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Abstract

We first establish a necessary and sufficient condition for the reducibility of
linear dynamic systems on time scales. Next, by applying the Floquet theory, suf-
ficient conditions are obtained for the stability.
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1 Introduction

In 1990, the theory of dynamic equations on time scales was introduced by Stefan
Hilger [8] in order to unify continuous and discrete calculus. Since then, there have
been many papers investigating analysis and dynamic equations on time scales, not only
unifying the standard cases, that is ODEs a3, but also extending to other cases,

for exampleg-difference equations.

A time scale is an arbitrary closed subset of reals, and the cases when this time
scale is equal to the reals or to the integers represent the classical theories of differential
and difference equations. Many other interesting time scales exist, and they give rise
to plenty of applications. Since Stefan Hilger formed the definition of derivatives and
integrals on time scales, several authors have expounded on various aspect of the new
theory, see the paper by Agarwal et al [2] and the references cited therein. Books on the
subject of time scales by Bohner and Peterson [3, 4] summarize and organize much of
the time scales calculus. For the notions used below we refer to the next section about
calculus on time scales and references given therein.
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In this paper we intent to give sufficient conditions for reducibility and stability of
linear dynamic systems on time scales. The results of this paper include the results
of [14,15]. The paper is organized as follows: In the next section we present the basic
definitions and the theory of calculus on time scales. Section 3 is devoted to the proof
of the sufficient conditions for reducibility of dynamic systems on time scales. In Sec-
tion 4, we give some new stability criteria by using some criteria which are given by
C. Potzsche et al [13] and by J. J. DaCunha in [9].

2 Some Preliminaries

In order to make the paper self contained, we first introduce some necessary definitions
and results concerning time scales. For more detailed information see the books [3, 4]
and the papers [2, 8].

Definition 2.1. A time scal€eT is an arbitrary nonempty closed subset of the real num-
bersR. The mappingsr,p : T — T defined byo(t) := inf{s € T:s >t} and
p(t) := sup{s € T : s < t} are called jump operators (forward and backward jump,
respectively).

These jump operators enable us to classify the poiota time scale as right-dense,
right-scattered, left-dense, and left-scattered depending on whether ¢, o(t) > t,
p(t) = t, p(t) < t, respectively, for any € T. The graininesg of the time scale is
defined byu(t) := o(t) —t. Afunction f : T — Ris called rd-continuous provided it is
continuous at right-dense pointsihand its left-sided limits exist (finite) at left-dense
points inT.

If supT < oo andsup T is left-scattered, we 1&f" = T \ {sup T'}. Otherwise, we
let T" = T. Atime scal€eT with sup T = o is calledhomogeneous the graininess is
constant. IftIHEO w(t) exists, therf is said to beasymptotically homogeneaus

Time scale calculus unifies continuous and discrete calculus and is much more gen-
eral asT can be any nonempty closed subset of the rRalg-or example it includes
guantum calculus [10] which is time scales calculus on

" u{0}:={0,1,¢"", ¢ ¢ ...} and hZ = {0,+h,£2h, £3h,...}
with ¢ > 1 andh > 0.

Definition 2.2. Assumef : T — R is a function and € T" (the rangeR of f may
actually be replaced by any Banach space). Then we d¢fiig) to be the number
(provided it exist) with the property that for any given- 0, there is a neighborhood of
t(i.e.,U=(t—0,t+9)NTfor somes > 0) such that

1F(o()) = f(s) — fA@) [o(t) — s]| <elo(t) — 5| forall s e U.

We call f2(t) the delta (or Hilger) derivative of att. Moreover, we sayf is delta
differentiable (or in short: differentiable) dh providedf~ (¢) exists for allt € T*.
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The following theorem concerning (delta) differentiation is due to Hilger [8]. See

also [3, Theorem 1.16].
Theorem 2.3.Letf : T — R be afunction and let € T*. Then we have the following:
(i) If f is differentiable at, thenf is continuous at.

(i) If f is continuous at andt is right-scattered, thery differentiable att with
A = Le®) — £

p(t)

ft) = f(s)

t—s

(iii) If ¢t is right-dense, therf is differentiable at iff the limit lirr% exists

as a finite number. In this cagé® (t) = 1in% M
s— -5

(iv) If fis differentiable at, thenf(o(t)) = f(t) + u(t) f2(t).

We will use the product rule and the quotient rule for the derivative of the product

fg and the quotient /g (if g¢g° # 0 whereg® denotes the composite functigr o) of
two differentiable functiong, g : T — R:

A
(f9)% =29+ f79™ = fg* + [2¢° and (g) = —ngg;(,ng.

Remark2.4. Note that in the cas®& = R we haves(t) = t, u(t) = 0, f2(t) = f'(t)
(ordinary derivative off) and in the cas& = Z we haveo(t) = ¢t + 1, p(t) = 1,

fA(t) = Af(t) = f(t+1) — f(t) (whereA is the usual forward difference operator).

Another important time scale 8 = ¢"° := {¢™: m € Ny} with ¢ > 1, for which
o(t) = qt, u(t) = (¢ — 1)t, and then one gets the so-calledlerivative (quantum

derivative) [101/2 (1) = D, f(1) — L) = /(1)
(¢ — 1)t
Definition 2.5. Supposef : T x R* — R. Then the equation
y® = f(t,y,9°)

is called a first-order dynamic equation, sometimes also a differential equation.

fty.y7) = Aty + fao(t) or f(ty,y7) = fi(t)y” + fa(t) for functions f, and f,
then the first-order dynamic equations is called a linear dynamic equation.

Definition 2.6. Let A be anm x n matrix-valued function ofl. We say thatA is rd-
continuous orT if each entry ofA is rd-continuous off' and similarly we say thatl is
differentiable orl" provided each entry ofl is differentiable oril, and in this case we
put

A = (aA

ij)1<i<m 1<j<<n’

SIS > >

where A = (a;j)

Il e e
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An m x m matrix A(t) defined on time scal€B is called regressive if for all € T,
det [I 4 u(t)A(t)] # 0, wherel is them x m unit matrix. The set of all rd-continuous
and regressive functions defined Bris denoted byR = R(T).

Theorem 2.7.1f A and B are differentiablen x m-matrix-valued functions, then
(i) (A+ B)* = 4% + B*;
(i) (aA)® = aA” if o is constant;
(i) (AB)® = A®B+ A°B” = A®B” + AB®;
(iv) (A7)% = — (A7) ARA™ = —A71 A% (A7) 71 if AA” is invertible;
(V) (AB™)® = (4% — AB7'B*) (B°)™' = (A% — (AB")" B*) B! if BB" is
invertible.
Definition 2.8. Let p € [0, 00). Then the time scal® is calledp-periodic if
(i) t € Timpliesthatt +p € T,
(i) w(t) = plt+p)

forallt € T. An m x m-matrix-valued functionA : T — R™ ™ is p-periodic if
A(t) = A(t+p) forallt € T.

3 Reducibility of Dynamic Systems

In [14] Tiryaki investigated necessary and sufficient conditions to reduce homogeneous
linear system of differential equations

r=A(t)x

with variable coefficients. Recently, Tiryaki and Misir [15] investigated necessary and
sufficient conditions for the homogeneous linear system of difference equations

z(n+1) = A(n)z(n),

where A(n) = (a;;) is anm x m nonsingular matrix with real entries and the vector
z(n) = (x1(n), z2(n), ..., zm(n))" € R™. In this section our aim is to give necessary
and sufficient conditions for the reducibility of linear dynamic systems on time scales,
which include the results of [14, 15].
Let T be a given time scale and consider the first-order linear system of dynamic
equations
z2(t) = A(t)x(t) +b(t), teT, (3.1)
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whereA(t) andb(t) are givenm x m andm x 1-matrix-valued functions, respectively.
If for somet, € T,

z(to) = o (3.2)

is specified, then (3.1) is called an initial value problem (IVP). The equation (3.1) is
reducible to the equation
y2(t) = B(t)y(t) +d(t) (3.3)

if there exists a nonsingular matrb(¢) with real entries such that
x(t) = H(t)y(t), where H(t)= S(t)H(t) and H(ty) = I. (3.4)

Let S(¢) be anm x m-matrix function whose entries are real-valued functions defined
fort € T. Consider the system

Z22(t) = S(t)z(t), teT. (3.5)

Let H(t) be a fundamental matrix of (3.5) (i.4(t) = es(t, ty)) satisfyingH (ty) = 1
andH(t) = S(t)H(t). H(t) can be used to transform (3.1) into (3.3).

Therefore, we can give the following theorem concerning reducibility of (3.1) into
the form of (3.3).

Theorem 3.1. The inhomogeneous linear dynamic sys{@) is reducible to(3.3)
using the transformatio(B.4), if and only if there exists am x m regular real matrix
S(t) such that

A(to) = Si(to) B(to) + S(to) (3.6)

and
AR(t) = S2(t) = (A= )7 (1)S(1) + D(t) + E(t) 3.7)
holds for allt € T, where D(t ) = (SP@)STHE) +S7()SH)STH(t)) (A—9) (1),

E(t) = S{(6)Si((t)H(t)B2(t)H™'(t) and Sy (t) = I + u(t)S(1).
Proof. Let S(¢) and H(t) be defined as above. Because of
el(t,to) = [1 + u(t)S(t)] es(t, to),
we get
H(t) = S1(t)H (). (3.8)
By using the transformation (3.4) and the fact (3.8) in (3.1), we get
[H(t)y(0)]" = A H )y (1) + b(t),

and after reorganization of the above equation we get

y=(t) = HT'()ST(t) (A = S) (O H(£)y(t) + d(t).
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Thus (3.1) is reducible to (3.3) with
B(t)=H't)S;'(t) (A—S)(t)H(t) and d(t) = H *(t)S;(t)b(t).

If we differentiate both sides of the above first equation and if we use the facts in Theo-
rem 2.3 and Theorem 2.7, we get

B = {[H'S7'][(A-9s) H]}®
= {[SiH] ' [(A-S)H 1}A
- ([ H ™ (A=) H+ (1S:H] ™) (A~ 5) H*
= H) {(SPH+SJHA)H'S;' (A— S)H
—(A- 9 —(A—S)"HA}

— —(S,H)" {(SPS +S7SSTY (A—S)H
—(A=S)*H~(A-S) SH}.
Thus we have
SIS HBAH ™ = (SPST 4+ 578S7 1) (A—S) —(A—S)7S — (A—9)*
Finally we obtain
A% =82 — (A= 8)7 S+ (SpSH 4+ 87SSY) (A—S) + S{SiHBYH ™.

Clearly, B(t) is the unique solution of the IVP

BA(t) = F(t) (3.9)
B(to) = S~ (to) [A(to) — S(to)], (3.10)

whereF(t) := [(H'(t)S7'(t) [A(t) — S(t)] H(t))}A. Hence, the solutions of (3.7)—
(3.6) and (3.9)—(3.10) are equivalent. O

Note that ifb(¢) = 0 for all t € T, thend(t) = 0. Thus (3.1) becomes
22 (t) = A(t)xz(t) (3.11)

and (3.3) becomes
yA(t) = By(t). (3.12)

Corollary 3.2. The inhomogeneous linear dynamic sys{8rt)is reducible to

YA () = By(t) + d(t) (3.13)
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with a constant matrib3 by the use of transformatiqi8.4)if and only if there exists an
m x m regular real matrixS(t) defined oril' such that

AR() = S2() + (SPSTT+S7SST) () (A= S) (t) — (A—8)7 (¢)S(t)  (3.14)
and
Additionally if the matrix(¢) satisfies the IVP

b2(t) = — (ST + S7S) (1)ST(0)D(t),  blte) = St (to)d(to),

then(3.13)becomes
y>(t) = By(t) +d

with a constant matrix.

Remark3.3. If o(t) = t, then we havei(t) = 0, A = AandS; = S;' = S = I.

Thus the inhomogeneous linear dynamic system (3.1) is reducible to (3.3) by the help
of the transformation of (3.4) if and only if there exists@anx m regular real matrix

S(t) such that

A'(t)=S"(t) + S(H)A(t) — A(t)S(t) + H(t)B'(t)H ' (t)

and
A(to) = B(to) + S(to).
The inhomogeneous linear dynamic system (3.1) is reducible to (3.13) by the help of

the transformation of (3.4) if and only if there existsranx m regular real matrixS ()
such that

Al(t) = S'(t) + S(t)A(t) — A(t)S(t) (3.16)
and
A(to) = B+ S(to). (3.17)

Naturally, Theorem 3.1 and Corollary 3.2 and Remark 3.3 coincide with [14, Theo-
rem 1 and Corollary 1] whef = R andb(t) = O forall ¢ € T.

Remark3.4. If o(t) > t, then the inhomogeneous linear dynamic system (3.1) is re-
ducible to (3.3) by the help of the transformation of (3.4) if and only if there exists an
m x m regular real matrixS(t¢) such that

[A(t) = S(1))7 Su(t) = ST(8) [A(t) = S(O)] + ST (1) Sy () H (t)u(t) B2 () H ' (¢)

and
Alto) = Si(to)B(to) + S(to)-
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The inhomogeneous linear dynamic system (3.1) is reducible to (3.13) by the help of
the transformation of (3.4) if and only if there existsranx m regular real matrixS (¢)
such that

[A(t) = S@)]7 S1(t) = S7(t) [A(t) — S(¢)] (3.18)

and
Alto) = Si(to) B + S(to)- (3.19)

Naturally, Theorem 3.1 and Corollary 3.2 and Remark 3.4 coincide with [15, Theo-
rem 2.1 and Corollary 2.2.] whél = N andb(t) = O forall ¢t € N.

4  Stability of Dynamic Systems

It is well known that exponential decay of the solution of a linear autonomous ordinary
differential equation (ODE)’(¢) = Axz(t), t € R or of an autonomous difference equa-
tion (OAE) z(n+ 1) = Az(n), n € Z, can be characterized by spectral propertied.of
Namely, the solutions tend to 0 exponentiallytas oo, if and only if all the eigenval-
ues ofA € C™*™ have negative real parts or a modulus smaller than 1, respectively (cf.
Hahn [7, p. 14], Agarwal [1, p. 227]). Cd®zsche et al in [13] generalized this classical
result to linear time-invariant dynamic equatiarts = Az on arbitrary time scales.

First, however, we fix some notation. In the followirk,denotes the real = R)
or the complex K = C) field. For a complex number € C, we denote byRe z and
Im z the real and imaginary part, respectively, @\d=) is the open ball with center
and radiug > 0 in the complex plane. As usud{™*™ is the space of square matrices
with m rows, ands(A) C C denotes the set of eigenvalues of a mattix K™*™.

Let A : T" — K™ be rd-continuous and consider the-dimensional linear
system of dynamic equations

5 = A(t)x. (4.1)

Letd, : {(¢t,7) € T" x T : t > 7} — K™ ™ denote theransition matrixcorrespond-
ing to (4.1), that isyp(t,7,&) = P4(t, 7)€ solves the initial value problem (4.1) with
initial conditionz(7) = ¢ for £ € K™ andt, 7 € T witht > 7.

We are interested in the stability of the equilibrium position= 0 of system (4.1)
and introduce the following definitions.

Definition 4.1 (Exponential Stability [13]). Let T be a time scale which is unbounded
above. We call system (4.1) exponentially stable if there exists a constand such
that for everyt, € T there exists &/ = M(ty) > 1 with

@At to)|| < Me(t=0) for t > t,,

and uniformly exponentially stable ¥/ can be chosen independentlytgfin the defi-
nition of exponential stability.

We need the following well-known theorems to obtain a stability result [9, 13].



Reducibility and Stability for Dynamic Systems 199

Proposition 4.2 (See [13]).Let T be a time scale which is unbounded above and let
A € C. The scalar equation
2 =X\x, ze€C (4.2)

is exponentially stable if and only if one of the following conditions is satisfied for
arbitrary t, € T:

T
1 1
/ im gL sAL
to SN\a(t)

(i) v(\) :=limsup .

T—o00 T — tO
(i) VI' € T : 3t € T with¢ > T such thatl + u(t)\ = 0,
where we use the conventibig 0 = —oo in (i).

Theorem 4.3 (Characterization of Exponential Stability [13]). Let T be a time scale
which is unbounded above antl € K"*"™ be regressive. If for all eigenvalues df
there existsy > 0 such that

<1+ pt)A®)] for teT (4.3)
ando(A) C Sc(T), then the time-invariant system
8 = Ax (4.4)

is exponentially stable, where

T—o0 - tO

g log |1
Se(T) = {/\E(C: lim sup / lim MAt<O, tOGT}.
¢

o SN\at) S

Theorem 4.4 (See [13])Let T be a time scale which is unbounded above and
K™ ™ and consider the linear systef#.4). Then the following assertions hold:

(i) If o(A) C Sc(T), then the time scal& has bounded graininess and if for all
defectivel € o(A) the scalar equatior{4.2) is uniformly exponentially stable,
then systen.4)is exponentially stable.

(i) If A is diagonalizable, then syste(d.4) is exponentially stable if and only if
U(A) - S(C(T)

Recall that an eigenvalue is callddfectivef it is not semi-simple, i.e., if geometric
and algebraic multiplicities do not coincide.

Definition 4.5 (See [9]).Letz, € R™ be a nonzero vector anél(t) be any fundamental
matrix for thep-periodic system (3.11). The vector solution of the system with initial
conditionz(ty) = x, is given byz(t) = ¥(t)¥ ' (¢y)xo. The operatod/ : R™ — R™
given by

M(Io) = @A(t[) + D, to)ﬂfo = \I[(t[) + p)‘l/_l(to)x()

is called a monodromy operator. The eigenvalues of the monodromy operator are called
the Floquet (or characteristic) multipliers of the system (3.11).
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Theorem 4.6 (See [9]).Suppose thah, ..., \,, are the Floquet multipliers for the
p-periodic system
22(t) = At)z(t), x(to) = o, (4.5)

whereA(t) € R(T,K™ ™) andp-periodic for allt € T. Then the following assertions
hold:

(i) If all the Floquet multipliers have modulus less one, then the sy@tdiyis expo-
nentially stable.

(i) If all the Floquet multipliers have modulus less than or equal to one, then the
systen{4.5)is stable.

Definition 4.7 (See [6]).Let A be anm x n-matrix-valued function oril. Then its
spectral radiug (A) is defined as

p(A) :=max {|\| : Ais an eigenvalue oft} .

Since stability of (3.1) and (3.11) are equivalent, in view of Proposition 4.2, The-
orem 4.3, Theorem 4.4 and Theorem 4.6, we obtain from Corollary 3.2 the following
new stability criteria for (3.1).

Theorem 4.8. Let T be a time scale which is unbounded above. Assume there exists
a regressive and periodic matri%(¢) which satisfieg3.14){3.15) and the following
conditions:

(i) Si'(to) [A(to) — S(t)] € R;
(i) all the Floquet multipliers of(¢) have modulus less one;
(iif) (ST (to) [Alto) — S(to)]) C Sc(T);
(iv) forall A € p(S;*(to) [A(te) — S(to)]), the inequality(4.3) holds.
Then(3.1)is exponentially stable.

Definition 4.9 (See [13]).Given a time scal& which is unbounded above, we define
for arbitraryt, € T

1 r log |1
Sc(T) = {/\ € C: limsup / lim MAt <0, ty € T}
T—00 — to to sN\(t) S
and
Sr(T)={AeR: VI' e T: 3t e Twitht > T such thatl + u(t)A = 0}.

The set of exponential stability for the time scdlés then defined by

S(T) = Sc(T) U Sg(T).



Reducibility and Stability for Dynamic Systems 201

Theorem 4.10.Let T be a time scale which is unbounded above and has bounded
graininess. Assume there exists a regressive and periodic m#tjxwhich satisfies
(3.14)«3.15)and following conditions:

(i) All the Floquet multipliers of(¢) have modulus less one;

(i) for all defectiveh € p(S;*(to) [A(to) — S(to)]), the equatior(4.2) is uniformly
exponentially stable;

(i) p(ST*(to) [A(to) — S(to)]) € S(T).
Then(3.1)is exponentially stable.

Theorem 4.11.Let T be a time scale which is unbounded above. T{&#h)is ex-
ponentially stable if there exists a regressive and periodic mat(i}y which satisfies
(3.14)3.15)and the following conditions:

(i) All the Floquet multipliers of(¢) have modulus less one;
(i) p(ST'(to) [Alto) — S(to)]) C S(T);
(iii) S;'(to) [A(to) — S(t)] is diagonalizable.

Corollary 4.12. LetT be a time scale which is unbounded above withh > 0. Then
(3.1)is exponentially stable if one of the following conditions holds for a regressive and
periodic matrixS(¢) which satisfie$3.18)(3.19)

(i) S;'(to) [A(to) — S(to)] € R and the conditiongi) and (i) of Theorem 4.8 hold;
(i) the conditiongi) and (ii) of Theorem 4.10 hold;

(iii) S;'(to) [A(to) — S(to)] is diagonalizable and the conditiori§ and (ii) of Theo-
rem 4.11 hold.

Example 4.13.LetT = N = {0,1,2,3,...}. Then we can consider (4.1) in the form
of

z(n+1) = Aj(n)z(n), (4.6)
and the conditions (3.18) and (3.19) become
Ai(n+1)Si(n) = Si(n+1)A;(n) (4.7)
and
Ay (ng) = Si(no)Bu, (4.8)

whereA;(n) = A(n) + 1, Si(n) = S(n) + I andB, = B + I. Consider the system

1
Z(—=1)" — an+l
z(n+1)= 4( ) 815 z(n), 0<pB<L1. (4.9)

0 (D"
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If we define a-periodic matrix

Sy o
am=| 2 0 ! et |
5(-1)
then the matrixS;(n) satisfies the condition (4.7) and all the Floquet multipliers of
2
1
Si(n), Ay = —% and\, = 7 have modulus less one. From (4.8) we get
1 1
= 2’ 1
Bl - Sl (0)A1(0) - 1
0o —-=
4

andp(B;) < 1. Applying Theorem 4.8 we see that the zero solution of (4.9) or equiva-
lently (4.1) is exponentially stable.
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