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Abstract

In this work, first we give a survey of the most basic results on Lyapunov-type
inequality, and next we sketch some recent developments related to this type of
inequalities.
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1 Introduction

Let η(t) be a real-valued absolutely continuous function on[a, b] with η′(t) of integrable
square andη(a) = 0 = η(b). Then fors ∈ (a, b), we have∫ b

a

[η′(t)]2dt ≥ 4η2(s)

b− a
,

which is a very useful tool for the study of the qualitative nature of the solutions of
second-order ordinary differential equations. Ifη(t) is nonzero on[a, b], then the equal-

ity holds only ifs =
a + b

2
andη(t) = η(s)

{
1−

∣∣∣∣2t− a− b

b− a

∣∣∣∣}.

In particular with the aid of this inequality, one may show that ifq(t) is a real-valued
function such that the second-order differential equation

x′′(t) + q(t)x(t) = 0
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has a nontrivial solution having two distinct zeros on[a, b], thenq+(t) =
q(t) + |q(t)|

2
must satisfy the Lyapunov inequality∫ b

a

q+(t)dt >
4

b− a
.

This result is due originally to Lyapunov [19]. The Lyapunov inequality and many of
its generalizations have proved to be useful tools in oscillation theory, disconjugacy,
eigenvalue problems, and numerous other applications for the theories of differential
and difference equations and also in time scales.

In this work, first we will give a survey of the most basic results on Lyapunov-type
inequalities, and next we will sketch some recent developments related to this type of
inequalities.

In a celebrated paper of 1893, the Russian mathematician Lyapunov [19] proved the
following remarkable result.

Theorem 1.1. If x(t) is a nontrivial solution of

x′′(t) + q(t)x(t) = 0 (1.1)

with x(a) = 0 = x(b), wherea, b ∈ R with a < b are consecutive zeros andx(t) 6= 0
for t ∈ (a, b), then the so-called Lyapunov inequality∫ b

a

|q(s)| ds >
4

b− a
(1.2)

holds.

As it was first noticed by Wintner [31] and subsequently by several other authors,
an application of Sturm’s comparison theorem allows the replacement of|q(t)| in (1.2)
by q+(t), whereq+(t) = max{0, q(t)} is the nonnegative part ofq(t).

We are obligated to mention here that although the inequality (1.2) is known as the
classical Lyapunov inequality, it was pointed out by Cheng [5] that Lyapunov neither
stated nor proved the Theorem 1.1 but rather in [19], he only claimed the following:

Theorem 1.2.Letq(t) be a nontrivial, continuous and nonnegative function with period
w and let ∫ w

0

q(s)ds ≤ 4

w
. (1.3)

Then the roots of the characteristic equation corresponding to Hill’s equation

x′′(t) + q(t)x(t) = 0, −∞ < t < ∞ (1.4)

are purely imaginary with modulus one.
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By Floquet theory, this means that all solutions of (1.4) are bounded on(−∞,∞),
i.e., the equation is stable. Lyapunov’s proof requires the calculation of series expan-
sions of the coefficients in the characteristic equation

s2 − 2As + 1 = 0, A =
f(w) + g′(w)

2
, (1.5)

wheref andg are solutions of the equation (1.4) which satisfy the initial conditions
f(0) = 1, f ′(0) = 0 andg(0) = 0, g′(0) = 1, respectively.

As also observed by Cheng, in an attempt to obtain alternative proof of Theorem
1.2, Borg [2] proved the following result of Beurling [1].

Theorem 1.3. If x(t) is a nontrivial solution of the boundary value problem

x′′(t) + q(t)x(t) = 0, (1.6)

x(a) = x(b) = 0, (1.7)

x(t) > 0, a < t < b, (1.8)

whereq is a real-valued continuous function on[a, b], then∫ b

a

∣∣∣∣x′′(s)x(s)

∣∣∣∣ ds >
4

b− a
. (1.9)

Here we outline Borg’s proof since it is particularly simple. He starts with the in-
equalities ∫ b

a

∣∣∣∣x′′(s)x(s)

∣∣∣∣ ds >
1

‖x‖∞

∫ b

a

|x′′(s)| ds

>
1

‖x‖∞

∫ d

c

|x′′(s)| ds

> |x′(d)− x′(c)| (1.10)

for arbitrarya ≤ c < d ≤ b. Now let ‖x‖∞ = x(t1). By Rolle’s theorem, we can
choosea < c < t1 andt1 < d < b such that

x′(c) =
‖x‖∞
t1 − a

, −x′(d) =
‖x‖∞
b− t1

. (1.11)

Combining (1.11) with (1.10), we obtain∫ b

a

∣∣∣∣x′′(s)x(s)

∣∣∣∣ ds >
1

t1 − a
+

1

b− t1
>

4

b− a
. (1.12)

The last inequality, i.e.,
4

b− a
is simply obtained by minimization of the right-hand side

of inequality (1.12).
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This seems to be the first proof of the “Lyapunov inequality” to appear in the litera-
ture. Borg went on to use (1.9) to give a new and much shorter proof of the Lyapunov
stability theorem.

Another generalization of the classical Lyapunov inequality (1.2) is due to Hartman
[15]: Let m(t) > 0 be continuous on[a, b] andx be a nontrivial solution of (1.6)–(1.7).
Then ∫ b

a

m(s)q+(s)ds > γ(b− a), (1.13)

where

γ = inf
t∈[a,b]

m(t)

(t− a)(b− t)
.

Evidently this inequality is just (1.2) whenm(t) = 1. Also in a nonstability application
of (1.2), Hartman and Wintner and other authors have used it to give estimates of the
number of zeros of a solution of (1.6)–(1.7).

For authors who contributed the Lyapunov-type inequalities, we also refer to Cheng
[4, 5], Dahiya and Singh [7], Elbert [9], Eliason [10–12], Hartman [15], Kwong [17],
Lee et al. [18], Pachpatte [21–23], Panigrahi [24], Parhi and Panigrahi [25, 26] and
Reid [27].

2 Generalizations

Since the appearance of Lyapunov’s fundamental paper [19], various proofs and gener-
alizations or improvements have appeared in the literature. For example, Hartman [15,
Chap. XI] has generalized the classical Lyapunov inequality for the linear differential
equation

(r(t)x′(t))
′
+ q(t)x(t) = 0, r(t) > 0 (2.1)

as follows.

Theorem 2.1. If a, b ∈ R with a < b are consecutive zeros of a nontrivial solution of
equation(2.1)), then ∫ b

a

q+(s)ds >
4∫ b

a
r−1(s)ds

, (2.2)

whereq+(t) = max{0, q(t)} is the nonnegative part ofq(t).

Thus, the inequality (1.2) is strengthened to∫ b

a

q+(s)ds >
4

b− a
(2.3)

for the equation (1.1) by Theorem 2.1. The inequality (2.3) is the best possible in the
sense that if the constant4 in (2.3) is replaced by any larger constant, then there exists
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an example of (1.1) for which (2.3) no longer holds (see [15, p. 345], [17]). However,
stronger results were obtained in Brown and Hinton [3] and Kwong [17]. In [17], it is
shown that ∫ c

a

q+(s)ds >
1

c− a
(2.4)

and ∫ b

c

q+(s)ds >
1

b− c
, (2.5)

wherec ∈ (a, b) such thatx′(c) = 0. Hence∫ b

a

q+(s)ds >
1

c− a
+

1

b− c
=

b− a

(c− a)(b− c)
≥ 4

b− a
. (2.6)

In [3, Corollary 4.1], the authors obtained∣∣∣∣∫ b

a

q(s)ds

∣∣∣∣ > 4

b− a
, (2.7)

from which (1.2) can be obtained.
The Lyapunov inequality has been extended in many directions and its half-linear

differential equation(
r(t) |x′(t)|λ−2

x′(t)
)′

+ q(t) |x(t)|λ−2 x(t) = 0, r(t) > 0 and λ > 1 (2.8)

extension can be found in Došlý andR̆eh́ak’s recent book [8, p. 190] as follows.

Theorem 2.2. Let a, b ∈ R with a < b be consecutive zeros of a nontrivial solution of
equation(2.8). Then ∫ b

a

q+(s)ds >
2λ(∫ b

a
r1/(1−λ)(s)ds

)λ−1
, (2.9)

whereq+(t) = max{0, q(t)} is the nonnegative part ofq(t).

In 1997, Pachpatte [22] has generalized the Lyapunov inequality for differential
equations of the form(

r(t) |x′(t)|α−1
x′(t)

)′
+ p(t)x′(t) + q(t)x(t) + f(t, x(t)) = 0, (2.10)(

r(t) |x(t)|β |x′(t)|γ−2
x′(t)

)′
+ p(t)x′(t) + q(t)x(t) + f(t, x(t)) = 0, (2.11)

as follows.
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Theorem 2.3.Letx be a solution of equation(2.10)with x(a) = 0 = x(b) andx(t) 6= 0
for t ∈ (a, b). Let |x(t)| be maximized at a pointc ∈ (a, b). Then

1 ≤ 1

2α+1

(∫ b

a

r−1/α(s)ds

)α

×

×
(

1

Mα−1

∫ b

a

∣∣∣∣q(s)− p′(s)

2

∣∣∣∣ ds +
1

Mα

∫ b

a

w(s, M)ds

)
, (2.12)

whereM = max{|x(t)| : a ≤ t ≤ b}, |f(t, x(t))| ≤ w(t, |x(t)|) andα ≥ 1.

Theorem 2.4.Letx be a solution of equation(2.11)with x(a) = 0 = x(b) andx(t) 6= 0
for t ∈ (a, b). Let |x(t)| be maximized at a pointc ∈ (a, b). Then

1 ≤
(∫ b

a

r−1/(γ−1)(s)ds

)γ−1

×

×
(

1

Mβ+γ−2

∫ b

a

∣∣∣∣q(s)− p′(s)

2

∣∣∣∣ ds +
1

Mβ+γ−1

∫ b

a

w(s, M)ds

)
, (2.13)

whereM = max{|x(t)| : a ≤ t ≤ b}, |f(t, x(t))| ≤ w(t, |x(t)|), α ≥ 1, β ≥ 0, γ ≥ 2
andγ > β.

In 1999, Parhi and Panigrahi [25] established an inequality similar to (1.2) for third-
order differential equations of the form

x′′′(t) + q(t)x(t) = 0. (2.14)

Their results are as follows.

Theorem 2.5.Letx(a) = x(b) = 0. If there existsd ∈ (a, b) such thatx′′(d) = 0, then∫ b

a

|q(s)| ds >
4

(b− a)2
. (2.15)

Theorem 2.6. If x′′(t) 6= 0, t ∈ (a, b) andx(t) has three consecutive zerosa < b < a′,
then ∫ a′

a

|q(s)| ds >
4

(a′ − a)2
. (2.16)

In 2003, Yang [32] generalized Parhi and Panigrahi’ [25] above results to certain
higher-order differential equations. His results are as follows.

Theorem 2.7. Let n ∈ N and q(t) ∈ C([a, b]). If there existsd ∈ (a, b) such that
x(2n)(d) = 0, wherex(t) is a solution of the differential equation

x(2n+1)(t) + q(t)x(t) = 0 (2.17)
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satisfying

x(i)(a) = x(i)(b) = 0, i = 0, 1, . . . , n− 1, x(t) 6= 0, t ∈ (a, b), (2.18)

then ∫ b

a

|q(s)| ds >
n!2n+1

(b− a)2n
. (2.19)

Theorem 2.8.Letn ∈ N, n ≥ 2 andq(t) ∈ C([a, b]). If the differential equation

x(n)(t) + q(t)x(t) = 0 (2.20)

has a solutionx(t) satisfying the boundary value problem

x(a) = x(t2) = . . . = x(tn−1) = x(b) = 0, (2.21)

wherea < t1 < t2 < . . . < tn−1 < tn = b and x(t) 6= 0, t ∈ (tk, tk+1), k =
1, 2, . . . , n− 1, then ∫ b

a

|q(s)| ds >
(n− 2)!nn

(n− 1)n−2(b− a)n−1
. (2.22)

Theorem 2.9.Consider the differential equation

x(2n)(t) + q(t)x(t) = 0 (2.23)

and suppose a solutionx(t) of (2.23)satisfies the boundary value conditions

x(a) = x′(a) = . . . = x(n−1)(a) = 0, (2.24)

x(b) = x′(b) = . . . = x(n−1)(b) = 0, (2.25)

x(t) 6= 0, t ∈ (a, b), q(t) ∈ C([a, b]). Then∫ b

a

|q(s)| (s− a)2n−1(b− s)2n−1ds ≥ (2n− 1)[(n− 1)!]2(b− a)2n−1, (2.26)

especially, ∫ b

a

|q(s)| ds >
42n−1(2n− 1)[(n− 1)!]2

(b− a)2n−1
. (2.27)

Theorem 2.10.Let us consider the boundary value problem

x(2n)(t) + q(t)x(t) = 0, (2.28)

x(2i)(a) = x(2i)(b) = 0, i = 0, 1, . . . , n− 1. (2.29)

If x(t) is a solution of(2.28)satisfyingx(t) 6= 0, t ∈ (a, b), then∫ b

a

|q(s)| ds >
2n

(b− a)n
. (2.30)
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Although there is an extensive literature on Lyapunov-type inequalities for different
classes of differential equations, there is not much done for linear and nonlinear systems.
In 2003, Guseinov and Kaymakçalan [13] obtained Lyapunov-type inequalities for the
linear Hamiltonian system

x′(t) = a(t)x(t) + b(t)u(t),
u′(t) = −c(t)x(t)− a(t)u(t),

t ∈ R (2.31)

and the discrete Hamiltonian system

∆x(t) = a(t)x(t + 1) + b(t)u(t),
∆u(t) = −c(t)x(t + 1)− a(t)u(t),

t ∈ Z, (2.32)

where1− a(t) 6= 0 andb(t) ≥ 0 for all t ∈ Z. Their results are as follows.

Theorem 2.11. Assume thatb(t) ≥ 0 for all t ∈ R and assume(2.31) has a real
solution(x(t), u(t)) such thatx(a) = x(b) = 0 andx is not identically zero on[a, b],
wherea, b ∈ R with a < b. Then the Lyapunov inequality∫ b

a

|a(s)| ds +

(∫ b

a

b(s)ds

)1/2(∫ b

a

c+(s)ds

)1/2

≥ 2 (2.33)

holds, wherec+(t) = max{0, c(t)} is the nonnegative part ofc(t).

Theorem 2.12. Let n, m ∈ Z with n ≤ m − 2. Assume(2.32) has a real solution
(x(t), u(t)) such thatx(n) = x(m) = 0 andx is not identically zero on[n,m]. Then
the inequality

m−2∑
t=n

|a(t)|+

(
m−1∑
t=n

b(t)

)1/2(m−2∑
t=n

c+(t)

)1/2

≥ 2 (2.34)

holds.

Theorem 2.13.Suppose1 − a(t) > 0 andb(t) > 0 for all t ∈ Z. Letn, m ∈ Z with
n ≤ m − 2. Assume(2.32) has a real solution(x(t), u(t)) such thatx(n) = 0 and
x(m− 1)x(m) < 0. Then the inequality

m−2∑
t=n

|a(t)|+

(
m−2∑
t=n

b(t)

)1/2(m−2∑
t=n

c+(t)

)1/2

> 1 (2.35)

holds.

Theorem 2.14.Suppose1 − a(t) > 0 andb(t) > 0 for all t ∈ Z. Letn, m ∈ Z with
n ≤ m− 1. Assume(2.32)has a real solution(x(t), u(t)) such thatx(n− 1)x(n) < 0,
x(m) = 0. Then the inequality

m−2∑
t=n

|a(t)|+

(
m−1∑
t=n

b(t)

)1/2( m−2∑
t=n−1

c+(t)

)1/2

> 1 (2.36)

holds.
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Theorem 2.15. Suppose1 − a(t) > 0, b(t) > 0 and c(t) > 0 for all t ∈ Z. Let
n, m ∈ Z with n ≤ m − 1. Assume(2.32)has a real solution(x(t), u(t)) such that
x(n − 1)x(n) < 0 andx(m − 1)x(m) < 0, andx(t) 6= 0 for all t ∈ [n,m− 1]. Then
the inequality

m−2∑
t=n−1

|a(t)|+

(
m−1∑

t=n−1

b(t)

)1/2( m−2∑
t=n−1

c(t)

)1/2

> 1 (2.37)

holds.

Theorem 2.16. Suppose1 − a(t) > 0, b(t) > 0 and c(t) > 0 for all t ∈ Z. Let
n, m ∈ Z with n ≤ m − 2. Assume(2.32)has a real solution(x(t), u(t)) such that
x has generalized zeros atn andm, andx is not identically zero on[n,m]. Then the
inequality

m−2∑
t=n−1

|a(t)|+

(
m−1∑

t=n−1

b(t)

)1/2( m−2∑
t=n−1

c(t)

)1/2

> 1 (2.38)

holds.

In 2005, Jiang and Zhou [16] obtained Lyapunov-type inequalities for the linear
Hamiltonian system on time scales

x∆(t) = a(t)x(σ(t)) + b(t)u(t),
u∆(t) = −c(t)x(σ(t))− a(t)u(t),

t ∈ T, (2.39)

where1− µ(t)a(t) 6= 0 andb(t) ≥ 0 for all t ∈ T. Their results are as follows.

Theorem 2.17.Let a, b ∈ Tκ with σ(a) < b. Assume that(2.39)has a real solution
(x(t), u(t)) such thatx(σ(a)) = 0 = x(σ(b)) andx is not identically zero on[σ(a), b].
Then the inequality∫ b

σ(a)

|a(t)|∆t +

(∫ σ(b)

σ(a)

b(t)∆t

)1/2(∫ b

σ(a)

c+(t)∆t

)1/2

≥ 2 (2.40)

holds.

Theorem 2.18.Suppose1−µ(t)a(t) > 0 andb(t) > 0 for all t ∈ T. Leta, b ∈ Tκ with
σ(a) < b. Assume that(2.39)has a real solution(x(t), u(t)) such thatx(σ(a)) = 0 and
x(b)x(σ(b)) < 0. Then the inequality∫ b

σ(a)

|a(t)|∆t +

(∫ b

σ(a)

b(t)∆t

)1/2(∫ b

σ(a)

c+(t)∆t

)1/2

> 1 (2.41)

holds.
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Theorem 2.19.Suppose1−µ(t)a(t) > 0 andb(t) > 0 for all t ∈ T. Leta, b ∈ Tκ with
a < b. Assume that(2.39)has a real solution(x(t), u(t)) such thatx(a)x(σ(a)) < 0
andx(σ(b)) = 0. Then the inequality∫ b

σ(a)

|a(t)|∆t +

(∫ σ(b)

σ(a)

b(t)∆t

)1/2(∫ b

a

c+(t)∆t

)1/2

> 1 (2.42)

holds.

Theorem 2.20.Suppose1 − µ(t)a(t) > 0, b(t) > 0 and c(t) > 0 for all t ∈ T. Let
a, b ∈ Tκ with a < b. Assume that(2.39) has a real solution(x(t), u(t)) such that
x(a)x(σ(a)) < 0 andx(b)x(σ(b)) < 0. Then the inequality∫ b

a

|a(t)|∆t +

(∫ σ(b)

a

b(t)∆t

)1/2(∫ b

a

c(t)∆t

)1/2

> 1 (2.43)

holds.

Theorem 2.21. Suppose1 − µ(t)a(t) > 0, b(t) > 0 and c(t) > 0 for all t ∈ T.
Let a, b ∈ Tκ with σ(a) < b. Assume that(2.39)has a real solution(x(t), u(t)) with
generalized zeros inσ(a) andσ(b) andx is not identically zero on[σ(a), b]. Then the
inequality ∫ σ(b)

a

|a(t)|∆t +

(∫ σ(b)

a

b(t)∆t

)1/2(∫ σ(b)

a

c(t)∆t

)1/2

> 1 (2.44)

holds.

In 2006, Napoli and Pinasco [20] generalized the Lyapunov inequality for quasilin-
ear systems as follows.

Theorem 2.22.Let1 < p, q < ∞, f(x) > 0, g(x) > 0, and the nonnegative parameters

α andβ satisfy
α

p
+

β

q
= 1. If the system

−
(
|u′(x)|p−2

u′(x)
)′

= f(x) |u(x)|α−2 u(x) |v(x)|β

−
(
|v′(x)|q−2

v′(x)
)′

= g(x) |u(x)|α |v(x)|β−2 v(x)

 (2.45)

has a real nontrivial solution(u(x), v(x)) such thatu(a) = u(b) = v(a) = v(b) = 0,
wherea, b ∈ R with a < b are consecutive zeros andu andv are not identically zero on
[a, b], then

(b− a)α+β−1

(∫ b

a

f(x)dx

)α
p
(∫ b

a

g(x)dx

)β
q

≥ 2α+β. (2.46)
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In 2007, Tiryaki,Ünal and Çakmak [28] obtained Lyapunov-type inequalities for
the nonlinear system

x′(t) = α1(t)x(t) + β1(t) |u(t)|γ−2 u(t),

u′(t) = −β2(t) |x(t)|β−2 x(t)− α1(t)u(t),
t ∈ R, (2.47)

whereγ > 1, β > 1 are real constants, andβ1(t) > 0 for t ∈ [t0,∞). Their results are
as follows.

Theorem 2.23.Assume that(2.47) has a real solution(x(t), u(t)) such thatx(a) =
x(b) = 0 andx is not identically zero on[a, b], wherea, b ∈ R with a < b. Then the
inequality∫ b

a

|α1(t)| dt + M
β
α
−1

(∫ b

a

β1(t)dt

)1/γ (∫ b

a

β+
2 (t)dt

)1/α

≥ 2 (2.48)

holds, where
1

α
+

1

γ
= 1 andM = max

a<t<b
|x(t)|.

Theorem 2.24.Assume that(2.47)with α1(t) = 0 has a real solution(x(t), u(t)) such
thatx(a) = x(b) = 0 andx is not identically zero on[a, b], wherea, b ∈ R with a < b.
Then there existsτ ∈ (a, b) such that the inequalities

Mβ−α

(∫ τ

a

β1(t)dt

)α−1(∫ τ

a

β+
2 (t)dt

)
≥ 1 (2.49)

Mβ−α

(∫ b

τ

β1(t)dt

)α−1(∫ b

τ

β+
2 (t)dt

)
≥ 1 (2.50)

and

Mβ−α

(∫ b

a

β1(t)dt

)α−1(∫ b

a

β+
2 (t)dt

)
≥ 2α (2.51)

hold, where
1

α
+

1

γ
= 1 andM = max

a<t<b
|x(t)|.

In 2007, Guseinov and Zafer [14] obtained a Lyapunov-type inequality for the linear
impulsive Hamiltonian system

x′(t) = a(t)x(t) + b(t)u(t),
u′(t) = −c(t)x(t)− a(t)u(t),

x(τi+) = αix(τi−), u(τi+) = αiu(τi−)− βix(τi−),
t 6= τi, (2.52)

wheret ∈ R andi ∈ Z. Their result is as follows.
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Theorem 2.25.Let a, b, c ∈ PC[t1, t2], b(t) > 0, andαi 6= 0 for all i ∈ Z. Suppose
that (2.52)has a real solution(x(t), u(t)) such thatx(t1+) = x(t2−) = 0 andx(t) 6= 0
on (t1, t2). Then the inequality∫ t2

t1

|a(s)| ds +

(∫ t2

t1

b(s)ds

)1/2
{∫ t2

t1

c+(s)ds +
∑

t1≤τi<t2

(
βi

αi

)+
}1/2

> 2 (2.53)

holds.

In 2008,Ünal, Çakmak and Tiryaki [29] obtained Lyapunov-type inequalities for
the discrete nonlinear systems of the form

∆x(t) = α1(t)x(t + 1) + β1(t) |u(t)|γ−2 u(t),

∆u(t) = −β2(t) |x(t + 1)|β−2 x(t + 1)− α1(t)u(t),
t ∈ Z, (2.54)

whereγ > 1 andβ > 1 are constants,β1(t) > 0 and1− α1(t) 6= 0 for all t ∈ Z. Their
results are as follows.

Theorem 2.26.Supposeβ1(t) > 0 for all t ∈ Z. Let n,m ∈ Z with n ≤ m − 2.
Assume(2.54)has a real solution(x(t), u(t)) such thatx(n) = x(m) = 0 andx is not
identically zero on[n, m]. Then the inequality

m−2∑
t=n

|α1(t)|+ M
β
α
−1

(
m−1∑
t=n

β1(t)

)1/γ (m−2∑
t=n

β+
2 (t)

)1/α

≥ 2 (2.55)

holds, whereα is the conjugate number toγ, i.e.,
1

γ
+

1

α
= 1, M = |x(τ)| =

max
n+1≤t≤m−1

|x(t)|.

Theorem 2.27.Suppose1 − α1(t) > 0 and β1(t) > 0 for all t ∈ Z. Let n,m ∈ Z
with n ≤ m− 2. Assume(2.54)has a real solution(x(t), u(t)) such thatx(n) = 0 and
x(m− 1)x(m) < 0. Then the inequality

m−2∑
t=n

|α1(t)|+ M
β
α
−1

(
m−2∑
t=n

β1(t)

)1/γ (m−2∑
t=n

β+
2 (t)

)1/α

> 1 (2.56)

holds, whereα is the conjugate number toγ, i.e.,
1

γ
+

1

α
= 1, M = |x(τ)| =

max
n+1≤t≤m−1

|x(t)|.

Theorem 2.28.Suppose1− α1(t) > 0 andβ1(t) > 0 for all t ∈ Z. Letn,m ∈ Z with
n ≤ m− 1. Assume(2.54)has a real solution(x(t), u(t)) such thatx(n− 1)x(n) < 0
andx(m) = 0. Then the inequality

m−2∑
t=n

|α1(t)|+ M
β
α
−1

1

(
m−1∑
t=n

β1(t)

)1/γ ( m−2∑
t=n−1

β+
2 (t)

)1/α

> 1 (2.57)
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holds, whereα is the conjugate number toγ andM1 = |x(τ)| = max
n≤t≤m−1

|x(t)|.

Theorem 2.29.Suppose1 − α1(t) > 0, β1(t) > 0 andβ2(t) > 0 for all t ∈ Z. Let
n, m ∈ Z with n ≤ m − 1. Assume(2.54)has a real solution(x(t), u(t)) such that
x(n − 1)x(n) < 0 andx(m − 1)x(m) < 0, andx(t) 6= 0 for all t ∈ [n,m− 1]. Then
the inequality

m−2∑
t=n−1

|α1(t)|+ M
γ
α
−1

2

(
m−1∑

t=n−1

β1(t)

)1/α( m−2∑
t=n−1

β2(t)

)1/β

> 1 (2.58)

holds, whereα is the conjugate number toβ andM2 = |u(τ0)| = max
n−1≤τ≤m0−1

|u(τ)|.

Theorem 2.30.Suppose1 − α1(t) > 0, β1(t) > 0 andβ2(t) > 0 for all t ∈ Z. Let

n, m ∈ Z withn ≤ m−2. Assume(2.54)with
1

γ
+

1

β
= 1 has a real solution(x(t), u(t))

such thatx has generalized zeros atn andm, andx is not identically zero on[n,m].
Then the inequality

m−2∑
t=n−1

|α1(t)|+

(
m−1∑

t=n−1

β1(t)

)1/γ ( m−2∑
t=n−1

β2(t)

)1/β

> 1

holds.

In 2008,Ünal and Çakmak [30] obtained Lyapunov-type inequalities for nonlinear
system on time scales

x∆(t) = α1(t)x(σ(t)) + β1(t) |u(t)|γ−2 u(t),

u∆(t) = −β2(t) |x(σ(t))|α−2 x(σ(t))− α1(t)u(t),
(2.59)

where1 − µ(t)α1(t) 6= 0 andβ1(t) > 0, α > 1 is constant andα is the conjugate

number ofγ, i.e.,
1

α
+

1

γ
= 1. Their results are as follows.

Theorem 2.31.Supposeβ1(t) > 0 for all t ∈ T. Leta, b ∈ Tκ with σ(a) < b. Assume
that (2.59)has a real solution(x(t), u(t)) such thatx(σ(a)) = 0 = x(σ(b)) andx is
not identically zero on[σ(a), b]. Then the inequality

∫ b

σ(a)

|α1(t)|∆t +

(∫ σ(b)

σ(a)

β1(t)∆t

)1/γ (∫ b

σ(a)

β+
2 (t)∆t

)1/α

≥ 2 (2.60)

holds.
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Theorem 2.32.Suppose1 − µ(t)α1(t) > 0 andβ1(t) > 0 for all t ∈ T. Leta, b ∈ Tκ

with σ(a) < b. Assume that(2.59)has a real solution(x(t), u(t)) such thatx(σ(a)) = 0
andx(b)x(σ(b)) < 0. Then the inequality∫ b

σ(a)

|α1(t)|∆t +

(∫ b

σ(a)

β1(t)∆t

)1/γ (∫ b

σ(a)

β+
2 (t)∆t

)1/α

> 1 (2.61)

holds.

Theorem 2.33.Suppose1 − µ(t)α1(t) > 0 andβ1(t) > 0 for all t ∈ T. Leta, b ∈ Tκ

with a < b. Assume that(2.59)has a real solution(x(t), u(t)) such thatx(a)x(σ(a)) <
0 andx(σ(b)) = 0. Then the inequality

∫ b

σ(a)

|α1(t)|∆t +

(∫ σ(b)

σ(a)

β1(t)∆t

)1/γ (∫ b

a

β+
2 (t)∆t

)1/α

> 1 (2.62)

holds.

Theorem 2.34.Suppose1 − µ(t)α1(t) > 0, β1(t) > 0 andβ2(t) > 0 for all t ∈ T.
Let a, b ∈ Tκ with a < b. Assume that(2.59)has a real solution(x(t), u(t)) such that
x(a)x(σ(a)) < 0 andx(b)x(σ(b)) < 0. Then the inequality

∫ b

a

|α1(t)|∆t +

(∫ σ(b)

a

β1(t)∆t

)1/γ (∫ b

a

β2(t)∆t

)1/α

> 1 (2.63)

holds.

Theorem 2.35.Suppose1 − µ(t)α1(t) > 0, β1(t) > 0 andβ2(t) > 0 for all t ∈ T.
Let a, b ∈ Tκ with σ(a) < b. Assume that(2.59)has a real solution(x(t), u(t)) with
generalized zeros inσ(a) andσ(b) andx is not identically zero on[σ(a), b]. Then the
inequality

∫ σ(b)

a

|α1(t)|∆t +

(∫ σ(b)

a

β1(t)∆t

)1/γ (∫ σ(b)

a

β2(t)∆t

)1/α

> 1 (2.64)

holds.

In 2010, Yang and Lo [33] obtained a Lyapunov-type inequality for even-order dif-
ferential equations. Their result is as follow.

Theorem 2.36.Consider the2n-order linear differential equation

(r2n−1(t)(r2n−2(t)(. . . (r2(t)(r1(t)x
′)′)′ . . .)′)′)′ + q(t)x = 0, (2.65)
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whererk ∈ C2n−k([a, b], (0, +∞)), k = 1, 2, . . . , 2n − 1, q ∈ C([a, b], R). If x(t) is a
nonzero solution of(2.65)satisfying

x(k)(a) = x(k)(b) = 0, k = 0, 1, 2, . . . , n− 1, (2.66)

then we have ∫ b

a

ds

r1(s)

∫ b

a

|q(s)| ds > 4 (2.67)

for n = 1,

2

∫ b

a

|q(s)| ds > min
c∈[a,b]

H2(c) (2.68)

for n = 2, where

H2(c) =
1∫ c

a
ds

r1(s)

∫ c

a
ds

r2(s)

∫ c

a
ds

r3(s)

+
1∫ b

c
ds

r1(s)

∫ b

c
ds

r2(s)

∫ b

c
ds

r3(s)

, (2.69)

and

2

[
2n−1∏

k=n+2

∫ b

a

ds

rk(s)

]∫ b

a

|q(s)| ds > min
c∈[a,b]

Hn(c) (2.70)

for n ≥ 3, where

Hn(c) =
1∏n+1

k=1

∫ c

a
ds

rk(s)

+
1∏n+1

k=1

∫ b

c
ds

rk(s)

. (2.71)

In 2010, Çakmak [6] obtained Lyapunov-type inequalities for certain higher-order
differential equations. His results, which are improvements of the results of Yang [32]
(see Theorems 2.8 and 2.10) are as follows.

Theorem 2.37.Letn ∈ N, n ≥ 2, q(t) ∈ C([a, b]). If the differential equation

x(n) + q(t)x = 0 (2.72)

has a solutionx(t) satisfying the boundary value problem

x(a) = x(t2) = . . . = x(tn−1) = x(b) = 0, (2.73)

wherea = t1 < t2 < . . . < tn−1 < tn = b and x(t) 6= 0 for t ∈ (tk, tk+1), k =
1, 2, . . . , n− 1, then ∫ b

a

|q(s)| ds >
(n− 2)!nn

(n− 1)n−1(b− a)n−1
. (2.74)

Theorem 2.38.Consider the boundary value problem

x(2n) + q(t)x = 0, (2.75)

x(2i)(a) = x(2i)(b) = 0, i = 0, 1, . . . , n− 1. (2.76)

If x(t) is a solution of(2.75)satisfyingx(t) 6= 0 for t ∈ (a, b), then∫ b

a

|q(s)| ds >
22n

(b− a)2n−1
. (2.77)
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[9] Á. Elbert, A half-linear second order differential equation,Colloq. Math. Soc.
János Bolyai30 (1979), 158–180.

[10] S. B. Eliason, A Lyapunov inequality,J. Math. Anal. Appl.32 (1970), 461–466.

[11] S. B. Eliason, A Lyapunov inequality for a certain nonlinear differential equation,
J. London Math. Soc.2 (1970) 461–466.

[12] S. B. Eliason, Lyapunov type inequalities for certain second order functional dif-
ferential equations,SIAM J. Appl. Math.27 (1974), no. 1, 180–199.
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