(s,t)dtds

8,(a) (2.13)
/ gi(s,t) dtds)
holds, where the functiorld’, w are defined by2.4) and (2.5), respectively,
GQ:{(xy)eGW +Z/ /flstdtds
8, (x) (2.14)

/ gj(s,t)dtds EDom(W 1)}

Proof. Define the continuous nondecreasing function A — [1,00) by

K(z,y) = {k(ac,y)7 for (z,y) € G,

5 (z0)

k(x07y)7 for (‘ray> e v

. " 1 "
From inequalities (2.11), (2.12), arﬁ— < 1, and condition 4 of Theorem 2.4, we
biad z,y)
obtain

ey [ [ s (e Jaras

i=1

m

+Z/w/%StCM%<>@w““

J=

S1+) Aww/‘ﬁ Z( ﬁ)“d

=1

/( >/ s twj(maX&K(s ) - t)>dtds’ () €@
J (2.15)

and
uz,y) _ ¢,y)
k(zo,y0) ~ k(zo,0)
Foreveryj: 1 <j <mandt € [yo,Y), s € [5;(z0), 3;(X)), the inequalities

"0 e HED) e HED
(5

<1, (z,y) €. (2.16)

K(s,t) K

0 = K€1) b K& (Jhax Z(6t) (2.17)
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hold, whereg; € [s — h,s] andZ(z,y) = ;é((fv,y)
X

that the inequalities (2.15), (2.16) may be written in the form

Z(x,y) <1+Z/ /fzstw,< (st))dtds
(zo)
—|—Z//BJ x)/ gi(s,t)@ (ger[rsla}fs]Z(g t))dtds, (xz,y) € G,

5 (20)

. From inequality (2.17) it follows

(2.18)

Z(r,y) <1,  (z,y) €. (2.19)
From inequalities (2.18) and (2.19) according to Theorem 2.2, we obtajn.fgy € G

Z(z,y) < ( +Z/%(I / fi(s, t)dtds

1(330

+Z/ /g]stdtds)

Inequality (2.20) and definitions of the functio#$x, y), K (x,y) imply the validity of
inequality (2.13). O

(2.20)

Define the following class of functions.

Definition 2.5. We will say that the function € C(R,,R,) is from the class$), if it
satisfies the following conditions:

(i) w(x) > 0forz > 0and itis a nondecreasing function;
(i) w(tz) > tw(z)for0 <t <1;
(i) w(z)+w(y) > w(z+y).

Remark2.6. For example, the functions(z) = +/z andw(z) = z are from the class
Q.

In the case when the nonlinear functions in the integrals are from the(¢lasise
following result holds.

Theorem 2.7. Let the following conditions be fulfilled:
1. The conditions 1 and 2 of Theorem 2.2 are satisfied.
2. Thefunctionsy;, w; € Qy,1=1,2, ..., n, j=1,2,...,m.

3. The functiork € C(A,R).
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4. The function: € C(G, [1, 0)).

5. The functionu € C(A, R, ) and satisfies the inequalities

u(z,y) < k(z,y) + p(z,y) (Z/ - / fzstwl( (s, t))dtds
+Z/y N / g;(s, 1)@ <£€1[13a2<8]u(g t))dtds) for (z,y) € G,

u(z,y) < k(z,y) for (=,
Then for(z,y) € G, the inequality

y) € 0.

w@wSk@wwwﬂawmaww*own+AmwQ

holds, where the functiori¥’, w are defined by2.4)and(2.5), respectivelyl}/ ~

inverse ofil/,

Gy={(.y)€G: W)+ Al,y) €Dom (W)},

xy—1+2/ /fzsth(k >dtds

ﬁj(ff
0, [ max k(e 1) dtds, (z,y) € G,
#3900 g e 5

;i ()

(s,t)dtds

xmmzzﬁ%

B (z)

/fz

/ gj(s,t)M(s,t)dt ds,

5 (20)

Mww—{“%” for (z.3) € G.

pl(zo,y) for (z,y) €
Proof. Define a functiorx : A — R, by the equalities

(" a;(z) Yy

‘Z /al(xo) Yo fi(s, t>wl (U(&

j y
/ 9j (s, t)ajj <
j=1 7 Bi(zo0) Jyo

0 for (z,y) € .

t))dt ds

max u(&, t)> dt ds

Z(Z’,y) = £€[s—h, 9]

for (z,y) € G,
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(2.21)

(2.22)

(2.23)

lis the

(2.24)

(2.25)

(2.26)

(2.27)
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From inequality (2.21) and the definition of the functiefx, y), we obtain
u(z,y) < k(z,y) + M(z,y)z(7,y),  (z,y) €A (2.28)

Since the functionV/ (z, y) is nondecreasing in its both arguments andsfer [J, X ),
y € [yo,Y') we obtain

(nax }U(E ,y) < (e k(€ y) + M(s,y) (nax }Z(ﬁ,y)' (2.29)

From inequality (2.28), the definition of the functiefi, y) and conditions 1 and 2 we
getfor(z,y) € G

/aa(x )/ fils:1) wz( (s, t))dtds

< /aal(w / fi(s tw,(k(s t) + M(s,t)z(s, t))dtds

sz

/az((x) yfl(s t)wl(k:(s,t)>dt ds

1170

(2.30)

/ IO)/ fi(s,t)M (s, t)W,L( (s, t))dtds
and
A

I
o / 4;(5, )3 ( max k(g,t))dtds (2.31)

B, (o) E€[s—h, 3]

i ()
/ / gj(57t)M(8’t)a}j<£€r[nai< ]Z(é t))dtds.

From the definition of the function(z,y) and inequalities (2.28), (2.30), (2.31), it
follows that

g;(s ( max  u(§, t))dt ds

£€[s—h, ]

IN

/ fi(s, t)M (s, t)wz( (s, t))dtds

BJ x) aZ(xO (232)
+Z/J o) / gi(s,t)M(s,t)@ <§€r[rslaics]z(§ t))dtds, for (z,y) € G,
z(z,y) <0, for (z,y) € 0. (2.33)

From inequalities (2.32), (2.33), according to Theorem 2.4, we obtain the inequality
(2.23). ]
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3 Applications

Consider the scalar partial differential equation with “maxima”

U;y = F(':Ea Y, U(l’,y), [I(H?X( )]U(S,y)) for ($7y) €G (31)
selo(x), T(x

with the initial conditions
u(zo,y) = p1(y)  for y € [yo,Y),
u('x’yO) = @2($) for x € {LE‘(],X) (32)
u(z,y) = ¥(x,y) for (z,y) € [r(xo) — h,x0] X [y0,Y),

(z
whereu € R, ©1 [yo,Y) — R, Y2 [.Z'O, — R w [ ( ) — h,.ﬁlj’o] X [yU7Y) — R,
F:lzg, X) X [y0,Y) x Rx R — R.

Theorem 3.1 (Upper bound). Let the following conditions be fulfilled:

)
X)

1. The functions € F, 0 € C([xg, X),R) and there exists a constaht> 0 :
0<7(x)—o(x) <hforz € [z, X).

2. The functiont” € C([xo, X) X [y0,Y) x R x R, R) and satisfies fo(x,y) € G
and~, v € R, the condition

|F(x, y, v, v)] < Qa, )/ + Rz, )V IV,
where@, R € C(G,R,).

3. The function) € C([7(zo) — h, o] X [yo,Y),R).

4. The functionsp; € C([yo,Y),R), p2 € C(zo, X),R) and p1(yo) = 2(z0),
gpl(y) = @Z)(l’o, y) for y € [y()v Y)

5. The functionu(z, y) is a solution of the initial value probleif3.1), (3.2) which is
defined for(z, y) € [7(x0) — h, X) X [y0,Y).

Then the solution(x, y) of the partial differential equation with “maxima(3.1), (3.2)
satisfies for(z, y) € G the inequality

lu(z,y)| < K(z,y) + Pi(z,y) (1 + % /: /y [Q(s,t) + R(s,t)]dt ds)Q, (3.3)
where

K({L‘,y) — { 901(y) + 902(-1') — §02<.’L'0)’, (x,y) c @ (34)

U(z,y)|, (z,y) € [T(z0) — R, 0] X [10,Y),

Pi(x,y) =1 —i—/w /yQ(s,t)\/K(s,t) dt ds

(s,t) max K(&,t)dtds.
// \/66[0 (s),7(s)] S

(3.5)
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Proof. For the functionu(z, y) we obtain

lu(z,y)| < |e1(y) + e2(z) — @2(z0)|

/ / s, t, u(s,t), max u(ﬁ,t))‘dtds

£€fo(s), 7(s)]

3.6
< |o1(y) + pa(x g02x0‘+//Qst\/ (s,t)|dt ds (3.6)
Yo

+/ / R(s,t) max |u(&, t)|dtds for (z,y) € G,
xo Jyo £€o(s), 7(s)]

| u\zr,y ‘ = W) ) for (:E7y) S [T(xO) - h> $0] X [y()»Y)' (37)

Denote|u(z,y)| = U(z,y for( ,y) € [T(x0) — h, X) x [0, Y). From (3.6) and (3.7),
we have

U($7y)§|901( + 2 <P2$o|+//Qst\/ U(s,t)dtds

+//R(s,t) max U(§,t)dtds, (z,y) € G,
zo Jyo £€fo(s), 7(s)]

= |[¢(z,y)| = K(z,y), for(z,y) € [r(x0) — h,z0] X [y0,Y).  (3.9)

Change the variable = 77'(5) in the second integral of (3.8), use the inequality

. [r(nz)lx ) U, y) < s (H)lai( ( )]U(f,y) fory € [yo,Y) andz € [z, X) that fol-
€lo(z), 7(z x)—h,T(T
lows from condition 1 of Theorem 3.1 and obtain

Ul(x,y) gK(x,y)+/x /yQ(s,t)\/U(s,t)dtds

T(z) ry
+ /T o) /y O R(™"(n),t)(7" (n)) \/aeﬁafn] U(&,t) dtdn, (z,y) € G.

Note that the conditions of Theorem 2.7 are satisfiedrifor m = 1, a(z) = =,
B(x) = 7(x), k(z,y) = K(z,y), where the functionk (z,y) is defined by (3.4),
fla,y) = Q(a,y) for (z,y) € G, gz, y) = R(r~(2),y)(77 (x))' for x € [r (), X),

y € [y0,Y), wlv) = @(v) = Vo, W) = 2vv, W(v) = i?ﬂ forv € R, and
Dom(W ') = R,. According to Theorem 2.7, from inequalities (3.10), (3.9), we ob-
tain for (z,y) € G the bound

(3.8)

(3.10)

Uz,y) < K(x,y) + P(, y)i (2 + /: /y [Q(s, t)+ R(s, t)}dt ds>2, (3.11)

where the functiorP; (z, y) is defined by equality (3.5). Inequality (3.11) and the defi-
nition of the functionl (x, y) imply the validity of the required inequality (3.3). [



68 Snezhana G. Hristova and Kremena V. Stefanova

In the case when the initial conditions in problem (3.1), (3.2) are constants and
Lipschitz functions for the functiof’ are constants, we may apply Theorem 2.2 instead
of Theorem 2.7 and we obtain a better bound for the solution.

Theorem 3.2.Let the conditions of Theorem 3.1 be satisfied, whefg) = C, po(z) =
CoY(z,y) = C, Qz,y) = Q,R(z,y) = R, C,Q, R are constants. Then the solu-
tion u(z, y) of the partial differential equation with “maxima(3.1), (3.2) satisfies for
(z,y) € G the inequality

ate.)| < (VICT+ 5@+ Bi(o )y~ w) ) - (312
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