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Abstract

We first establish a necessary and sufficient condition for the reducibility of
linear dynamic systems on time scales. Next, by applying the Floquet theory, suf-
ficient conditions are obtained for the stability.
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1 Introduction

In 1990, the theory of dynamic equations on time scales was introduced by Stefan
Hilger [8] in order to unify continuous and discrete calculus. Since then, there have
been many papers investigating analysis and dynamic equations on time scales, not only
unifying the standard cases, that is ODEs and O∆Es, but also extending to other cases,
for exampleq-difference equations.

A time scale is an arbitrary closed subset of reals, and the cases when this time
scale is equal to the reals or to the integers represent the classical theories of differential
and difference equations. Many other interesting time scales exist, and they give rise
to plenty of applications. Since Stefan Hilger formed the definition of derivatives and
integrals on time scales, several authors have expounded on various aspect of the new
theory, see the paper by Agarwal et al [2] and the references cited therein. Books on the
subject of time scales by Bohner and Peterson [3, 4] summarize and organize much of
the time scales calculus. For the notions used below we refer to the next section about
calculus on time scales and references given therein.
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In this paper we intent to give sufficient conditions for reducibility and stability of
linear dynamic systems on time scales. The results of this paper include the results
of [14, 15]. The paper is organized as follows: In the next section we present the basic
definitions and the theory of calculus on time scales. Section 3 is devoted to the proof
of the sufficient conditions for reducibility of dynamic systems on time scales. In Sec-
tion 4, we give some new stability criteria by using some criteria which are given by
C. P̈otzsche et al [13] and by J. J. DaCunha in [9].

2 Some Preliminaries

In order to make the paper self contained, we first introduce some necessary definitions
and results concerning time scales. For more detailed information see the books [3, 4]
and the papers [2,8].

Definition 2.1. A time scaleT is an arbitrary nonempty closed subset of the real num-
bersR. The mappingsσ, ρ : T → T defined byσ(t) := inf {s ∈ T : s > t} and
ρ(t) := sup {s ∈ T : s < t} are called jump operators (forward and backward jump,
respectively).

These jump operators enable us to classify the pointst of a time scale as right-dense,
right-scattered, left-dense, and left-scattered depending on whetherσ(t) = t, σ(t) > t,
ρ(t) = t, ρ(t) < t, respectively, for anyt ∈ T. The graininessµ of the time scale is
defined byµ(t) := σ(t)− t. A functionf : T → R is called rd-continuous provided it is
continuous at right-dense points inT and its left-sided limits exist (finite) at left-dense
points inT.

If sup T < ∞ andsup T is left-scattered, we letTκ = T \ {sup T}. Otherwise, we
let Tκ = T. A time scaleT with sup T = ∞ is calledhomogeneousif the graininess is
constant. Iflim

t→∞
µ(t) exists, thenT is said to beasymptotically homogeneous.

Time scale calculus unifies continuous and discrete calculus and is much more gen-
eral asT can be any nonempty closed subset of the realsR. For example it includes
quantum calculus [10] which is time scales calculus on

qZ ∪ {0} :=
{
0, 1, q±1, q±2, q±3, . . .

}
and hZ = {0,±h,±2h,±3h, . . .}

with q > 1 andh > 0.

Definition 2.2. Assumef : T → R is a function andt ∈ Tκ (the rangeR of f may
actually be replaced by any Banach space). Then we definef∆(t) to be the number
(provided it exist) with the property that for any givenε > 0, there is a neighborhood of
t (i.e.,U = (t− δ, t + δ) ∩ T for someδ > 0) such that

|f(σ(t))− f(s)− f∆(t) [σ(t)− s] | ≤ ε|σ(t)− s| for all s ∈ U.

We call f∆(t) the delta (or Hilger) derivative off at t. Moreover, we sayf is delta
differentiable (or in short: differentiable) onT providedf∆(t) exists for allt ∈ Tκ.
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The following theorem concerning (delta) differentiation is due to Hilger [8]. See
also [3, Theorem 1.16].

Theorem 2.3.Letf : T → R be a function and lett ∈ Tκ. Then we have the following:

(i) If f is differentiable att, thenf is continuous att.

(ii) If f is continuous att and t is right-scattered, thenf differentiable att with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right-dense, thenf is differentiable att iff the limit lim
s→t

f(t)− f(s)

t− s
exists

as a finite number. In this casef∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(iv) If f is differentiable att, thenf(σ(t)) = f(t) + µ(t)f∆(t).

We will use the product rule and the quotient rule for the derivative of the product
fg and the quotientf/g (if ggσ 6= 0 wheregσ denotes the composite functiong ◦ σ) of
two differentiable functionsf, g : T → R:

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ and

(
f

g

)∆

=
f∆g − fg∆

ggσ
.

Remark2.4. Note that in the caseT = R we haveσ(t) = t, µ(t) = 0, f∆(t) = f ′(t)
(ordinary derivative off ) and in the caseT = Z we haveσ(t) = t + 1, µ(t) = 1,
f∆(t) = ∆f(t) = f(t + 1) − f(t) (where∆ is the usual forward difference operator).
Another important time scale isT = qN0 := {qm : m ∈ N0} with q > 1, for which
σ(t) = qt, µ(t) = (q − 1)t, and then one gets the so-calledq-derivative (quantum

derivative) [10]f∆(t) = Dqf(t) =
f(qt)− f(t)

(q − 1)t
.

Definition 2.5. Supposef : T× R2 → R. Then the equation

y∆ = f(t, y, yσ)

is called a first-order dynamic equation, sometimes also a differential equation. If
f(t, y, yσ) = f1(t)y + f2(t) or f(t, y, yσ) = f1(t)y

σ + f2(t) for functionsf1 andf2,
then the first-order dynamic equations is called a linear dynamic equation.

Definition 2.6. Let A be anm × n matrix-valued function onT. We say thatA is rd-
continuous onT if each entry ofA is rd-continuous onT and similarly we say thatA is
differentiable onT provided each entry ofA is differentiable onT, and in this case we
put

A∆ =
(
a∆

ij

)
1≤i≤m,1≤j≤≤n

, where A = (aij)1≤i≤m,1≤j≤≤n .



194 Adil Mısır and S̈uleymanÖğrekçi

An m × m matrix A(t) defined on time scalesT is called regressive if for allt ∈ Tκ,
det [I + µ(t)A(t)] 6= 0, whereI is them×m unit matrix. The set of all rd-continuous
and regressive functions defined onT is denoted byR = R(T).

Theorem 2.7. If A andB are differentiablem×m-matrix-valued functions, then

(i) (A + B)∆ = A∆ + B∆;

(ii) (αA)∆ = αA∆ if α is constant;

(iii) (AB)∆ = A∆B + AσB∆ = A∆Bσ + AB∆;

(iv)
(
A−1

)∆
= − (Aσ)−1 A∆A−1 = −A−1A∆ (Aσ)−1 if AAσ is invertible;

(v)
(
AB−1

)∆
=

(
A∆ − AB−1B∆

)
(Bσ)−1 =

(
A∆ −

(
AB−1

)σ
B∆

)
B−1 if BBσ is

invertible.

Definition 2.8. Let p ∈ [0,∞). Then the time scaleT is calledp-periodic if

(i) t ∈ T implies thatt + p ∈ T,

(ii) µ(t) = µ(t + p)

for all t ∈ T. An m × m-matrix-valued functionA : T → Rm×m is p-periodic if
A(t) = A(t + p) for all t ∈ T.

3 Reducibility of Dynamic Systems

In [14] Tiryaki investigated necessary and sufficient conditions to reduce homogeneous
linear system of differential equations

·
x = A(t)x

with variable coefficients. Recently, Tiryaki and Misir [15] investigated necessary and
sufficient conditions for the homogeneous linear system of difference equations

x(n + 1) = A(n)x(n),

whereA(n) = (aij) is anm × m nonsingular matrix with real entries and the vector
x(n) = (x1(n), x2(n), . . . , xm(n))T ∈ Rm. In this section our aim is to give necessary
and sufficient conditions for the reducibility of linear dynamic systems on time scales,
which include the results of [14,15].

Let T be a given time scale and consider the first-order linear system of dynamic
equations

x∆(t) = A(t)x(t) + b(t), t ∈ T, (3.1)
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whereA(t) andb(t) are givenm×m andm× 1-matrix-valued functions, respectively.
If for somet0 ∈ T,

x(t0) = x0 (3.2)

is specified, then (3.1) is called an initial value problem (IVP). The equation (3.1) is
reducible to the equation

y∆(t) = B(t)y(t) + d(t) (3.3)

if there exists a nonsingular matrixS(t) with real entries such that

x(t) = H(t)y(t), where H∆(t) = S(t)H(t) and H(t0) = I. (3.4)

Let S(t) be anm ×m-matrix function whose entries are real-valued functions defined
for t ∈ T. Consider the system

z∆(t) = S(t)z(t), t ∈ T. (3.5)

Let H(t) be a fundamental matrix of (3.5) (i.e.,H(t) = eS(t, t0)) satisfyingH(t0) = I
andH∆(t) = S(t)H(t). H(t) can be used to transform (3.1) into (3.3).

Therefore, we can give the following theorem concerning reducibility of (3.1) into
the form of (3.3).

Theorem 3.1. The inhomogeneous linear dynamic system(3.1) is reducible to(3.3)
using the transformation(3.4), if and only if there exists anm×m regular real matrix
S(t) such that

A(t0) = S1(t0)B(t0) + S(t0) (3.6)

and
A∆(t) = S∆(t)− (A− S)σ (t)S(t) + D(t) + E(t) (3.7)

holds for all t ∈ T, whereD(t) =
(
S∆

1 (t)S−1
1 (t) + Sσ

1 (t)S(t)S−1
1 (t)

)
(A− S) (t),

E(t) = Sσ
1 (t)S1(t)H(t)B∆(t)H−1(t) andS1(t) = I + µ(t)S(t).

Proof. Let S(t) andH(t) be defined as above. Because of

eσ
s (t, t0) = [I + µ(t)S(t)] es(t, t0),

we get
Hσ(t) = S1(t)H(t). (3.8)

By using the transformation (3.4) and the fact (3.8) in (3.1), we get

[H(t)y(t)]∆ = A(t)H(t)y(t) + b(t),

and after reorganization of the above equation we get

y∆(t) = H−1(t)S−1
1 (t) (A− S) (t)H(t)y(t) + d(t).
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Thus (3.1) is reducible to (3.3) with

B(t) = H−1(t)S−1
1 (t) (A− S) (t)H(t) and d(t) = H−1(t)S−1

1 (t)b(t).

If we differentiate both sides of the above first equation and if we use the facts in Theo-
rem 2.3 and Theorem 2.7, we get

B∆ =
{[

H−1S−1
1

]
[(A− S) H]

}∆

=
{
[S1H]−1 [(A− S) H]

}∆

=
(
[S1H]−1)∆

(A− S) H +
(
[S1H]−1)σ

[(A− S) H]∆

= − (S1H)σ−1 {(
S∆

1 H + Sσ
1 H∆

)
H−1S−1

1 (A− S) H

− (A− S)∆ H − (A− S)σ H∆
}

= − (S1H)σ−1 {(
S∆

1 S−1
1 + Sσ

1 SS−1
1

)
(A− S) H

− (A− S)∆ H − (A− S)σ SH
}

.

Thus we have

−Sσ
1 S1HB∆H−1 =

(
S∆

1 S−1
1 + Sσ

1 SS−1
1

)
(A− S)− (A− S)σ S − (A− S)∆ .

Finally we obtain

A∆ = S∆ − (A− S)σ S +
(
S∆

1 S−1
1 + Sσ

1 SS−1
1

)
(A− S) + Sσ

1 S1HB∆H−1.

Clearly,B(t) is the unique solution of the IVP

B∆(t) = F (t) (3.9)

B(t0) = S−1(t0) [A(t0)− S(t0)] , (3.10)

whereF (t) :=
[(

H−1(t)S−1
1 (t) [A(t)− S(t)] H(t)

)]∆
. Hence, the solutions of (3.7)–

(3.6) and (3.9)–(3.10) are equivalent.

Note that ifb(t) = 0 for all t ∈ T, thend(t) = 0. Thus (3.1) becomes

x∆(t) = A(t)x(t) (3.11)

and (3.3) becomes
y∆(t) = By(t). (3.12)

Corollary 3.2. The inhomogeneous linear dynamic system(3.1) is reducible to

y∆(t) = By(t) + d(t) (3.13)
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with a constant matrixB by the use of transformation(3.4) if and only if there exists an
m×m regular real matrixS(t) defined onT such that

A∆(t) = S∆(t) +
(
S∆

1 S−1
1 + Sσ

1 SS−1
1

)
(t) (A− S) (t)− (A− S)σ (t)S(t) (3.14)

and
A(t0) = S1(t0)B + S(t0). (3.15)

Additionally if the matrixb(t) satisfies the IVP

b∆(t) = −
(
S∆

1 + Sσ
1 S

)
(t)S−1

1 (t)b(t), b(t0) = S−1
1 (t0)d(t0),

then(3.13)becomes
y∆(t) = By(t) + d

with a constant matrixd.

Remark3.3. If σ(t) = t, then we haveµ(t) = 0, Aσ = A andS1 = S−1
1 = Sσ

1 = I.
Thus the inhomogeneous linear dynamic system (3.1) is reducible to (3.3) by the help
of the transformation of (3.4) if and only if there exists anm × m regular real matrix
S(t) such that

A′(t) = S ′(t) + S(t)A(t)− A(t)S(t) + H(t)B′(t)H−1(t)

and
A(t0) = B(t0) + S(t0).

The inhomogeneous linear dynamic system (3.1) is reducible to (3.13) by the help of
the transformation of (3.4) if and only if there exists anm×m regular real matrixS(t)
such that

A′(t) = S ′(t) + S(t)A(t)− A(t)S(t) (3.16)

and
A(t0) = B + S(t0). (3.17)

Naturally, Theorem 3.1 and Corollary 3.2 and Remark 3.3 coincide with [14, Theo-
rem 1 and Corollary 1] whenT = R andb(t) = 0 for all t ∈ T.

Remark3.4. If σ(t) > t, then the inhomogeneous linear dynamic system (3.1) is re-
ducible to (3.3) by the help of the transformation of (3.4) if and only if there exists an
m×m regular real matrixS(t) such that

[A(t)− S(t)]σ S1(t) = Sσ
1 (t) [A(t)− S(t)] + Sσ

1 (t)S1(t)H(t)µ(t)B∆(t)H−1(t)

and
A(t0) = S1(t0)B(t0) + S(t0).
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The inhomogeneous linear dynamic system (3.1) is reducible to (3.13) by the help of
the transformation of (3.4) if and only if there exists anm×m regular real matrixS(t)
such that

[A(t)− S(t)]σ S1(t) = Sσ
1 (t) [A(t)− S(t)] (3.18)

and
A(t0) = S1(t0)B + S(t0). (3.19)

Naturally, Theorem 3.1 and Corollary 3.2 and Remark 3.4 coincide with [15, Theo-
rem 2.1 and Corollary 2.2.] whenT = N andb(t) = 0 for all t ∈ N.

4 Stability of Dynamic Systems

It is well known that exponential decay of the solution of a linear autonomous ordinary
differential equation (ODE)x′(t) = Ax(t), t ∈ R or of an autonomous difference equa-
tion (O∆E) x(n+1) = Ax(n), n ∈ Z, can be characterized by spectral properties ofA.
Namely, the solutions tend to 0 exponentially ast →∞, if and only if all the eigenval-
ues ofA ∈ Cm×m have negative real parts or a modulus smaller than 1, respectively (cf.
Hahn [7, p. 14], Agarwal [1, p. 227]). C. Pötzsche et al in [13] generalized this classical
result to linear time-invariant dynamic equationsx∆ = Ax on arbitrary time scales.

First, however, we fix some notation. In the following,K denotes the real (K = R)
or the complex (K = C) field. For a complex numberz ∈ C, we denote byRe z and
Im z the real and imaginary part, respectively, andBε(z) is the open ball with centerz
and radiusε > 0 in the complex plane. As usual,Km×m is the space of square matrices
with m rows, andσ(A) ⊂ C denotes the set of eigenvalues of a matrixA ∈ Km×m.

Let A : Tκ → Km×m be rd-continuous and consider them-dimensional linear
system of dynamic equations

x∆ = A(t)x. (4.1)

Let ΦA : {(t, τ) ∈ Tκ × Tκ : t ≥ τ} → Km×m denote thetransition matrixcorrespond-
ing to (4.1), that is,ϕ(t, τ, ξ) = ΦA(t, τ)ξ solves the initial value problem (4.1) with
initial conditionx(τ) = ξ for ξ ∈ Km andt, τ ∈ T with t ≥ τ .

We are interested in the stability of the equilibrium positionx∗ = 0 of system (4.1)
and introduce the following definitions.

Definition 4.1 (Exponential Stability [13]). Let T be a time scale which is unbounded
above. We call system (4.1) exponentially stable if there exists a constantα > 0 such
that for everyt0 ∈ T there exists aM = M(t0) ≥ 1 with

‖ΦA(t, t0)‖ ≤ Me−α(t−t0) for t ≥ t0,

and uniformly exponentially stable ifM can be chosen independently oft0 in the defi-
nition of exponential stability.

We need the following well-known theorems to obtain a stability result [9,13].
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Proposition 4.2 (See [13]).Let T be a time scale which is unbounded above and let
λ ∈ C. The scalar equation

x∆ = λx, x ∈ C (4.2)

is exponentially stable if and only if one of the following conditions is satisfied for
arbitrary t0 ∈ T:

(i) γ(λ) := lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↘µ(t)

log |1 + sλ|
s

∆t < 0,

(ii) ∀T ∈ T : ∃t ∈ T with t > T such that1 + µ(t)λ = 0,

where we use the conventionlog 0 = −∞ in (i).

Theorem 4.3 (Characterization of Exponential Stability [13]). LetT be a time scale
which is unbounded above andA ∈ Km×m be regressive. If for all eigenvalues ofA
there existsγ > 0 such that

γ−1 ≤ |1 + µ(t)λ(t)| for t ∈ T (4.3)

andσ(A) ⊂ SC(T), then the time-invariant system

x∆ = Ax (4.4)

is exponentially stable, where

SC(T) =

{
λ ∈ C : lim sup

T→∞

1

T − t0

∫ T

t0

lim
s↘µ(t)

log |1 + sλ|
s

∆t < 0, t0 ∈ T
}

.

Theorem 4.4 (See [13]).Let T be a time scale which is unbounded above andA ∈
Km×m and consider the linear system(4.4). Then the following assertions hold:

(i) If σ(A) ⊂ SC(T), then the time scaleT has bounded graininess and if for all
defectiveλ ∈ σ(A) the scalar equation(4.2) is uniformly exponentially stable,
then system(4.4) is exponentially stable.

(ii) If A is diagonalizable, then system(4.4) is exponentially stable if and only if
σ(A) ⊂ SC(T).

Recall that an eigenvalue is calleddefectiveif it is not semi-simple, i.e., if geometric
and algebraic multiplicities do not coincide.

Definition 4.5 (See [9]).Let x0 ∈ Rm be a nonzero vector andΨ(t) be any fundamental
matrix for thep-periodic system (3.11). The vector solution of the system with initial
conditionx(t0) = x0 is given byx(t) = Ψ(t)Ψ−1(t0)x0. The operatorM : Rm → Rm

given by
M(x0) = ΦA(t0 + p, t0)x0 = Ψ(t0 + p)Ψ−1(t0)x0

is called a monodromy operator. The eigenvalues of the monodromy operator are called
the Floquet (or characteristic) multipliers of the system (3.11).
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Theorem 4.6 (See [9]).Suppose thatλ1, . . . , λm are the Floquet multipliers for the
p-periodic system

x∆(t) = A(t)x(t), x(t0) = x0, (4.5)

whereA(t) ∈ R(T, Km×m) andp-periodic for all t ∈ T. Then the following assertions
hold:

(i) If all the Floquet multipliers have modulus less one, then the system(4.5) is expo-
nentially stable.

(ii) If all the Floquet multipliers have modulus less than or equal to one, then the
system(4.5) is stable.

Definition 4.7 (See [6]).Let A be anm × n-matrix-valued function onT. Then its
spectral radiusρ (A) is defined as

ρ (A) := max {|λ| : λ is an eigenvalue ofA} .

Since stability of (3.1) and (3.11) are equivalent, in view of Proposition 4.2, The-
orem 4.3, Theorem 4.4 and Theorem 4.6, we obtain from Corollary 3.2 the following
new stability criteria for (3.1).

Theorem 4.8. Let T be a time scale which is unbounded above. Assume there exists
a regressive and periodic matrixS(t) which satisfies(3.14)–(3.15) and the following
conditions:

(i) S−1
1 (t0) [A(t0)− S(t0)] ∈ R;

(ii) all the Floquet multipliers ofS(t) have modulus less one;

(iii) ρ(S−1
1 (t0) [A(t0)− S(t0)]) ⊂ SC(T);

(iv) for all λ ∈ ρ(S−1
1 (t0) [A(t0)− S(t0)]), the inequality(4.3)holds.

Then(3.1) is exponentially stable.

Definition 4.9 (See [13]).Given a time scaleT which is unbounded above, we define
for arbitraryt0 ∈ T

SC(T) =

{
λ ∈ C : lim sup

T→∞

1

T − t0

∫ T

t0

lim
s↘µ(t)

log |1 + sλ|
s

∆t < 0, t0 ∈ T
}

and

SR(T) = {λ ∈ R : ∀T ∈ T : ∃t ∈ T with t > T such that1 + µ(t)λ = 0} .

The set of exponential stability for the time scaleT is then defined by

S(T) = SC(T) ∪ SR(T).
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Theorem 4.10. Let T be a time scale which is unbounded above and has bounded
graininess. Assume there exists a regressive and periodic matrixS(t) which satisfies
(3.14)–(3.15)and following conditions:

(i) All the Floquet multipliers ofS(t) have modulus less one;

(ii) for all defectiveλ ∈ ρ(S−1
1 (t0) [A(t0)− S(t0)]), the equation(4.2) is uniformly

exponentially stable;

(iii) ρ(S−1
1 (t0) [A(t0)− S(t0)]) ⊂ S(T).

Then(3.1) is exponentially stable.

Theorem 4.11. Let T be a time scale which is unbounded above. Then(3.1) is ex-
ponentially stable if there exists a regressive and periodic matrixS(t) which satisfies
(3.14)–(3.15)and the following conditions:

(i) All the Floquet multipliers ofS(t) have modulus less one;

(ii) ρ(S−1
1 (t0) [A(t0)− S(t0)]) ⊂ S(T);

(iii) S−1
1 (t0) [A(t0)− S(t0)] is diagonalizable.

Corollary 4.12. Let T be a time scale which is unbounded above withµ(t) > 0. Then
(3.1) is exponentially stable if one of the following conditions holds for a regressive and
periodic matrixS(t) which satisfies(3.18)–(3.19):

(i) S−1
1 (t0) [A(t0)− S(t0)] ∈ R and the conditions(i) and (ii) of Theorem 4.8 hold;

(ii) the conditions(i) and (ii) of Theorem 4.10 hold;

(iii) S−1
1 (t0) [A(t0)− S(t0)] is diagonalizable and the conditions(i) and (ii) of Theo-

rem 4.11 hold.

Example 4.13.Let T = N = {0, 1, 2, 3, . . .}. Then we can consider (4.1) in the form
of

x(n + 1) = A1(n)x(n), (4.6)

and the conditions (3.18) and (3.19) become

A1(n + 1)S1(n) = S1(n + 1)A1(n) (4.7)

and
A1(n0) = S1(n0)B1, (4.8)

whereA1(n) = A(n) + I, S1(n) = S(n) + I andB1 = B + I. Consider the system

x(n + 1) =

 −1

4
(−1)n 1

8
βn+1

0 −1

8
(−1)n

 x(n), 0 < β < 1. (4.9)
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If we define a2-periodic matrix

S1(n) =

 β

2
(−1)n 0

0
1

2
(−1)n+1

 ,

then the matrixS1(n) satisfies the condition (4.7) and all the Floquet multipliers of

S1(n), λ1 = −β2

4
andλ2 = −1

4
, have modulus less one. From (4.8) we get

B1 = S−1
1 (0)A1(0) =

 1

2
β

1

4

0 −1

4


andρ(B1) < 1. Applying Theorem 4.8 we see that the zero solution of (4.9) or equiva-
lently (4.1) is exponentially stable.
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