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Abstract

This paper deals with boundary value problems for nonlinear monotone poten-
tial operators. An analysis of the nonlinear (monotone potential) Sturm—Liouville
operatordu := — (k((u')?)u'(2)) +q(x)u(z), x € (a,b) shows that the potential
of this operator as well as the potential of related boundary value problems play an
important role not only for solvability of these problems, but also for linearization
and convergence of solutions of corresponding linearized problems. This approach
is then applied to boundary value problems for nonlinear elliptic equations with
nonlinear monotone potential operators. As an extension of obtained results in
the second part of the paper some applications to computational material science
(COMMAT) are proposed. In this context, boundary value problems related to

elastoplastic torsion of a bar, and the bending problem for an incompressible plate
are considered.

AMS Subject Classifications:47H05, 47H50, 35J65, 35K60, 35A15, 74B20.
Keywords: Nonlinear monotone potential operators, nonlinear Sturm-Liouville opera-

tor, solvability conditions, linearization and convergengedeformation theory, com-
putational material science.

1 Introduction

Second and fourth-order nonlinear ordinary and elliptic partial differential equations
form basis of mathematical models of various steady-state phenomena and processes
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in mechanics, physics and many other areas of science (see, for example, [4, 15, 16,
24]). One important class of these equations is related to nonlinear monotone potential
operators [20-22, 24]. In the presented paper we study solvability and linearization of
boundary value problems related to nonlinear monotone potential operators. The one-
dimensional model of these problems is the boundary value problem

Au= — (k(())) + g(u) = f(x), a<z<b, (1.1)
0, (((u))'(2)),_, = ¢ (1.2)

The weak solution, € H* [a, b] of the nonlinear boundary value problem (1.1)—(1.2)
(subsequently, the problem (NBVP)) satisfies the integral identity

u(a) =

b
a(u;u,v) = /Uf((ul)2)ul($)vl(93)+9(U)U($)]d$
_ / F@)o(@)dz + pu(b) = 1(v), (1.3)

for all v € H'[a,b], whereH'[a,b] = {u(z) € H'[a,b] : u(a) = 0} andH'[a, b] is the
Sobolev space [1]. Here and bela; u, v) := (Au, v).

For the linear operatafgu = — (k(z)u’)' + q(z)u the left-hand side of the integral
identity (1.3) corresponds to the symmetric bilinear form (functional)

b
ou,) = [ b (@) (2) + gla)u(o)o(o)] da,
and the well-known conditions
1 > k(z)>ec>0, c3>q(x)>0, (1.4)

guarantee the existence of the unique solutioa H'[a,b], if f € H°[a,b]. The case
g(u) = q(z)u + p(z) corresponds to the quasilinear equation

Au = — (/{;((u/)z)u/)/ +q(x)u = f(z) —p(x), a<z<b, (1.5)

which can be considered as one-dimensional analogue of the well-known Plateau [5]
and Kachanov equations [15]. Specifically, wHe) = (1 + ¢)™%/2, ¢ = («/)?, and
q(z) = 0, the operatotdu = — (k:((u’)g)u')’ is a one-dimensional Plateau operator.
Further, the casg(¢) = ko**" Y, k € (0,1], ko > 0 andg(z) = 0, corresponds to
the one-dimensional analogue of Kachanov’s equation for engineering materials [23].
The differential operatodu = — (k((«')*)u’)’ + g(z)u sometimes is defined to be the
nonlinear Sturm-Liouville operator.

Comparing the linear equation (k(z)u') 4 ¢(x)u = f(z) with the nonlinear equa-
tion — (k(x)u') +g(u) = f(z), and taking account the second condition (1.4) for the lin-
ear equation, we conclude that extension of this condition for the fungtion= q(n)u,
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n = u?, is the condition:, > ¢(n) > 0. Otherwise, if this condition does not hold, then
the problem

{AUE—(k(fC) u) +q(uP)u= flx), a<wz<b,
u(a) =0, (k((W)?)u'(x)), _, =¢

may have an infinite number of solutions. For example, if

lim Mﬁoo

u—too U

then, as it was shown in [2], the problem

{ —u" +g(u) = f(z), x€(a,b),
uw(la) =0, u'(b)=¢

has an infinite number of solutionsc C?[a, b], for everyf € C°[a, b].

The problems related to solvability of boundary value problems for the quasilinear
and nonlinear equations of type (1.1) have been considered by various authors (see [3-5,
16, 18] and references therein). Some applications to evolution problems are presented
in [12, 13]. Note that the iteration scheme for the quasilinear equations arising from
elastoplasticity has first been given in [15] and then developed in [3, 6, 7]. An abstract
iteration scheme and convergence criteria for these type of nonlinear problems were
proposed in [8].

In this paper we present some review related to solvability of nonlinear boundary
value problems for the second and fourth-orders nonlinear monotone potential differ-
ential operators. We also analyze questions related to linearization of these problems
and convergence of approximate solutions in appropriate Sobolev spaces. The main
subject of the analysis is to derive explicit, from the point of view practice, sufficient

conditions for the leading coefficieat = k(¢), ¢ := |Vul?. In Section 2 we discuss
solvability of the problem (NBVP) it ' [a, b] N H2 [a b] for the Sturm—Liouville opera-
tor Au := — (k((u)*)u/(z)) +g(z)u(z). In Section 3 we extend the obtained results to

the case of the nonlinear elliptic operatbe = —V (k(|Vu|*)Vu) + ¢(z)u, and derive
sufficient conditions for linearization anfd'-convergence of the approximate solution.
Linearization of nonlinear problems, monotonicity on iterations and convergence issues
for an abstract, as well as for concrete variational problems are discussed in Section 4.
As a first application, in Section 5 the mathematical model of an elastoplastic torsion
of a strain hardening bar is considered within the rangé,edeformation theory. In

the final Section 6 an elastoplastic bending problem for an incompressible thin plate
is considered. Both applications show that the sufficient conditions obtained for ab-
stract monotone potential elliptic operators are almost same with the basic conditions of
Jo-deformation theory.
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2 The Problem (NBVP) inR!

As a sample model consider first the boundary value problem (1.1)—(1.2ywith=
q(z)u. The weak solutiom € H'[a, b)N H?[a, b] of this problem is defined as a solution
of the integral identity (or variational problem)

a(u,u;v) = / B()P + ga)unlds
= /bf(x)v(x)dx + ou(b) :==1(v), Yve H'a,b]. (2.1)
The multiple coefficient(x) and the source functiofi(z) are assumed to be in
H°[a,b] = Ly[a,b].

To study solvability of the nonlinear problem (2.1), we shall use the variational ap-
proach and monotone operator theory (see [4,19-22]). For this aim let us introduce the

functional
b (u/)Q
J(u) = %/ {/0 k(€)d¢ + q(x)u2} dx (2.2)

and calculate the first and the second Gateaux derivatives of this functional. We have
b
J (u;v) = / [E((u)*)u'v + q(z)uvlde, v e H'|[a,b], (2.3)
b
J"(u;v, h) = / {[k((W)H)V'R + 2K (')’ h'u'v'] + q(x)vh}dz, (2.4)

for v,h € ﬁ[l[a, b]. It is seen from the left-hand side of (1.5) and from (2.3) that
a(u,u;v) = J'(u,v) for all v € H'[a,b] and hence the nonlinear operatbrefined

by (1.5) is a potential operator, with potenti&u) defined by (2.2). In this context the
functionalP(u) = J(u) — [(u) is defined to be the potential of the variational problem
(2.1).

Theorem 2.1.Let us assume that in addition to conditidis4), the coefficient = k(&)
is piecewise differentiable and satisfies the condition

k(&) + 2K ()6 > 7 >0, £€[&, ¢, (2.5)
whereg, = [mbf] (u'(z))* > 0and&* = sup (v/(z))? < +oo. If q(x), F(z) € HU[£,, 7],
a, 0.t

then the problenfNBVP has a unique solution € H'[a, b N H>[a, b].
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Proof. Due to the Browder—Minty theorem (see [4,19]) the operator equatios F',

the nonlinear operatot defined by (1.5), has a unique solution, if a potential operator
A is bounded, radially continuous, coercive and uniform monotone. Hence, to prove
the theorem we only need to show that the operdtalefined by (1.5) has the above
properties. Conditions (1.5) imply the boundedness of the ope#ator

|(Au,v)| < ¢ + ¢y

/a b o ()0 (2)d / bu(x)v(:v)dx

Radial continuity of the operatot follows from continuity of the function

< max{cy; e Hlul ][]

t— (A(u+ tv),v),

for all ¢ € R, and for fixedu,v € H'[a,b] N H?[a,b]. Substitutingh = v in (2.4) and
using condition (2.5), we obtain

b
S (u;0,0) = / {[E((w)?) + 2K (()) ()*)(v)* + q(2)v* o > yollv'|I5,

forall h € H'[a,b]. Applying the Poinca inequalityl|v/||2 > 3 ||v||? (& = 2/(b—q)),
we obtain )
YoCq
1+c3
which means the uniform monotonicity

J" (u;0,0) 2 lullf, Yo € H'a,b], 70 >0,

Y0CH 1
5 >0, Yu,ve Ha,b (2.6)
I+ ¢

(Au— Av,u —v) > yi|lu =0}, 11 =

of the nonlinear operator. Sincéd = 6, whered € H'[a,b] is the zero element,
inequality (2.6) also implies the coercivity of the operatrwith the same coercivity
constanty; > 0. Due to the Browder—Minty theorem the problem (NBVP) has a unique
solution inH'[a, b). O

Remark2.2 Condition (2.5) has first been used in the fokfs®)s? + k(s?) > d > 0

for the functionk(¢) : R, — R, in the classical Kachanov method for stationary
conservation laws (see [24, page 544]). In the case of Dirichlet problem for the nonlinear
operatordu = —V (k(|Vu|*)Vu), the boundednegVul|c < & of the norm||Vul|¢

has been proved in [11], whegé > 0 is a positive constant. Hence condition (2.5) can
also be considered as an extension of the above condition for th€ eafe, £*].

3 Solvability of the Problem (NBVP) inR" (n > 1)

Consider now the problem (NBVP) R" (n > 1) for the nonlinear elliptic operator

Au= -V (k(|Vul)Vu) + g(z)u, z€QCR"™ (3.1)
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Specifically, we consider the mixed boundary value problem

Au=F, in €,
u=0, on I'yCOo, (32)

9
k(|Vu]2)a—z =y, on T,coQ,

wherel’; UTy, =90, T, N Ty = 0 andQ) C RO" is a bounded domain with a piecewise
smooth boundarys2. The weak solutiom € H'(2) N H*(Q2) of the nonlinear problem
(3.2) is defined as a solution of the variational problem

a(u,u;v) = 1(v), Yo e HY(Q)NH*Q), (3.3)

where
a(u;v, h) :/{k(|Vu|2)VUVh+q(x)vh}dm, [(v) :/dex—i—/ puds,
Q Q )

and ' (Q) = {u € H'(Q) : u(s) = 0,s € I'; }. Itis easy to verify that the functional

[Vul?
J(u) = % /Q { /0 k<g)d5+q<x>u2} dz

represents the potential of the operatigdefined by (2.1), since
J (u;v) = /{k(|Vu|2)VuVU + q(z)uvtdr = a(u; v, h).
Q
Calculating the second Gateaux derivative of this functional we obtain

Fuvh) = Ut )0

- % (/Q{k(IV(u +th)|*)V (u + th) Vo + g(z)(u + th)v}dx>

t=0
— / {k(|Vu ) VAV + 2K (|Vul|?) VuVhVuVv + q(z)vh}d.
Q

Hence forh = v we have

J" (usv,v) = /{k(]Vu]z)\VUP + 2K (|Vul) VuVoVuVo + q(z)v*}dz.  (3.4)
0

n

2 n n
By the inequality(Z aibi> < Z a? Z v?, for all a;, b; € R!, we conclude
=1 =1

=1

2
" Ju v L fou\ O\
2 _ < _ 2 2
VuVol? = <i:1 axiaxi> < Zl(ax> ;(81:) = [Vul? |Vol?

1=




Nonlinear Monotone Potential Operators 179

Assuming the condition
K(§) <0, el&. &, (3.5)
we obtain
2K (|Vul?) [ VuVo|? > 2K (|Vul?)|[Vul? | Vo>

Taking into account this inequality in the right-hand of (3.4) we obtain the following
upper estimate

J" (u;v,0) > /Q {l E(|Vul?) + 2K (|[Vul)?) | Vul* ] |Vo]? + q(x)vQ} dz.

This estimate with the condition (2.5) and the Poiecarequality||Vov||2 > c5||v]|3,
c2 > 0, implies the positivity of the second Gateaux derivative

[ully, 70 > 0.

This means the strong convexity of the functional, which implies the uniform mono-
tonicity of the nonlinear elliptic operator, defined by (3.1). Hence we get the following
result.

Theorem 3.1.Let us assume that in addition to the conditions of Theorem 2.1 and the
conditionsF € H°(Q), ¢ € H°(T'), the coefficient:(¢) is piecewise differentiable
and satisfies conditio3.5). Then the problenfNBVP has a unique solution €
HY(Q) N H*(Q).

The above theorems show that different from the one-dimensional case, for solv-
ability of the multi-dimensional problem (NBVP).(> 1), one needs to impose the
additional conditions (3.5).

4 Linearization of Nonlinear Problems
Consider first the abstract equation
Au=F, we H, FeH" (4.1)

for the nonlinear strong monotone potential operator, acting from the Hilbert gpace
to its dual H*. Assume that(u; -, -) is a bounded symmetric bilinear form generated
by the operator, i.e., a(u;u,v) = (Au,v), Yu,v € H. Suppose thatl® = 0, i.e.,

A transforms zero element éf to zero element off*. These mean that the operator
satisfies the conditions

<AU_AU7U_U> Z’YIHU_UH?—h M >07 \V/U,UGH,
au;u,u) = qllullyy,  Vu€ H, (4.2)
la(u; u,v)| < Myl||u||g||v]|g, Yu,ve H.
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We denote again by (u) the potential of the operatot, and byP (u) = J(u) — l(u),
l(u) = (F,u), the potential of the corresponding variational problem

a(uju,v) =1(v), Yve H. (4.3)

A monotone iteration scheme for the abstract variational problem (4.3) corresponding
to the nonlinear problem (4.1) has been proposed in [8]. For this aim, the inequality

0.5a(u;v,v) — 0.5a(u;u,u) — J(v) + J(u) >0, Vu,ve H (4.4)

has been introduced in [8], as a convexity argument for nonlinear monotone poten-
tial operators. To analyze this inequality from the point of view the leading coefficient
k = k(£), letus consider the one-dimensional variational problem (2.1), assuming with-
out loss of generality, that(xz) = 0. For this nonlinear problem we may rewrite this
inequality as

’ (w)?
%/ {k((u/)2)[(zﬂ)2 — (u')?] —/ k(g)dg} dx > 0, (4.5)

(v')?

forall u,v € H'[a,b]NH?[a,b], using (2.2) and (2.3). Letting = (v')? ands, = (u/)?
in (4.5), we conclude that the inequality

&2

MEle &) - [ ka2 0. Vg€ g (4.6)
&

is a sufficient condition for fulfilment of the convexity argument, i.e., inequality (4.4),

for the variational problem (2.1). Introducing the new function

3
K(€) = /{ K(2)dz, VE € 6,67,

we conclude that inequality (4.6) means concavity of the fundti¢f). Sincek'(¢) =
k(¢), the conditionk’(§) < 0, V¢ € [£.,£7], is evidently a sufficient condition for
fulfilment of the convexity argument for the variational problem (2.1).

Theorem 4.1. Let us assume that in addition to conditions of Theorem 2.1, the coeffi-
cientk(¢) is piecewise differentiable and satisfies condit{dr6). Then the convexity
argument(4.4) holds in the one-dimensional variational probl¢al).

The same result remains true for thalimensional problem (3.1)—(3.2). Detailed
proofs of these result are given in [8].

The first application of the convexity argument for nonlinear monotone potential
operators, is the monotone iteration scheme

n—1).

a(w™ V0™ vy =1(v), YveH n=123,..., (4.7)



Nonlinear Monotone Potential Operators 181

for the abstract variational problem (4.3). Hef® < H is an initial iteration. This
results asserts that the sequence of potentia(s™)} of the linearized problem (4.7)
is a monotone decreasing one, i.2(u"tY) < Pu™), ¥n = 1,2,3,... (see [8,

Lemma 1]). Since

1
P(u™) = §a(u(”_1); u™ u™y — (™), n=1,2,3,..., (4.8)
D™ ™) = 1(u™). This, with (4.8),

substituting in (4.7p = u™ we geta(u'
implies

1
Pu™) = —§a(u("_1);u(”),u(”)) <0, n=1,2,3,.... (4.9

Thus the sequencgP(u™)} is bounded below, and hence it converges. Using this
lemma, it is proved that (see [8, Theorem 1)), the differefice— v™||; between
the solutionu € H of the variational problem (4.3) and its approximatioft € H
obtained by the iteration scheme (4.7), can be estimated as

V2M,

3/2
71/

P D) = P2 n=1,23,.... (4.10)

lu — u™ | <

This estimate shows that the sequence of approximate sol|tid®§ ¢ H, obtained
by the iteration scheme (4.7) converges to the solutienH of the variational problem
(4.3) in H-norm.

Let us apply the abstract monotone iteration scheme (4.7) to the problem (NBVP)
given by (4.1)—(4.2). The sequence of approximate solutjefig} ¢ H (Q)NH?*(Q)
is defined from the linearized mixed boundary value problem

~V (k(IVu™ P )Vu™) + g(z)u™ = F, in Q,

ou™
E(|Vu" D)) —— = on Ty C N,
(IVu D)= = ¢, ,C
The potential of this linearized problem is defined as

P(u(")) = J(u (n)) —I(u (n))
/{k (V™D Vu™)? + g(z)( }dx—/F(m)u(”)dx. (4.12)
Q

Hence

oD, 0) = [ (T P)TUTo 4 gle)uo) do.
Q
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Evidently, if the coefficientt(¢) is piecewise differentiable and satisfies conditions
(1.4), (2.5) and (3.5), the coefficientr) satisfies conditions (1.4), andzx), F'(x) €
HY[¢,, €], then all conditions in (4.2) hold. Thus the above results obtained for the ab-
stract monotone iteration scheme (4.7) remain true also for the problem (NBVP) given
by (4.1)—(4.2).

Theorem 4.2. Let us assume that the conditions of Theorem 3.1 hold. Then

(i) the sequence of potentia)® (u™)} defined by4.12)is a monotone decreasing
and convergent one;

(i) the sequence of approximate solutions™} ¢ H'(Q) N H*(Q), defined by
(4.11) converges to the weak solutiare H' ()N H?(Q2) of the problen{NBVP)
(4.1)+4.2)in H*-norm;

(i) for the rate of convergence the following estimate holds:

V2M,

3/2
71/

lu—u™ |y < P ) = P2, n=1,23,..., (413)

whereM; = max{cy, 2} > 0, and~; > 0 is defined in(2.6).

The main distinguished feature of this theorem is that it requires the same conditions
as Theorem 3.1. In other words, for the convergence of the monotone iteration (4.12)
scheme, no additional conditions are required.

5 An Elastoplastic Torsion of a Strain Hardening Bar

The concept of torsional rigidity is well known in structural mechanics as one of main
characteristics of a beam of uniform cross section during elastoplastic torsion. Torsional
rigidity is defined as the torque required for per unit angle of tyist 0 per unit length,

when the elastic modulus of the material is set equal to one [11,17]. Specifically, if
u=u(r); r=(r,25) € Q C R?denotes the deflection function, then the torque (or
torsional rigidity) is defined as to be

Tlu;g,¢] = Q/QU(:E;Q; p)dz, (5.1)
where) := (0,1;) x (0,1), l1,ls > 0, denotes the cross section of a bar, and is assumed
to be inR?, with piecewise smooth boundary. For given= ¢(¢%) andy > 0, the
functionu(z) := u(z; g, ¢) is the solution of the nonlinear boundary value problem

{ ~V(9(|Vul )Vu) =2¢p, x¢cQcR? (5.2)

u(x) =0, =z €0,
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corresponding to a given functign= g(¢*). The boundary value problem (5.2) rep-
resents an elastoplastic torsion of a strain hardening bar, which lower end is fixed,
i.e., rigid clamped. The function(z) is the Prandtl’s stress function ardu) =
[(0u/0x1)? + (0u/0x4)?]V?* is the stress intensity. In view ok-deformation theory,

the functiong = ¢(£?), ¢€* = |Vu|?, defined to be thelasticity function describes
elastoplastic properties of a homogeneous isotropic material, and satisfies the condi-
tions (see [6,9,11, 15,17, 23] and references therein)

0 <o <g(&?) < e

g'(&) <0; (5.3)
g(€) +26%g' (%) > v >0, €€[&, 8, & >0; '
9 =G, €€, &), & e (&, &)

Here G > 0 is the shift modulus ang, > 0 is assumed to be the elasticity limit of
a material. Note tha&; = E/(1 + v), whereE > 0 is the elasticity modulus and
v € (0,0.5) is the Poisson coefficient.
Evidently the variational problem (4.7) corresponds here to the linearized problem

_ (1) 12y, () _ .
{ V(g(|Vu" V) VulM) =20, z € (5.4)

u™(s) =0, se€Q,

wheren = 1,2,3,... andu(® € H'(Q) N H*(Q) is the initial iteration. The potential
of the linearized problem (5.4) is defined to be

1 _ n n
P(ul™) = Q/Q{gﬂvu(” D2y vl )|2}dx—2g0/ﬂu( Vdz,
W™ e H(Q) N H*Q), n=1,2,3,....

With definition (5.1) of the torque, this potential has the form
1
Pu”) = 3 / {g(Vu™ VPV 2} de—20T [u™; g, ¢], n=1,2,3,.... (5.5)
Q

On the other hand, the weak solutieft) € [7'(Q) N H?(Q2) of the linearized problem
(5.4) is defined by the integral identity

/ {g(|Vu(”_1)|2)Vu(”)Vv} dzx = 2g0/ vdz, Yo e HY(Q)N H*Q),
Q Q

foralln = 1,2,.... Substituting here = «™ and using the definition of the torque,
we obtain the following energy identity for the linearized problem (5.4):

/Q {1V DP) Val P de = 2T u™; g, ).
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This, with (5.5), permits one to define the potential of the linearized problem (5.4) via
the torque by
Pu™) = —pT[u™;g,¢], n=1,2,3,....

This result agrees with (4.9), since the torque is positive.

Comparing conditions (3.3), (2.5) and (3.5), with the assumptiods-deformation
theory, we conclude that all conditions (5.3) hold. Therefore based on Theorem 3.1
and Theorem 4.2, we can derive the following results for the nonlinear boundary value
problem (5.2) related to the elastoplastic torsion of a strain hardening bar.

Theorem 5.1. Let assumptioif5.3) of J,-deformation theory hold. Then

(i) the weak solutiom € H'(€2) N H?(Q2) of the nonlinear boundary value problem
(5.2) exists and unique;

(i) the sequence of potentiaf (u™)} defined by(5.5)is a monotone decreasing
and convergent one;

(iii) the sequence of approximate solutidn§®} ¢ H'(Q)NH*(Q2), defined by5.4)
converges to the weak solutione H'(2) N H?($2) of problem(5.2)in H'-norm;

(iv) the rate of convergence can be estimated via the torque as follows:

V2Mip
3/2
M1

|u —u™||g < {T[u("); g, — ’T[u(”_l);g7 v} ]1/2, n=123,....

6 Elastoplastic Bending of Incompressible Plates

The mathematical model of inelastic bending of an isotropic homogeneous incompress-
ible plate under the loads normal to the middle surface of the plate, within the range of
Jo-deformation theory, is described by the following nonlinear boundary value problem
(see [9,10, 14)):

( 0? *u  10%u 0? 0%
Au= — 2 - 2
Y 3x% [g(f (u)) ((9x% + 23%%)} + 0x10x9 [g(f <u>>8x18x2]
22 e (24 18] Z ey, zen
3 J or3  20x)] ’ ’ (6.1)
u(z) = %(m) —0, x€o0.

\

The functionu = u(x) represents deflection of a pointe €2 on the middle surface of
a plate, occupying the square dom&nc R?, being in equilibrium under the action
of normal loads. The coordinate plate:;x, is assumed to be the middle surface of
an isotropic homogeneous incompressible plate with the thickhess0. F(x) =
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3¢(x)/h?, andq = ¢(x) is the intensity (per unit area) of the loads normal to the middle
surface of a plate, andis a unit outward normal to the boundai{. It is assumed that
the loadg = ¢(x1, z5) acts on the upper surface only in thg-axis direction, and the
lower surface of the plate is free.

The coefficienty = g(¢%(u)) is defined to be the plasticity function, and satisfies
assumptions (5.3) of,-deformation theory. The dependent variable- £(u), being
referred to as effective value of the plate curvature [10], satisfies

5 2u\’  [(0%u)” 2u \°  0%udu
§lu) = (8x%) * (0:6%) * (8x18x2) * 02 03’ (6-2)

Besides the above clamped boundary conditions, simply supported and other natural
boundary conditions can also be considered.

We will show here that conditions (5.3) di-deformation theory are sufficient not
only for the existence and uniqueness of the weak solutien//2(2) of the nonlinear
problem (6.1), but also for the convergence of the linearized problem solution in the
norm of the spacé/?().

Let H*(Q2) be the Sobolev space of functions [1] defined on the dorfiaimith
piecewise smooth boundafy? and

H2(Q) = {v e H*Q) : u(x) = 0u(x)/0n =0, z € 9Q}.

Multiplying both sides of equation (6.1) hye IfIQ(Q), integrating or(2 and using the
boundary conditions (6.1), we obtain the integral identity

/g(fQ(u))H(u,v)cm = / F(z)v(z)dz, Yv e H*(Q), (6.3)
Q Q
where
0’u0*v  0*u d*v 0w v 1 (O*ud*v  O*ud*v
H{u,v) = 02 02 * 03 013 * 021019 011024 * 2 ((h% 013 + 013 81:%) - (64)

The functionu € H?() satisfying the integral identity (6.3) for all € H?(2) is
said to be a weak solution of the nonlinear problem (6.1). Recalling the definition
a(u;u,v) = (Au, v), we may write

a(u;u,v) = /Qg(fz(u))H(u,v)dx, Vo € H?(1). (6.5)

Let us introduce now the function&l(u) = J(u) — I(u), where

€%(u) .
J(u) = %/Q {/0 g(T)dT} dx, l(u) = /QF($)u(x)dx, u€ H*(Q). (6.6)
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It easy to prove that the above defined functiondls) andP(u) are the potentials of the
nonlinear operatoa and the nonlinear problem (6.1), respectively. Indeed, calculating
the Gateaux derivative of the function&lu), we find

(7 (u),v) = / 9(€3(u) H (u, v)d.

Hence the nonlinear bending operathbrdefined by (6.1), is a potential operator with
the potential/(u), defined by (6.6). To analyze monotonicity of this operatomwe
will use the equivalence (see [10])

Jar,az >0, [ofl3 < [Jollf < 2[loll3 Vo € H(Q)

of the norm|| - ||, of the Sobolev spacE?(?) and the energy norm

lolls = {[)H(v,v)dm}l/Q.

Lemma 6.1. If the plasticity functiong = ¢(£?) satisfies conditiong5.3), then the
nonlinear bending operatad, defined by6.1), is strong monotone ii*(), i.e.,

Yu,v € HA(Q), (Au— Av,u—v) > yllu—vl2, m > 0. (6.7)

Proof. Calculating the second Gateaux derivative of the functiohal), defined by
(6.6), we have

d

(J"(u),v,w) = %(J’(u + tw), v) |0 = pr {/Qg(fz(u + tw))H (u + tw,v)dw}

t=0

= {/Q [2¢' (€% (u + tw)) H (u, w) H (u + tw,v) + g(&*(u + tw))H (w,v)] d:c}

= [ A€ )H w0 0) + (€0 H w, )] o

Forw = v, we have {{ (v,v) = £*(v))

('(w.00) = [ o€ )Ew) + 29/ () H(u,0)] da

Q

The second condition (5.3), with the inequality (u, v))* < H(u,u)H (v,v) and the
formulag?(v) = H(v,v) (by (6.2) and (6.4)), implies

(), 0,0) > / [9(€(w)€(0) + 24/ (€ ()€ (W) (v)] da
- / [9(E(w)) + 20/ (€ () (w)]€(v) da.
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Using now the third condition in (5.3) on the right-hand side and equivalence of norms,
we obtain

(J"(u),v,v) > ¢ / E()dr = ¢y / H(v,v)dx > ajclv|3.
Q Q

The positivity of the second Gateaux derivative of the functiofal) means that the
operatorA is strongly monotone. O

SinceA© = O, where® € H?(Q) is zero element, monotonicity condition (6.7)
for the nonlinear operatod also means its coercivity, i.elAv, v) > 7 |v||3, 71 > 0.
Further the operatod is radially continuous (hemicontinuous), i.e., the real-valued
functiont — (A(u+tv), v), for fixedu, v € H?(Q), is continuous, since both functions
t — g(€*(u+tv)), t — H(u+ tv,v) are continuous, the proof of this assertion follows
immediately from (6.5).

Thus, the potential operatot is radially continuous, strongly monotone and coer-
cive. Then, by Browder—Minty theorem, we get the following.

Theorem 6.2. If conditions(5.3) hold, then the nonlinear probleii.1) has a unique
solution inH?(Q2), defined by the integral identi(.3).

Now we apply the abstract iteration scheme (4.7) linearizing the variational problem
(6.3) as follows:

Ag(fQ(U(”_l)))H(u(")),v)dx = / F(z)v(z)dz, Yv e HX(Q), n=1,2,3,...,

Q
(6.8)
whereu?) € H?(Q) is an initial iteration. The solution™ e H?(12) of the linearized
problem (6.8) is defined to be an approximate solution of the variational problem (6.3).
To apply the abstract iteration scheme we need a sufficient condition for the fulfil-
ment of the convexity argument (4.4) for the nonlinear bending problem.

Lemma 6.3. Let the functiong = ¢(¢?) satisfy the conditiory(¢?) < 0. Then the
convexity argumen(@.4) holds for the nonlinear bending operatdr, defined by(6.1).

Proof. Using definitions (6.5) and (6.6), on the left-hand side of inequality (4.4), we
have

1 1

§a(u; v,v) — §a(u; u,u) — J(v) + J(u)

1

= 5 | ot @0 =5 [ (€ u)H s

- { / gQ(U)g(T)dr}der% / { / gQ(U)g(T)dT}dx

£%(u)
-3/ {g<52<u>>[§2<v>—£2<u>]+ / gmdf}dx.

£2(v)
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Hence
%a(u;v,v) — %a(u;u,u) — J(v) 4 J(u)

€ (u)
_1/9{9(52(11))[52(@)—§2(u)]+/$2() g(T)dT}dx. (6.9)

As in the proof of Theorem 4.1, introducing the function

3
Q(t) = /£ 9(2)dz,

we concludeQ”(t) = ¢'(t) < 0, which meansQ(¢), is a concave function. Hence
inequality (4.6) holds for this function. This, with (6.9) completes the proof. [

Lemma 6.3 implies that the sequence of potentials

1

Pu™) = §/Qg(§2(u(”1)))52(u("))d:€—/ﬂ F(z)u™ (z)dz, n=1,2,3,..., (6.10)

defined on approximate solution§” e }OIQ(Q), is @ monotone decreasing one.
Next we need to show that the functionél:; v, w), defined by (6.5), is bounded.
This follows from the conditio(¢2(u)) < ¢; and the equivalence of nornijs ||, and

I lls:

a(u;v,w) = /{29(52(U))H(an)dﬂf <a /Q [H (v, w)|dz < a3 [v]|a]|w]s.

Therefore all conditions of [8, Theorem 2.1] hold, and we have the following result.

Theorem 6.4.Letu € H?() andu™ e H?(Q2) be the solutions of the nonlinear
problem(2.3), and the linearized probleifd.4), respectively. If condition§)—(iii ) hold,
then

(a) the iteration scheme defined @4.7)is a monotone decreasing one:

M(u®™) < M), vu®D W™ e H(Q);

(b) the sequence of approximate solutie[mén)o} C ﬁl2(Q) defined by the iteration
schemé4.7) converges to the solutione H?*(Q) of the nonlinear probleni.1)
in the norm of the Sobolev spaé€ (2);

(c) for the rate of convergence the following estimate holds:

V2¢ci03

3/2
71/

{(P(u™ D) = P@™N/2 n=123,....

lu = ut <
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