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Abstract

This paper deals with boundary value problems for nonlinear monotone poten-
tial operators. An analysis of the nonlinear (monotone potential) Sturm–Liouville
operatorAu := −

(
k((u′)2)u′(x)

)′+q(x)u(x), x ∈ (a, b) shows that the potential
of this operator as well as the potential of related boundary value problems play an
important role not only for solvability of these problems, but also for linearization
and convergence of solutions of corresponding linearized problems. This approach
is then applied to boundary value problems for nonlinear elliptic equations with
nonlinear monotone potential operators. As an extension of obtained results in
the second part of the paper some applications to computational material science
(COMMAT) are proposed. In this context, boundary value problems related to
elastoplastic torsion of a bar, and the bending problem for an incompressible plate
are considered.

AMS Subject Classifications:47H05, 47H50, 35J65, 35K60, 35A15, 74B20.
Keywords: Nonlinear monotone potential operators, nonlinear Sturm–Liouville opera-
tor, solvability conditions, linearization and convergence,J2-deformation theory, com-
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1 Introduction

Second and fourth-order nonlinear ordinary and elliptic partial differential equations
form basis of mathematical models of various steady-state phenomena and processes
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in mechanics, physics and many other areas of science (see, for example, [4, 15, 16,
24]). One important class of these equations is related to nonlinear monotone potential
operators [20–22, 24]. In the presented paper we study solvability and linearization of
boundary value problems related to nonlinear monotone potential operators. The one-
dimensional model of these problems is the boundary value problem

Au ≡ −
(
k((u′)2)u′

)′
+ g(u) = f(x), a < x < b, (1.1)

u(a) = 0,
(
k((u′)2)u′(x)

)
x=b

= ϕ. (1.2)

The weak solutionu ∈ H̊1[a, b] of the nonlinear boundary value problem (1.1)–(1.2)
(subsequently, the problem (NBVP)) satisfies the integral identity

a(u; u, v) :=

∫ b

a

[k((u′)2)u′(x)v′(x) + g(u)v(x)]dx

=

∫ b

a

f(x)v(x)dx + ϕv(b) := l(v), (1.3)

for all v ∈ H̊1[a, b], whereH̊1[a, b] = {u(x) ∈ H1[a, b] : u(a) = 0} andH1[a, b] is the
Sobolev space [1]. Here and belowa(u; u, v) := 〈Au, v〉.

For the linear operatorA0u ≡ − (k(x)u′)
′
+ q(x)u the left-hand side of the integral

identity (1.3) corresponds to the symmetric bilinear form (functional)

a(u, v) :=

∫ b

a

[k(x)u′(x)v′(x) + q(x)u(x)v(x)] dx,

and the well-known conditions

c1 ≥ k(x) ≥ c0 > 0, c2 ≥ q(x) ≥ 0, (1.4)

guarantee the existence of the unique solutionu ∈ H̊1[a, b], if f ∈ H0[a, b]. The case
g(u) = q(x)u + p(x) corresponds to the quasilinear equation

Au ≡ −
(
k((u′)2)u′

)′
+ q(x)u = f(x)− p(x), a < x < b, (1.5)

which can be considered as one-dimensional analogue of the well-known Plateau [5]
and Kachanov equations [15]. Specifically, whenk(ξ) = (1 + ξ)−1/2, ξ = (u′)2, and
q(x) = 0, the operatorAu ≡ −

(
k((u′)2)u′

)′
is a one-dimensional Plateau operator.

Further, the casek(ξ) = k0ξ
0.5(κ−1), κ ∈ (0, 1], k0 > 0 andq(x) = 0, corresponds to

the one-dimensional analogue of Kachanov’s equation for engineering materials [23].
The differential operatorAu ≡ −

(
k((u′)2)u′

)′
+ q(x)u sometimes is defined to be the

nonlinear Sturm–Liouville operator.
Comparing the linear equation− (k(x)u′)

′
+q(x)u = f(x) with the nonlinear equa-

tion− (k(x)u′)
′
+g(u) = f(x), and taking account the second condition (1.4) for the lin-

ear equation, we conclude that extension of this condition for the functiong(u) = q(η)u,
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η = u2, is the conditionc2 ≥ q(η) ≥ 0. Otherwise, if this condition does not hold, then
the problem {

Au ≡ − (k(x)u′)
′
+ q(u2)u = f(x), a < x < b,

u(a) = 0,
(
k
(
(u′)2

)
u′(x)

)
x=b

= ϕ

may have an infinite number of solutions. For example, if

lim
u→±∞

g(u)

u
→∞,

then, as it was shown in [2], the problem{
−u′′ + g(u) = f(x), x ∈ (a, b),
u(a) = 0, u′(b) = ϕ

has an infinite number of solutionsu ∈ C2[a, b], for everyf ∈ C0[a, b].
The problems related to solvability of boundary value problems for the quasilinear

and nonlinear equations of type (1.1) have been considered by various authors (see [3–5,
16, 18] and references therein). Some applications to evolution problems are presented
in [12, 13]. Note that the iteration scheme for the quasilinear equations arising from
elastoplasticity has first been given in [15] and then developed in [3, 6, 7]. An abstract
iteration scheme and convergence criteria for these type of nonlinear problems were
proposed in [8].

In this paper we present some review related to solvability of nonlinear boundary
value problems for the second and fourth-orders nonlinear monotone potential differ-
ential operators. We also analyze questions related to linearization of these problems
and convergence of approximate solutions in appropriate Sobolev spaces. The main
subject of the analysis is to derive explicit, from the point of view practice, sufficient
conditions for the leading coefficientk = k(ξ), ξ := |∇u|2. In Section 2 we discuss
solvability of the problem (NBVP) in̊H1[a, b]∩H2[a, b] for the Sturm–Liouville opera-
tor Au := −

(
k((u′)2)u′(x)

)′
+q(x)u(x). In Section 3 we extend the obtained results to

the case of the nonlinear elliptic operatorAu ≡ −∇
(
k(|∇u|2)∇u

)
+ q(x)u, and derive

sufficient conditions for linearization andH1-convergence of the approximate solution.
Linearization of nonlinear problems, monotonicity on iterations and convergence issues
for an abstract, as well as for concrete variational problems are discussed in Section 4.
As a first application, in Section 5 the mathematical model of an elastoplastic torsion
of a strain hardening bar is considered within the range ofJ2-deformation theory. In
the final Section 6 an elastoplastic bending problem for an incompressible thin plate
is considered. Both applications show that the sufficient conditions obtained for ab-
stract monotone potential elliptic operators are almost same with the basic conditions of
J2-deformation theory.
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2 The Problem (NBVP) inR1

As a sample model consider first the boundary value problem (1.1)–(1.2) withg(u) ≡
q(x)u. The weak solutionu ∈ H̊1[a, b]∩H2[a, b] of this problem is defined as a solution
of the integral identity (or variational problem)

a(u, u; v) :=

∫ b

a

[k((u′)2)u′v′ + q(x)uv]dx

=

∫ b

a

f(x)v(x)dx + ϕv(b) := l(v), ∀v ∈ H̊1[a, b]. (2.1)

The multiple coefficientq(x) and the source functionf(x) are assumed to be in

H0[a, b] ≡ L2[a, b].

To study solvability of the nonlinear problem (2.1), we shall use the variational ap-
proach and monotone operator theory (see [4,19–22]). For this aim let us introduce the
functional

J(u) =
1

2

∫ b

a

{∫ (u′)2

0

k(ξ)dξ + q(x)u2

}
dx (2.2)

and calculate the first and the second Gateaux derivatives of this functional. We have

J ′(u; v) =

∫ b

a

[k((u′)2)u′v′ + q(x)uv]dx, v ∈ H̊1[a, b], (2.3)

J ′′(u; v, h) =

∫ b

a

{[k((u′)2)v′h′ + 2k′((u′)2)u′h′u′v′] + q(x)vh}dx, (2.4)

for v, h ∈ H̊1[a, b]. It is seen from the left-hand side of (1.5) and from (2.3) that
a(u, u; v) = J ′(u, v) for all v ∈ H̊1[a, b] and hence the nonlinear operatorA defined
by (1.5) is a potential operator, with potentialJ(u) defined by (2.2). In this context the
functionalP(u) = J(u)− l(u) is defined to be the potential of the variational problem
(2.1).

Theorem 2.1.Let us assume that in addition to conditions(1.4), the coefficientk = k(ξ)
is piecewise differentiable and satisfies the condition

k(ξ) + 2k′(ξ)ξ ≥ γ0 > 0, ξ ∈ [ξ∗, ξ
∗], (2.5)

whereξ∗ = inf
[a,b]

(u′(x))2 > 0 andξ∗ = sup
[a,b]

(u′(x))2 < +∞. If q(x), F (x) ∈ H0[ξ∗, ξ
∗],

then the problem(NBVP) has a unique solutionu ∈ H̊1[a, b] ∩H2[a, b].
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Proof. Due to the Browder–Minty theorem (see [4,19]) the operator equationAu = F ,
the nonlinear operatorA defined by (1.5), has a unique solution, if a potential operator
A is bounded, radially continuous, coercive and uniform monotone. Hence, to prove
the theorem we only need to show that the operatorA defined by (1.5) has the above
properties. Conditions (1.5) imply the boundedness of the operatorA:

|〈Au, v〉| ≤ c1

∣∣∣∣∫ b

a

u′(x)v′(x)dx

∣∣∣∣+ c2

∣∣∣∣∫ b

a

u(x)v(x)dx

∣∣∣∣ ≤ max{c1; c2}‖u‖1‖v‖1.

Radial continuity of the operatorA follows from continuity of the function

t 7→ 〈A(u + tv), v〉,

for all t ∈ R, and for fixedu, v ∈ H̊1[a, b] ∩ H2[a, b]. Substitutingh = v in (2.4) and
using condition (2.5), we obtain

J ′′(u; v, v) =

∫ b

a

{[k((u′)2) + 2k′((u′)2)(u′)2](v′)2 + q(x)v2}dx ≥ γ0‖v′‖2
0,

for all h ∈ H̊1[a, b]. Applying the Poincaŕe inequality‖v′‖2
0 ≥ c2

Ω‖v‖2
0 (c2

Ω = 2/(b−a)),
we obtain

J ′′(u; v, v) ≥ γ0c
2
Ω

1 + c2
Ω

‖u‖2
1, ∀v ∈ H̊1[a, b], γ0 > 0,

which means the uniform monotonicity

〈Au− Av, u− v〉 ≥ γ1‖u− v‖2
1, γ1 =

γ0c
2
Ω

1 + c2
Ω

> 0, ∀u, v ∈ H̊1[a, b] (2.6)

of the nonlinear operator. SinceAθ = θ, whereθ ∈ H̊1[a, b] is the zero element,
inequality (2.6) also implies the coercivity of the operatorA, with the same coercivity
constantγ1 > 0. Due to the Browder–Minty theorem the problem (NBVP) has a unique
solution inH̊1[a, b].

Remark2.2. Condition (2.5) has first been used in the formk′(s2)s2 + k(s2) ≥ d > 0
for the functionk(ξ) : R+ → R+ in the classical Kachanov method for stationary
conservation laws (see [24, page 544]). In the case of Dirichlet problem for the nonlinear
operatorAu ≡ −∇

(
k(|∇u|2)∇u

)
, the boundedness‖∇u‖C ≤ ξ∗ of the norm‖∇u‖C

has been proved in [11], whereξ∗ > 0 is a positive constant. Hence condition (2.5) can
also be considered as an extension of the above condition for the caseξ ∈ [ξ∗, ξ

∗].

3 Solvability of the Problem (NBVP) in Rn (n > 1)

Consider now the problem (NBVP) inRn (n > 1) for the nonlinear elliptic operator

Au ≡ −∇
(
k(|∇u|2)∇u

)
+ q(x)u, x ∈ Ω ⊂ Rn. (3.1)
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Specifically, we consider the mixed boundary value problem
Au = F, in Ω,
u = 0, on Γ1 ⊂ ∂Ω,

k(|∇u|2)∂u

∂n
= ϕ, on Γ2 ⊂ ∂Ω,

(3.2)

whereΓ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅ andΩ ⊂ Rn is a bounded domain with a piecewise
smooth boundary∂Ω. The weak solutionu ∈ H̊1(Ω)∩H2(Ω) of the nonlinear problem
(3.2) is defined as a solution of the variational problem

a(u, u; v) = l(v), ∀v ∈ H̊1(Ω) ∩H2(Ω), (3.3)

where

a(u; v, h) =

∫
Ω

{k(|∇u|2)∇v∇h + q(x)vh}dx, l(v) =

∫
Ω

Fvdx +

∫
Γ2

ϕvds,

andH̊1(Ω) = {u ∈ H1(Ω) : u(s) = 0, s ∈ Γ1}. It is easy to verify that the functional

J(u) =
1

2

∫
Ω

{∫ |∇u|2

0

k(ξ)dξ + q(x)u2

}
dx

represents the potential of the operatorA, defined by (2.1), since

J ′(u; v) =

∫
Ω

{k(|∇u|2)∇u∇v + q(x)uv}dx ≡ a(u; v, h).

Calculating the second Gateaux derivative of this functional we obtain

J ′′(u; v, h) ≡ d

dt
〈J ′((u + th); v)〉t=0

=
d

dt

(∫
Ω

{k(|∇(u + th)|2)∇(u + th)∇v + q(x)(u + th)v}dx

)
t=0

=

∫
Ω

{k(|∇u|2)∇h∇v + 2k′(|∇u|2)∇u∇h∇u∇v + q(x)vh}dx.

Hence forh = v we have

J ′′(u; v, v) =

∫
Ω

{k(|∇u|2)|∇v|2 + 2k′(|∇u|2)∇u∇v∇u∇v + q(x)v2}dx. (3.4)

By the inequality

(
n∑

i=1

aibi

)2

≤
n∑

i=1

a2
i

n∑
i=1

b2
i , for all ai, bi ∈ R1, we conclude

|∇u∇v|2 ≡

(
n∑

i=1

∂u

∂xi

∂v

∂xi

)2

≤
n∑

i=1

(
∂u

∂xi

)2 n∑
i=1

(
∂v

∂xi

)2

≡ |∇u|2 |∇v|2.
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Assuming the condition
k′(ξ) ≤ 0, ξ ∈ [ξ∗, ξ

∗], (3.5)

we obtain
2k′(|∇u|2)|∇u∇v|2 ≥ 2k′(|∇u|2)|∇u|2|∇v|2.

Taking into account this inequality in the right-hand of (3.4) we obtain the following
upper estimate

J ′′(u; v, v) ≥
∫

Ω

{
[ k(|∇u|2) + 2k′(|∇u|2)|∇u|2 ] |∇v|2 + q(x)v2

}
dx.

This estimate with the condition (2.5) and the Poincaré inequality‖∇v‖2
0 ≥ c2

Ω‖v‖2
0,

c2
Ω > 0, implies the positivity of the second Gateaux derivative

J ′′(u; v, v) ≥ γ0c
2
Ω

1 + c2
Ω

‖u‖2
1, γ0 > 0.

This means the strong convexity of the functional, which implies the uniform mono-
tonicity of the nonlinear elliptic operator, defined by (3.1). Hence we get the following
result.

Theorem 3.1. Let us assume that in addition to the conditions of Theorem 2.1 and the
conditionsF ∈ H0(Ω), ϕ ∈ H0(Γ), the coefficientk(ξ) is piecewise differentiable
and satisfies condition(3.5). Then the problem(NBVP) has a unique solutionu ∈
H̊1(Ω) ∩H2(Ω).

The above theorems show that different from the one-dimensional case, for solv-
ability of the multi-dimensional problem (NBVP) (n > 1), one needs to impose the
additional conditions (3.5).

4 Linearization of Nonlinear Problems

Consider first the abstract equation

Au = F, u ∈ H, F ∈ H∗, (4.1)

for the nonlinear strong monotone potential operator, acting from the Hilbert spaceH
to its dualH∗. Assume thata(u; ·, ·) is a bounded symmetric bilinear form generated
by the operatorA, i.e.,a(u; u, v) = 〈Au, v〉, ∀u, v ∈ H. Suppose thatAΘ = Θ, i.e.,
A transforms zero element ofH to zero element ofH∗. These mean that the operator
satisfies the conditions

〈Au− Av, u− v〉 ≥ γ1‖u− v‖2
H , γ1 > 0, ∀u, v ∈ H,

a(u; u, u) ≥ γ1‖u‖2
H , ∀u ∈ H,

|a(u; u, v)| ≤ M1‖u‖H‖v‖H , ∀u, v ∈ H.
(4.2)
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We denote again byJ(u) the potential of the operatorA, and byP(u) = J(u) − l(u),
l(u) = 〈F, u〉, the potential of the corresponding variational problem

a(u; u, v) = l(v), ∀v ∈ H. (4.3)

A monotone iteration scheme for the abstract variational problem (4.3) corresponding
to the nonlinear problem (4.1) has been proposed in [8]. For this aim, the inequality

0.5a(u; v, v)− 0.5a(u; u, u)− J(v) + J(u) ≥ 0, ∀u, v ∈ H (4.4)

has been introduced in [8], as a convexity argument for nonlinear monotone poten-
tial operators. To analyze this inequality from the point of view the leading coefficient
k = k(ξ), let us consider the one-dimensional variational problem (2.1), assuming with-
out loss of generality, thatq(x) ≡ 0. For this nonlinear problem we may rewrite this
inequality as

1

2

∫ b

a

{
k((u′)2)[(v′)2 − (u′)2]−

∫ (u′)2

(v′)2
k(ξ)dξ

}
dx ≥ 0, (4.5)

for all u, v ∈ H̊1[a, b]∩H2[a, b], using (2.2) and (2.3). Lettingξ1 = (v′)2 andξ2 = (u′)2

in (4.5), we conclude that the inequality

k(ξ1)[ξ2 − ξ1]−
∫ ξ2

ξ1

k(z)dz ≥ 0, ∀ξ1, ξ2 ∈ [ξ∗, ξ
∗] (4.6)

is a sufficient condition for fulfilment of the convexity argument, i.e., inequality (4.4),
for the variational problem (2.1). Introducing the new function

K(ξ) =

∫ ξ

ξ∗

k(z)dz, ∀ξ ∈ [ξ∗, ξ
∗],

we conclude that inequality (4.6) means concavity of the functionK(ξ). SinceK′(ξ) =
k(ξ), the conditionk′(ξ) < 0, ∀ξ ∈ [ξ∗, ξ

∗], is evidently a sufficient condition for
fulfilment of the convexity argument for the variational problem (2.1).

Theorem 4.1. Let us assume that in addition to conditions of Theorem 2.1, the coeffi-
cientk(ξ) is piecewise differentiable and satisfies condition(4.6). Then the convexity
argument(4.4)holds in the one-dimensional variational problem(2.1).

The same result remains true for then-dimensional problem (3.1)–(3.2). Detailed
proofs of these result are given in [8].

The first application of the convexity argument for nonlinear monotone potential
operators, is the monotone iteration scheme

a(u(n−1); u(n), v) = l(v), ∀v ∈ H, n = 1, 2, 3, . . . , (4.7)
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for the abstract variational problem (4.3). Hereu(0) ∈ H is an initial iteration. This
results asserts that the sequence of potentials{P(u(n))} of the linearized problem (4.7)
is a monotone decreasing one, i.e.,P(u(n+1)) ≤ P(u(n)), ∀n = 1, 2, 3, . . . (see [8,
Lemma 1]). Since

P(u(n)) =
1

2
a(u(n−1); u(n), u(n))− l(u(n)), n = 1, 2, 3, . . . , (4.8)

substituting in (4.7)v = u(n) we geta(u(n−1); u(n), u(n)) = l(u(n)). This, with (4.8),
implies

P(u(n)) = −1

2
a(u(n−1); u(n), u(n)) < 0, n = 1, 2, 3, . . . . (4.9)

Thus the sequence{P(u(n))} is bounded below, and hence it converges. Using this
lemma, it is proved that (see [8, Theorem 1]), the difference‖u − u(n)‖H between
the solutionu ∈ H of the variational problem (4.3) and its approximationu(n) ∈ H
obtained by the iteration scheme (4.7), can be estimated as

‖u− u(n)‖H ≤
√

2M1

γ
3/2
1

[P(u(n−1))− P(u(n))]1/2, n = 1, 2, 3, . . . . (4.10)

This estimate shows that the sequence of approximate solutions{u(n)} ⊂ H, obtained
by the iteration scheme (4.7) converges to the solutionu ∈ H of the variational problem
(4.3) inH-norm.

Let us apply the abstract monotone iteration scheme (4.7) to the problem (NBVP)
given by (4.1)–(4.2). The sequence of approximate solutions{u(n)} ⊂ H̊1(Ω)∩H2(Ω)
is defined from the linearized mixed boundary value problem

−∇
(
k(|∇u(n−1)|2)∇u(n)

)
+ q(x)u(n) = F, in Ω,

u(n) = 0, on Γ1 ⊂ ∂Ω,

k(|∇u(n−1)|2)∂u(n)

∂n
= ϕ, on Γ2 ⊂ ∂Ω.

(4.11)

The potential of this linearized problem is defined as

P(u(n)) := J(u(n))− l(u(n))

=
1

2

∫
Ω

{
k(|∇u(n−1)|2)|∇u(n)|2 + q(x)(u(n))2

}
dx−

∫
Ω

F (x)u(n)dx. (4.12)

Hence

a(u(n−1); u(n), v) :=

∫
Ω

{
k(|∇u(n−1)|2)∇u(n)∇v + q(x)u(n)v

}
dx.
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Evidently, if the coefficientk(ξ) is piecewise differentiable and satisfies conditions
(1.4), (2.5) and (3.5), the coefficientq(x) satisfies conditions (1.4), andq(x), F (x) ∈
H0[ξ∗, ξ

∗], then all conditions in (4.2) hold. Thus the above results obtained for the ab-
stract monotone iteration scheme (4.7) remain true also for the problem (NBVP) given
by (4.1)–(4.2).

Theorem 4.2.Let us assume that the conditions of Theorem 3.1 hold. Then

(i) the sequence of potentials{P(u(n))} defined by(4.12) is a monotone decreasing
and convergent one;

(ii) the sequence of approximate solutions{u(n)} ⊂ H̊1(Ω) ∩ H2(Ω), defined by
(4.11), converges to the weak solutionu ∈ H̊1(Ω)∩H2(Ω) of the problem(NBVP)
(4.1)–(4.2) in H1-norm;

(iii) for the rate of convergence the following estimate holds:

‖u− u(n)‖H ≤
√

2M1

γ
3/2
1

[P(u(n−1))− P(u(n))]1/2, n = 1, 2, 3, . . . , (4.13)

whereM1 = max{c1, c2} > 0, andγ1 > 0 is defined in(2.6).

The main distinguished feature of this theorem is that it requires the same conditions
as Theorem 3.1. In other words, for the convergence of the monotone iteration (4.12)
scheme, no additional conditions are required.

5 An Elastoplastic Torsion of a Strain Hardening Bar

The concept of torsional rigidity is well known in structural mechanics as one of main
characteristics of a beam of uniform cross section during elastoplastic torsion. Torsional
rigidity is defined as the torque required for per unit angle of twistϕ > 0 per unit length,
when the elastic modulus of the material is set equal to one [11, 17]. Specifically, if
u = u(x); x = (x1, x2) ∈ Ω ⊂ R2 denotes the deflection function, then the torque (or
torsional rigidity) is defined as to be

T [u; g, ϕ] = 2

∫
Ω

u(x; g; ϕ)dx, (5.1)

whereΩ := (0, l1)× (0, l2), l1, l2 > 0, denotes the cross section of a bar, and is assumed
to be inR2, with piecewise smooth boundary. For giveng = g(ξ2) andϕ > 0, the
functionu(x) := u(x; g, ϕ) is the solution of the nonlinear boundary value problem{

−∇(g(|∇u|2)∇u) = 2ϕ, x ∈ Ω ⊂ R2,
u(x) = 0, x ∈ ∂Ω,

(5.2)
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corresponding to a given functiong = g(ξ2). The boundary value problem (5.2) rep-
resents an elastoplastic torsion of a strain hardening bar, which lower end is fixed,
i.e., rigid clamped. The functionu(x) is the Prandtl’s stress function andξ(u) =
[(∂u/∂x1)

2 + (∂u/∂x2)
2]1/2 is the stress intensity. In view ofJ2-deformation theory,

the functiong = g(ξ2), ξ2 = |∇u|2, defined to be theplasticity function, describes
elastoplastic properties of a homogeneous isotropic material, and satisfies the condi-
tions (see [6,9,11,15,17,23] and references therein)

0 ≤ c0 ≤ g(ξ2) ≤ c1;
g′(ξ2) ≤ 0;
g(ξ2) + 2ξ2g′(ξ2) ≥ γ0 > 0, ξ ∈ [ξ∗, ξ

∗], ξ∗ > 0;
g(ξ2) = G, ξ ∈ [ξ∗, ξ0], ξ0 ∈ (ξ∗, ξ

∗).

(5.3)

HereG > 0 is the shift modulus andξ0 > 0 is assumed to be the elasticity limit of
a material. Note thatG = E/(1 + ν), whereE > 0 is the elasticity modulus and
ν ∈ (0, 0.5) is the Poisson coefficient.

Evidently the variational problem (4.7) corresponds here to the linearized problem{
−∇(g(|∇u(n−1)|2)∇u(n)) = 2ϕ, x ∈ Ω;

u(n)(s) = 0, s ∈ ∂Ω,
(5.4)

wheren = 1, 2, 3, . . . andu(0) ∈ H̊1(Ω) ∩ H2(Ω) is the initial iteration. The potential
of the linearized problem (5.4) is defined to be

P(u(n)) =
1

2

∫
Ω

{
g(|∇u(n−1)|2)|∇u(n)|2

}
dx− 2ϕ

∫
Ω

u(n)dx,

u(n) ∈ H̊1(Ω) ∩H2(Ω), n = 1, 2, 3, . . . .

With definition (5.1) of the torque, this potential has the form

P(u(n)) =
1

2

∫
Ω

{
g(|∇u(n−1)|2)|∇u(n)|2

}
dx−2ϕT [u(n); g, ϕ], n = 1, 2, 3, . . . . (5.5)

On the other hand, the weak solutionu(n) ∈ H̊1(Ω) ∩H2(Ω) of the linearized problem
(5.4) is defined by the integral identity∫

Ω

{
g(|∇u(n−1)|2)∇u(n)∇v

}
dx = 2ϕ

∫
Ω

vdx, ∀v ∈ H̊1(Ω) ∩H2(Ω),

for all n = 1, 2, . . .. Substituting herev = u(n) and using the definition of the torque,
we obtain the following energy identity for the linearized problem (5.4):∫

Ω

{
g(|∇u(n−1)|2)|∇u(n)|2

}
dx = 2ϕT [u(n); g, ϕ].
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This, with (5.5), permits one to define the potential of the linearized problem (5.4) via
the torque by

P(u(n)) = −ϕT [u(n); g, ϕ], n = 1, 2, 3, . . . .

This result agrees with (4.9), since the torque is positive.
Comparing conditions (3.3), (2.5) and (3.5), with the assumptions ofJ2-deformation

theory, we conclude that all conditions (5.3) hold. Therefore based on Theorem 3.1
and Theorem 4.2, we can derive the following results for the nonlinear boundary value
problem (5.2) related to the elastoplastic torsion of a strain hardening bar.

Theorem 5.1.Let assumption(5.3)of J2-deformation theory hold. Then

(i) the weak solutionu ∈ H̊1(Ω) ∩H2(Ω) of the nonlinear boundary value problem
(5.2)exists and unique;

(ii) the sequence of potentials{P(u(n))} defined by(5.5) is a monotone decreasing
and convergent one;

(iii) the sequence of approximate solutions{u(n)} ⊂ H̊1(Ω)∩H2(Ω), defined by(5.4),
converges to the weak solutionu ∈ H̊1(Ω)∩H2(Ω) of problem(5.2) in H1-norm;

(iv) the rate of convergence can be estimated via the torque as follows:

‖u− u(n)‖H ≤
√

2M1ϕ

γ
3/2
1

{T [u(n); g, ϕ]− T [u(n−1); g, ϕ} ]1/2, n = 1, 2, 3, . . . .

6 Elastoplastic Bending of Incompressible Plates

The mathematical model of inelastic bending of an isotropic homogeneous incompress-
ible plate under the loads normal to the middle surface of the plate, within the range of
J2-deformation theory, is described by the following nonlinear boundary value problem
(see [9,10,14]):

Au ≡ ∂2

∂x2
1

[
g(ξ2(u))

(
∂2u

∂x2
1

+
1

2

∂2u

∂x2
2

)]
+

∂2

∂x1∂x2

[
g(ξ2(u))

∂2u

∂x1∂x2

]
+

∂2

∂x2
2

[
g(ξ2(u))

(
∂2u

∂x2
2

+
1

2

∂2u

∂x2
1

)]
= F (x) , x ∈ Ω,

u(x) =
∂u

∂n
(x) = 0, x ∈ ∂Ω.

(6.1)

The functionu = u(x) represents deflection of a pointx ∈ Ω on the middle surface of
a plate, occupying the square domainΩ ⊂ R2, being in equilibrium under the action
of normal loads. The coordinate planeOx1x2 is assumed to be the middle surface of
an isotropic homogeneous incompressible plate with the thicknessh > 0. F (x) =
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3q(x)/h3, andq = q(x) is the intensity (per unit area) of the loads normal to the middle
surface of a plate, andn is a unit outward normal to the boundary∂Ω. It is assumed that
the loadq = q(x1, x2) acts on the upper surface only in thex3-axis direction, and the
lower surface of the plate is free.

The coefficientg = g(ξ2(u)) is defined to be the plasticity function, and satisfies
assumptions (5.3) ofJ2-deformation theory. The dependent variableξ = ξ(u), being
referred to as effective value of the plate curvature [10], satisfies

ξ2(u) =

(
∂2u

∂x2
1

)2

+

(
∂2u

∂x2
2

)2

+

(
∂2u

∂x1∂x2

)2

+
∂2u

∂x2
1

∂2u

∂x2
2

. (6.2)

Besides the above clamped boundary conditions, simply supported and other natural
boundary conditions can also be considered.

We will show here that conditions (5.3) ofJ2-deformation theory are sufficient not
only for the existence and uniqueness of the weak solutionu ∈ H̊2(Ω) of the nonlinear
problem (6.1), but also for the convergence of the linearized problem solution in the
norm of the space̊H2(Ω).

Let H2(Ω) be the Sobolev space of functions [1] defined on the domainΩ with
piecewise smooth boundary∂Ω and

H̊2(Ω) = {v ∈ H2(Ω) : u(x) = ∂u(x)/∂n = 0, x ∈ ∂Ω}.

Multiplying both sides of equation (6.1) byv ∈ H̊2(Ω), integrating onΩ and using the
boundary conditions (6.1), we obtain the integral identity∫

Ω

g(ξ2(u))H(u, v)dx =

∫
Ω

F (x)v(x)dx, ∀v ∈ H̊2(Ω), (6.3)

where

H(u, v) =
∂2u

∂x2
1

∂2v

∂x2
1

+
∂2u

∂x2
2

∂2v

∂x2
2

+
∂2u

∂x1∂x2

∂2v

∂x1∂x2

+
1

2

(
∂2u

∂x2
1

∂2v

∂x2
2

+
∂2u

∂x2
2

∂2v

∂x2
1

)
. (6.4)

The functionu ∈ H̊2(Ω) satisfying the integral identity (6.3) for allv ∈ H̊2(Ω) is
said to be a weak solution of the nonlinear problem (6.1). Recalling the definition
a(u; u, v) = 〈Au, v〉, we may write

a(u; u, v) =

∫
Ω

g(ξ2(u))H(u, v)dx, ∀v ∈ H̊2(Ω). (6.5)

Let us introduce now the functionalP(u) = J(u)− l(u), where

J(u) =
1

2

∫
Ω

{∫ ξ2(u)

0

g(τ)dτ

}
dx, l(u) =

∫
Ω

F (x)u(x)dx, u ∈ H̊2(Ω). (6.6)
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It easy to prove that the above defined functionalsJ(u) andP(u) are the potentials of the
nonlinear operatorA and the nonlinear problem (6.1), respectively. Indeed, calculating
the Gateaux derivative of the functionalJ(u), we find

〈J ′(u), v〉 =

∫
Ω

g(ξ2(u))H(u, v)dx.

Hence the nonlinear bending operatorA, defined by (6.1), is a potential operator with
the potentialJ(u), defined by (6.6). To analyze monotonicity of this operatorA, we
will use the equivalence (see [10])

∃α1, α2 > 0, ‖v‖2
2 ≤ ‖v‖2

E ≤ 2‖v‖2
2, ∀v ∈ H̊2(Ω)

of the norm‖ · ‖2 of the Sobolev spaceH2(Ω) and the energy norm

‖v‖E =

{∫
Ω

H(v, v)dx

}1/2

.

Lemma 6.1. If the plasticity functiong = g(ξ2) satisfies conditions(5.3), then the
nonlinear bending operatorA, defined by(6.1), is strong monotone in̊H2(Ω), i.e.,

∀u, v ∈ H̊2(Ω), 〈Au− Av, u− v〉 ≥ γ1‖u− v‖2
2, γ1 > 0. (6.7)

Proof. Calculating the second Gateaux derivative of the functionalJ(u), defined by
(6.6), we have

〈J ′′(u), v, w〉 =
d

dt
〈J ′(u + tw), v〉|t=0 =

d

dt

{∫
Ω

g(ξ2(u + tw))H(u + tw, v)dx

}
t=0

=

{∫
Ω

[
2g′(ξ2(u + tw))H(u, w)H(u + tw, v) + g(ξ2(u + tw))H(w, v)

]
dx

}
t=0

=

∫
Ω

[
2g′(ξ2(u))H(u, w)H(u, v) + g(ξ2(u))H(w, v)

]
dx.

Forw = v, we have (H(v, v) = ξ2(v))

〈J ′′(u), v, v〉 =

∫
Ω

[
g(ξ2(u))ξ2(v) + 2g′(ξ2(u))H2(u, v)

]
dx.

The second condition (5.3), with the inequality(H(u, v))2 ≤ H(u, u)H(v, v) and the
formulaξ2(v) = H(v, v) (by (6.2) and (6.4)), implies

〈J ′′(u), v, v〉 ≥
∫

Ω

[
g(ξ2(u))ξ2(v) + 2g′(ξ2(u))ξ2(u)ξ2(v)

]
dx

=

∫
Ω

[g(ξ2(u)) + 2g′(ξ2(u))ξ2(u)]ξ2(v)dx.
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Using now the third condition in (5.3) on the right-hand side and equivalence of norms,
we obtain

〈J ′′(u), v, v〉 ≥ c2

∫
Ω

ξ2(v)dx = c2

∫
Ω

H(v, v)dx ≥ α1c2‖v‖2
2.

The positivity of the second Gateaux derivative of the functionalJ(u) means that the
operatorA is strongly monotone.

SinceAΘ = Θ, whereΘ ∈ H̊2(Ω) is zero element, monotonicity condition (6.7)
for the nonlinear operatorA also means its coercivity, i.e.,〈Av, v〉 ≥ γ1‖v‖2

2, γ1 > 0.
Further the operatorA is radially continuous (hemicontinuous), i.e., the real-valued
functiont → 〈A(u+ tv), v〉, for fixedu, v ∈ H̊2(Ω), is continuous, since both functions
t → g(ξ2(u + tv)), t → H(u + tv, v) are continuous, the proof of this assertion follows
immediately from (6.5).

Thus, the potential operatorA is radially continuous, strongly monotone and coer-
cive. Then, by Browder–Minty theorem, we get the following.

Theorem 6.2. If conditions(5.3) hold, then the nonlinear problem(6.1) has a unique
solution inH̊2(Ω), defined by the integral identity(6.3).

Now we apply the abstract iteration scheme (4.7) linearizing the variational problem
(6.3) as follows:∫

Ω

g(ξ2(u(n−1)))H(u(n)), v)dx =

∫
Ω

F (x)v(x)dx, ∀v ∈ H̊2(Ω), n = 1, 2, 3, . . . ,

(6.8)
whereu(0)) ∈ H̊2(Ω) is an initial iteration. The solutionu(n) ∈ H̊2(Ω) of the linearized
problem (6.8) is defined to be an approximate solution of the variational problem (6.3).

To apply the abstract iteration scheme we need a sufficient condition for the fulfil-
ment of the convexity argument (4.4) for the nonlinear bending problem.

Lemma 6.3. Let the functiong = g(ξ2) satisfy the conditiong(ξ2) ≤ 0. Then the
convexity argument(4.4)holds for the nonlinear bending operatorA, defined by(6.1).

Proof. Using definitions (6.5) and (6.6), on the left-hand side of inequality (4.4), we
have

1

2
a(u; v, v)− 1

2
a(u; u, u)− J(v) + J(u)

=
1

2

∫
Ω

g(ξ2(u))H(v, v)dx− 1

2

∫
Ω

g(ξ2(u))H(u, u)dx

−1

2

∫
Ω

{∫ ξ2(v)

0

g(τ)dτ

}
dx +

1

2

∫
Ω

{∫ ξ2(u)

0

g(τ)dτ

}
dx

=
1

2

∫
Ω

{
g(ξ2(u))[ξ2(v)− ξ2(u)] +

∫ ξ2(u)

ξ2(v)

g(τ)dτ

}
dx.
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Hence

1

2
a(u; v, v)− 1

2
a(u; u, u)− J(v) + J(u)

=
1

2

∫
Ω

{
g(ξ2(u))[ξ2(v)− ξ2(u)] +

∫ ξ2(u)

ξ2(v)

g(τ)dτ

}
dx. (6.9)

As in the proof of Theorem 4.1, introducing the function

Q(t) =

∫ ξ

ξ∗

g(z)dz,

we concludeQ′′(t) = g′(t) ≤ 0, which meansQ(t), is a concave function. Hence
inequality (4.6) holds for this function. This, with (6.9) completes the proof.

Lemma 6.3 implies that the sequence of potentials

P(u(n)) =
1

2

∫
Ω

g(ξ2(u(n−1)))ξ2(u(n))dx−
∫

Ω

F (x)u(n)(x)dx, n = 1, 2, 3, . . . , (6.10)

defined on approximate solutionsu(n) ∈ H̊2(Ω), is a monotone decreasing one.
Next we need to show that the functionala(u; v, w), defined by (6.5), is bounded.

This follows from the conditiong(ξ2(u)) ≤ c1 and the equivalence of norms‖ · ‖2 and
‖ · ‖E:

a(u; v, w) =

∫
Ω

g(ξ2(u))H(v, w)dx ≤ c1

∫
Ω

|H(v, w)|dx ≤ c1α
2
2‖v‖2‖w‖2.

Therefore all conditions of [8, Theorem 2.1] hold, and we have the following result.

Theorem 6.4. Let u ∈ H̊2(Ω) and u(n) ∈ H̊2(Ω) be the solutions of the nonlinear
problem(2.3), and the linearized problem(4.4), respectively. If conditions(i)–(iii ) hold,
then

(a) the iteration scheme defined by(4.7) is a monotone decreasing one:

Π(u(n)) ≤ Π(u(n−1)), ∀u(n−1), u(n) ∈ H̊2(Ω);

(b) the sequence of approximate solutions{u(n)} ⊂ H̊2(Ω) defined by the iteration
scheme(4.7)converges to the solutionu ∈ H̊2(Ω) of the nonlinear problem(4.1)
in the norm of the Sobolev space̊H2(Ω);

(c) for the rate of convergence the following estimate holds:

‖u− u(n)‖H ≤
√

2c1α
2
2

γ
3/2
1

{P(u(n−1))− P(u(n))}1/2, n = 1, 2, 3, . . . .
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