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Abstract

In this article, the recent results on basic boundary value problems of complex
analysis are surveyed for complex model equations and linear elliptic complex par-
tial differential equations of arbitrary order on simply connected bounded domains,
particularly in the unit disc, on unbounded domains such as upper half plane and
upper right quarter plane and on multiply connected domains containing circular
rings.
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1 Introduction

The investigations on the boundary value problems for complex differential equations
had a new starting point for complex differential equations in the middle of the nine-
teenth century. Riemann has stated the problem

“Find a function w(z) = u + v analytic in the domairi2, which satisfies at every
boundary point the relation

F(u,v) =0 (on 0Q)”

in his famous thesis [51]. Later, this statement is known as Riemann problem. However,
he stated only some general considerations regarding with the solvability of the prob-
lem. The generalization of Riemann problem to a linear first-order differential equation

together with the linear boundary condition

au + fv = Re[A(z)w] = vy on o
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was considered by Hilbert [45]. This new form of the problem is called as the gener-
alized Riemann—Hilbert problem. Some extensions of this problem has been treated by
many researchers [43,46,50,53,57,59].

The first-order linear complex partial differential equation

ws = a(2)w(z) + b(z)w(z)

has been considered by Vekua [58] and Bers [40] separately and simultaneously. Its
solutions are called as generalized analytic (or pseudo-holomorphic) functions. The

boundary value problems described above and their particular cases known as Schwarz,
Dirichlet, Neumann and Robin problems are treated by many researchers.

Boundary value problems for higher-order linear complex partial differential equa-
tions gained attraction in the last twelve years. Dirichlet, Neumann, Robin, Schwarz
and mixed boundary value problems for model equations, that is for the equations of the
form

oot = f(z)

are introduced in the unit disc of the complex plane by Begehr [14]. In this article we
want to give a directed survey of the relevant literature on the boundary value problems
of complex analysis, and reveal some problems which are still open.

2 Dirichlet Problem for Complex PDEs

2.1 Dirichlet Problem for Complex Model PDEs
2.1.1 Simply Connected Bounded Domain Case

Many authors have investigated the Dirichlet problem in simply connected domains. To
give the explicit representations for the solutions of the problems, we will consider the
particular case of the unit dig2 of the complex plane. Let us start by giving the related
harmonic and polyharmonic Green functions.

In D, the harmonic Green function is defined as

1—ZC_2

Gl(zv C) = log C —

and its properties are given in [16, 18]. A polyharmonic Green fundfigns defined
iteratively by

1 e = - ~
Go(2:0) =~ [ [ G1(2.0Gu1 (G )
D
for n > 2, [33]. The explicit expressions a¥,(z, () for n = 2 and forn = 3 are

given in [16, 18] and in [41], respectivelg,, (z, () are employed to solve the following
n-Dirichlet problems for the:-Poisson equation, [33].



Boundary Value Problems for Complex PDEs 135

Theorem 2.1. The Dirichlet problem
(0.0:)"w=f in D, (0.0:)"w=",, 0<p<n—1 on ID
f € L'(D),v, € C(0D), 0 < u <n — 1is uniquely solvable. The solution is

w1 ¢ 1
M@;é;ﬁx%@@QWMT_;MFW@NWW%(M)

The explicit forms of the solutions (2.1) are given in [15,16,18] in the case-ob.
In [49], authors considered the problem given in Theorem 2.1 and they gave the explicit
representation of the unique solution using the iterative sums fer 2 andn = 3
are given. Begehr, Du and Wang [20] solved the Dirichlet problem for polyharmonic
functions by using the decomposition of polyharmonic functions and transforming the
problem into an equivalent Riemann boundary value problem for polyanalytic functions.
In [39], authors solved the Dirichlet problem investigated in [20] by a new approach.
The explicit expression of the unique solution for the Dirichlet problem of triharmonic
functions in the unit disc is obtained by using the so-called weak decomposition of poly-
harmonic functions and converting the problem into an equivalent Dirichlet boundary
value problem for analytic functions. In contrast to the boundary condition according
to [20], the requirement of smoothness for the given functions is reduced.

Another polyharmonic kernel function is the so-called Green—Almansi funétipn
[9] which is given by

=12

N I L
Gn(2,¢) = CESIE log‘ -
n—1 1
~ 2 o El T AP = 2P (1= [P (2.2)
p=1 )

UsingG,,, the following theorem is proved in [33].

Theorem 2.2. The Dirichlet problem

(0,0:)"w = f in D, fe L'(D) (2.3)
(0.0:)"w = 7y,, v, € C" (D) 0 <2u<n—1on ID (2.4)
0. (0.0:)"w =4, 4, € C" (D) 0 < 2u<n—2 on ID (2.5)

is uniquely solvable. The solution is

QI3

~ d
l/@A&QW”AGA%O%@%g

oD

1 ]

=
[e=]
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[251]
1 1 A NS
. Z - / (000"~ (2, )
- oD

- / /D Gonl2, Q) F(C)dedn.

A variant of the problem (2.3), (2.4), (2.5) is discussed in the casg ahd?, are
continuous oD, [17, 38]. The solution is attained by modifying the related Cauchy—
Pompeiu representation with the help of the polyharmonic Green function.

The problem defined in Theorem 2.1 has also been solved using the Green—Almansi
functionG,, by Kumar and Prakash [47,49].

The Greens-Green Almansis function G,,, ,,(z, () for m,n € N (which is also
called as a polyharmonic hybrid Green function) is defined [7, 34] by the convolution of
G,, andG,, as

1 . .
Gonn(16) = =7 [ [ G2, 0Gu(C. 1t 26)
Note that,G,,1(2,¢) = Gumyi(2,¢) for m € N and we takeG (2, ¢) = Gy (2, ¢) for

n € N. Thus,Go1(z,¢) = Gi(z,(). Also, Ga2(z,() is defined in [33]. Eq. (2.6) is
employed in the followingm, n)-type Dirichlet problem, [7].

Theorem 2.3. The(m, n)-Dirichlet problem
(azai)nw = f n D;
(0,0:)*w=0,0<pu<m-—1 on 0D
(0.0:)"™w=0,0<2u<n—-—m-—1 on OD
0, (0.0:)"T"w=0,0<2u<n-—m—2 on ID
for f € L'(D) N C (D), is uniquely solvable. The solution is

0(2) = == [[ Gl Q1 Ot

™

Begehr and Vaitekhovich [34] have considered the following similar problem with
the inhomogeneous boundary conditions,

(azag)m+nw = f |n D
(0.0:)*w =7, ondDfor0 <2p<m-—-1m<p<m+n-—1
0,(0.0:)"w =7, ondDfor0 <2y <m — 2.

They have given the solution by an iterative technique.
The inhomogeneous polyanalytic equation is studied by Begehr and Kumar [28] in
D with Dirichlet conditions and the following result is obtained.
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Theorem 2.4. The Dirichlet problem for the inhomogeneous polyanalytic equation in
D

2w = finD (2.7)
Gw=2v 0<v<n-—1ondD

is uniquely solvable fof € L'(D;C), v, € C(D;C),0 < v < n — 1, if and only if for

0<v<n-—1
n—1 A
z rr M) (€—2)
— [2m/ -1 A=v)l 1-2C a6

// n—1—u' Ii)néludgdn]:

If the problem is solvable, the solution is given by

2/ €= “ae s e >‘1d§dn.

v=

The Dirichlet problem for the equation
oIt f + adromf =0 (2.8)

is investigated in [29] fol < m,n € N. (2.8) is known as bi-polyanalytic equation. In
the casen = 1, the solutions are called bi-polyanalytic functions.

In a half disc and a half ring of the complex plane, the Green function is given
and the Dirichlet problem for the Poisson equation is explicitly solved by Begehr and
Vaitekhovich, [35].

2.1.2 Simply Connected Unbounded Domain Case

In this subsection we give an overview of the problems defined in the upper half plane
H = {z € C: 0 < Imz} and in right upper quarter plar@, = { € C : 0 <
Re 2,0 <Im z}.

The polyharmonic Green function féf is given using the Almansi expansion [22]:

¢ — Z|2
(n—

Cin(2,) = ‘C

¢ -

1 _
—E:;@jTWK—ZW““”@—CW@—ZV
p=1 ’

Begehr and Gaertner [22] have proved the following theorem.
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Theorem 2.5. For given f satisfying|z|>" Y f(z) € L,(H;C),~, € C"*(R;C) for
0<2v<n—1,4, € C"'"?(R;C) for 0 < 2v < n—2 with the respective derivatives
bounded, the Dirichlet problem

(0:0,)"w = f in H

(0,0:)"w =1, for 0 <2v <n-—1,
0vorttw =4, for 0<2v<n—20nR

is uniquely solvable in a weak sense by

w(z) = % Z[(;) t—zﬂzl 7”gu<z,t>%<t>
[252] et _
2 “_V( —v—=10 (z—=2)
L (e I O
+;(_1) u/ﬂv! (t_z)“_2”+1] Vo (t)

DYDY <—1>“-"M<z—z)ﬂg,t_b(z,t)w)] i

where forl < ¢,
R Gy
(—2)* ((=2)
INQ, = {2 € C:0 < Re 20 < Im z}, the following result for the Dirichlet

boundary value problem is given for the inhomogeneous Cauchy—Riemann equation
in [23].

ga(za ): (

Theorem 2.6. The Dirichlet problem
= f in Ql;

w=y for >0,y =0,w=" for z =0,y >0

for f € L,5(Q1;C),2 < p,m,72 € C(R; C) such that(1 + 1)’y (2), (1 + 1)°72(t) are
bounded for somé > 0 and satisfying the compatibility condition (0) = 12(0) = 0
is uniquely weakly solvable in the claé‘é((@l; C) N C(@l; C) if and only if

1 [ dt Y dfdn
o nt)—— = 5= - - ;
T Jo t—z 2m ), t +1z )
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1 [ a1 [ it 1 dédn
— / - ' _ = -
2w J, O T am ) Wi //1f<C)C—I—z 0

1 > dt 1 > dt d d
Gy 7(t) - Ya( Yf // 5 L :0.
T Jo t+z 2mi ), o

The solution is

o= [Tt L [ L] gt
27 J, YT T o 0 2l t+2z ) '

The equatio®” ™! f+admd. f = 0 which represents the bi-polyanalytic functions, is
investigated in the upper half plane and different forms of boundary conditions leading
to the well-known Schwarz, Dirichlet and Neumann problems in complex analysis are
solved in the upper half plane in [19].

Open Problen?.7. The results given for half disc, half ring and unbounded domains
have not been extended to linear higher-order differential equations yet.

2.1.3 Multiply Connected Domain Case

The main contributions for boundary value problems are given by Begehr and Vai-
tekhovich [35,54,56]. They have considered the boundary value problems for inhomo-
geneous Cauchy—Riemann equation and Poisson equation in concentric ring domains.

Open Problen2.8. The Dirichlet problems for higher-order linear differential equations
in multiply connected domains have not been solved yet.

2.2 Dirichlet Problem for Complex Linear Elliptic PDEs

Now we take the linear differential equations which have the form

(0:0:)"w+ Y (g (2)0 0w + ¢ (2)0L 04 w)

k+1=2n
(k,D)#(n,n)
+ Y (an(2)0F0w + b (2)0L0kw) = f(z) InD (2.9)
0<k+I<2n
where
ag, by, f € LP(D), (2.10)
andq,S) andq,g), are measurable bounded functions subject to
> (e @)l +lad ) <@ <1, (2.11)
(el

The equation (2.9) is called a generalized higher-order Poisson equation. We pose
the following problem [7] in the unit disc.
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Dirichlet- (m, n) Problem. Findw € W?*"?(DD) as a solution to equation (2.9) satisfy-
ing the Dirichlet condition

(0,0:)!w=0,0<pu<m-—1 on 0D (2.12)
(0.0:)"Tw =0,0<2u<n—m—1 on oD (2.13)
0, (0.0:)"T"w=0,0<2u<n—m—2 on D . (2.14)

We need some preparations to find the solutions.

2.2.1 AClass of Integral Operators Related to Dirichlet Problems

In this section, usingr,,, ,(z, ¢) and its derivatives with respect tandz as the kernels,
we define a class of integral operators relatethton)-type Dirichlet problems.

Definition 2.9. Form, k, ! € Ny, n € Nwith (k,[l) # (n,n) andk + [ < 2n, we define

GEL (=) = / / 050G (2, O) F(O)dedn

for a suitable complex valued functigihgiven inDD.

It is easy to observe that the operat@ifgfn are weakly singular fok + [ < 2n and
strongly singular fok + [ = 2n.

Using Definition 2.9, we can obtain the following operators by some particular
choices ofn, &, [:

Ghi(z) = ‘%4/ s One) dgdn:_%/ bg’lc

Giie) = —= / 0.1 (2,C) (C)ded

- ——//( - 1fzo)f<<>dfdn,

@) = = / [ 261(2.05(0dein

] () o

One should observe thatyg?, Gy andG;Y are the operatorHy, II; andIl, respec-
tively, which were investigated by Vekua [58]. It is easy to show that these operators
satisfy

2
f(Q)dedn,

0.Golf = Gyl f and 92Golf = G3Y (2.15)
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for f € LP(D), p > 2, in Sobolev’s sense. The other properties of these operators can
be found in [7]. We will mention just one of them:
For k € N, if f € W"P(DD), then

0L G f(2) = Goi((D — D) f(2)) (2.16)

whereDf(z) = 0.f(2), D.f(z) = 0:(*f(2)).
(2.16) is very important for the solution of the boundary value problem for linear
partial differential equations. Our main result is given by the following theorem.

Theorem 2.10.The equatior{2.9) with the condition§2.12) (2.13)and (2.14)is solv-
able if

g0 max |Gl llr) <1 (2.17)

and a solution is of the forma(2) = G, _,.g(z) whereg € LP(D), p > 2, is a solution

of the singular integral equation

(I+D+K)g=f (2.18)
where
1 2

Dg= Y (g (2)GE, + a4 ()Gi) .

k+1=2n

(k,D)#(n,n)
Kg= Z (akl(z)Gf,;{n + b (2)GELL)

0<k+Ii<2n

3 Neumann Problem for Complex PDEs

3.1 Neumann Problem for Complex Model PDEs
3.1.1 Simply Connected Bounded Domain Case

The harmonic Neumann function for the domains given by

Ni(z,¢) =log [(¢ = 2)(1 = 2¢) " (3.1)
for z,( € D, [37]. (3.1) satisfies
aule(z> C) - (Zaz + 282)]\[1(27 C) =2 (32)

for z € 0D, ¢ € D. But the higher-order Neumann functions are not easy to find in their
explicit forms. They may be defined iteratively force N wheren > 2, as

Mo 0) = = [ [ Mt NG 33)
D

For the explicit form in the case of = 2 andn = 3, see [18, 37,41]. By the aid of
(3.3), the higher-order Poisson equation is investigated under the Neumann conditions
and the following result is obtained [37].
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Theorem 3.1. The Neumanm- problem
(0,0:)"w = finD, fe LP(D)forl <p< +oo,
0,(0,0:)°w = ~,0ndD, v, € C(OD)for0 <o <n-—1,

satisfying
1 d¢
i -\¢ R < g<n-—
5 (0:0¢)w(C) c Co, o €Cfor0 <o <n-—1,
oD

is solvable if and only if

211
oD p=o+l

1 O 1
o [ WO = X et [[ 0N 0Of Q. @4
D

Herea; = 2and for3 < k

k—2 9
1!
= . 3.5
Ykt 2{;] k- DIk —1—)P2@u—k+1p " (3.5)
=3

The solution is unique and given by

nl 4 1 d
w(z):Z {icuﬁygN“Jrl(z,C) - R /Nu+1<z7<)7/l(g)?c}
u=0 oD

% / / No(2, Q) F(O)dedn .

Particularly, for the inhomogeneous biharmonic equation, analogous results are pre-
sented in [16,18]. We may consult with [13] for the solutions of Bitsadze equation under
Neumann conditions.

The inhomogeneous polyanalytic equation (2.7) with the half-Neumann conditions

2020,w =, ondD, dZw(0) = ¢,

is uniquely solved with some solvability conditions in [28].

3.1.2 Unbounded Domain Case

The Neumann boundary value problem is considered for the inhomogeneous Cauchy—
Riemann equation in a quarter plane and the solvability conditions and solutions are
given in explicit form in [23].

Neumann Problem.Let f € L,»(Q;;C) N C*(@Q;C) for2 < p,0 < a < 1,91,7 €
C(R*;C) such thatl 4 )%, (t), (1 +t)°9,(t), (1 +1)° £(t), (1 + t)° f (it) are bounded

for some0 < 4, ¢ € C. Findw € C*(Q;; C) satisfying

wz;=finQ,0,w=yfor0<z,y=0, d,w="for0<y,z=0w(0)=c
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Theorem 3.2. The Neumann problem is uniquely solvable in the weak sense if and only
if forany z ¢ Q

+00 +00

d déd
/ —Hf t +212 hQ(t) f< t+zz //f 577 :O
0

0
(3.6)

holds. The solution is

2

dt

2 2

+00
we) = et o [+ ir@log| =

t
.l / 2o(t) — f(it)]log / [1YEL @)

Also, in the upper half plane the Neumann problem is considered for the inhomoge-
neous Cauchy—Riemann equation and Poisson equation, [42].

t2+z

3.1.3 Multiply Connected Domain Case

The Neumann problem for analytic functions, more generally for the inhomogeneous
Cauchy-Riemann equation and Poisson equation are investigated in a circular ring do-
main; the representations to the solutions and solvability conditions are given in an
explicit form by Vaitekhovich [54-56].

3.2 Neumann Problem for Complex Linear Elliptic PDEs
Forn € N, k,1 € Ny with (k,1) # (n,n) andk + [ < 2n, the operators given by

Suiif(z / [ om0 (e

for a suitable complex valued functighgiven inID, are the operators related to Neu-
mann problem for generalizedPoisson equations. In [6], these operators are shown
to be uniformly bounded and uniformly continuous for the case 2 andf € L*(D)

for p > 2 and bounded il” (D) for f € L”(D) andn > 1. Using these operators and a
property similar to (2.16), the following problem is investigated.

Neumann Problem. Find w € W?"?(D) as a solution of the linear complex partial
differential equation (generalizedPoisson equation)

0w o*rw O*w
R ERDD (q’fl () g + 0t (= )azkazl)

k+l=2n
k£l
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ak+lw ak+lw .
+ Z {akl(Z)W + bkl(Z)W = f(Z) N D, (38)
0<k+1<2n
where
axl, b, [ € LP(D), (3.9)

andq,(j) andq,ﬁj), are measurable bounded functions satisfying

S (dP )+ e ) < a0 < 1 (3.10)
ktj;f”

with Neumann conditions
0,(0,0:)°w = ~,0ndD, v, € C(OD;C)for0 <o <n-—1 (3.11)

satisfying
1 d¢
— )7 — = <o<n-1 .
5 (0:0¢)7w(Q) c o, €Cfor0<o<n-—1 (3.12)
oD

The solvability of this problem is given in the following theorem.

Theorem 3.3.If the inequality

qo max || Sypill oI+ N1) ™ = K|y < 1 (3.13)

k—1#2

holds for someX’ € K(L(D)), 0 < p — 2 < ¢, then the equatior3.8) with the
boundary conditiong3.11) and normalization conditioné3.12) has a solution of the
formw(z) = Sn009(2) + ¢(2), whereg € LP(D) is a solution of the singular integral
equation

I+N+K)yg=f, (3.14)
where )
— (1 1 d
o) = 3 {50 Nuns(:0) = 7 [ MO0 F }
p#=0 oD
and

Ng= " (a4 Suig + a3 Surag) + > (64 Snerg + 4t Snkag)

k+1=2n k+1=2n
e |k—1|#2
= ng + N2ga
Kg = Z (alen,k,lg + blen,k,lg) )
k+1<2n

f=f-L¢
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in which o2 .
_ (1) " (2) "p
Ly = Z (qkl (Z)W + iy (Z)W)

k+1=2n
k£l

ak—i_l@ ak-ﬁ-l@
IR UCT =R
subject to the solvability conditions

L [0% = 5 e [N on0n @)
D

21
oD p=o+1

where0 <o <n—1,a; =2andfor3 < k

B

1!

(k—Dlk—1—pw)?2u—k+1)!

Q1 = —

. (3.16)

[NIE

(5]

w

Open Problen8.4. The Neumann problems for higher-order linear complex partial dif-
ferential equations are not considered in half plane, quarter plane and concentric rings.
These problems can be handled after some studies of the corresponding integral opera-
tors.

4 Robin Problem for Complex PDEs

4.1 Robin Problem for Complex Model PDEs
4.1.1 Simply Connected Domain Case
Begehr and Harutyunyan [24] obtained the following result for the Robin problédin in

Theorem 4.1. The Robin problem for the inhomogeneous Cauchy—Riemann equation
in the unit disc
;=fiInD w+dw=~yonD

is uniquely solvable for givefi € L' (D) N C (D), v € C(dD) if and only if for all z,
|z] <1,

o | 0@ =T+ 1 [ 2 odean] <o

and the solution is

w(z) = [ (r(0) — ey =29) “‘ZC / / ¢)dedn.

27 oD
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In the same article, they have also investigated the problem
w; = fin D,
O w4+ 200w+ 208w =", onD, v=1,....n

and obtained the representation of the solution with the corresponding solvability con-
ditions by converting the problem into an equivalent system &obin problems for
the Cauchy—Riemann operator.

The Robin function for harmonic operator is

Ry (2.¢) = log | -=2¢ —z( 5 log(ljzo _l_log(li— Z() 41
—z zC Z¢
and for polyharmonic operator
Ry :——/ Ry(2,8) R (€, ) dEd

The Robin problem for mhomogeneous harmonic equation is treated in [16, 18, 36]. For
the higher-order Poisson operators the problem is defined by
(0,0:)"w = f in D
(0,0:)" tw + 2070w + 200 10w =, v=1,...n on oD

This problem is studied by Begehr and Harutyunyan [25]. In the cased andn = 2,
the explicit solutions are given for the corresponding problems.

4.1.2 Unbounded Domain Case

The following Robin boundary value problem is investigated)infor the inhomoge-
neous Cauchy—Riemann equation in [1].

Robin Problem. Let f € L,5(Q;;C) N C*(Q;;C) for2 < p,0 < a < 1,7,7 €
C(R*;C) such that for som@® < § the functions(1 + £)°y,(), (1 4 t)°y2(t), (1 +
) f(t), (1 +t)° f(it) are bounded oR™, ¢ € C. Findw € C'(Q;; C) satisfying

= finQp,w(0) = ¢,
w —i0,w =y for0 < z,y =0,
w~+ d,w =y for0 < y,z = 0.

Theorem 4.2. This particular Robin problem is uniquely solvable in the weak sense if
and only if forz ¢ Q,

+oo t

27”//71 + = f )]Ttdr

t

0

m zt—z

o\,ﬁé’»
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The solution is

+oo t
1 dt
w(z) = [c—=Tf(0)]e 2—7”// m(T) + f() Tth
0 0
T 1 dt
: i(T—t),; !
—2—7”//[’)/2(7')—§f(27')]6( )ZdTit—z (4.2)
0 0

z

- [rus o [ o [ i@ eace i)

0 0 0Qq

:_—/Qlf df_dz

4.1.3 Multiply Connected Domain Case

In Theorem 4.2,

Explicit Robin functions are given for Poisson equation for a circular ring in the complex
plane by Begehr and Vaitekhovich [36]. Robin boundary value problem for analytic
functions and for the inhomogeneous Cauchy—Riemann equation are investigated in
ring domains [56].

4.2 Open Problems with Robin Conditions

For the higher-order linear differential equations, Robin boundary value problem is not
considered particularly. Just in the last section of this survey, it will be considered as
a part of a mixed problem in the unit disc. The Robin problem is not considered for

higher-order model and linear differential equations in the case of unbounded domains
and multiply connected domains. The corresponding Robin functions are not known
yet.

5 Schwarz Problem for Complex PDEs

5.1 Schwarz Problem for Complex Model PDEs
5.1.1 Simply Connected Domain Case

The first article in Schwarz problem for analytic functions is given in [52]. The fol-
lowing theorem gives the unique solution of the Schwarz problem for inhomogeneous
polyanalytic equation, [10, 14, 31].
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Theorem 5.1. The Schwarz problem for the homogeneous polyanalytic equation in the
unit discD defined by

Okw=finD, Re bw =00ndD, Im dw(0)=0,0<I<n—-1,
is uniquely solvable fof € L'(D). The solution is

)¢+z= f<<>1+zE —— ke
w(z) = 27T _1 // Ce e 1_25)@—24—(—2)’“ Ldedn .

Previously the cases &f= 1 andk = 2 have been studied [13].

5.1.2 Unbounded Domain Case

In the upper right quarter plane, the following problem is defined and solved by Abdy-
manapov et al [2].
Schwarz Problem. Let f € L;(Q;;C),v,% € C(R";R) be bounded oiR* =
(0, +00). Find a solution of
= fin Q, satisfying
Re w=7m0n0 < x,y =0,
Imw=~y0n0<y,z=0.

Theorem 5.2. The Schwarz problem is uniquely weakly solvable. The solution is

+o0 +o0o
2 z 2 z

R R A A

e e

In the case of upper half plari&, the following result is obtained in [42].

Theorem 5.3.Let f € L,»(H;C),2 < p, v € C(R), ¢ € R such thaty is bounded on
R. Then the Schwarz problem

=fin H
Rew =~ onH, Imw(i)=c
is uniquely solvable in the weak sense. The solution is

_’H_/ <t— tQil)dt )
_E//H [f(o (c—z_¢2i1> _m(iiz_@il)]d&dn‘




Boundary Value Problems for Complex PDEs 149

5.1.3 Multiply Connected Domain Case

Schwarz problems are solved for the inhomogeneous Cauchy—Riemann equation and
Poisson equation in a concentric ring domain (concentric annulus) by Vaitekhovich [54—
56]

5.2 Schwarz Problem for Complex Linear Elliptic PDEs

Begehr [10, 31] considered the Schwarz problem for some higher-order equations and
proved the solvability of the problem. Schwarz problem for a general linear elliptic
complex partial differential equation whose leading term is the polyanalytic operator is
discussed in [3, 5].

Schwarz Problem. Find w € W*?(DD) as a solution to thé-th order complex differ-

ential equation

k=1 1 lw lm
D [ 8— b2 =2 |~ f(z)inD, (5.2)
=0

— a2 8zl mQozm 0zl=mozm
where
i, by € LP(D), f € LP(D), (5.3)
andq;; andgs;, 7 = 1, ..., k, are measurable bounded functions satisfying
k
D a2+ la2;(2))) < go < 1 (5.4)

7j=1
satisfying the nonhomogeneous Schwarz boundary conditions

Ow 0w
Reﬁ:w OnaD, Imw(O):Cl7O§l§l€—1, (55)
wherey, € C(OD;R), ¢, e R,0< I <k — 1.
Theorem 5.4.If the inequality

o max | Pyl oy | (T +T) ™" — K| oy < 1 (5.6)

1<5<k

is satisfied for somé; € K(L?(D)), 0 < p — 2 < ¢, then equation(5.2) with the
boundary condition$5.5) has a solution of the form

k—1 k—1
_ T : G =\! <_1)l (+=z —dC
w=Ti i35 2+ oy [ WO €2 TR 6

Il
o
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whereg;, € L*(D), p > 2, is a solution of the singular integral equation
(I+1+K)g = f, (5.8)

k k
Ilg = Z(qlaﬂag +a211,9) = Y (01;(P + T-,)9 + 02,(Pig + T 9))

= Pg+Tg (5.9)

and

1 ~ ~
- " e ™

In Theorem 5.4, the operatdf are defined as

=y NFQOC+H2 | f(O1+2C

for £ € N with Tof(z) = f(z), see [11, 12, 27].8217“,9 are weakly singular integral
operators fod <[ < k — 1, while

d&dn

F f(¢)
(—z2+C—2z. N7 T
+( = o ) (1—z§>2] w54

is a Calderon-Zygmund type strongly singular integral operathr.are shown to be
bounded in the spadk’ for 1 < p < oo and in particular thei.? norms are estimated
in [4]. These operators are investigated by decomposing them into two pdits-as

T—k,k + P, where

T i f(2 D //( ) f_(C;)dedﬁa (5.12)

which is investigated extenswely in [21, 26].
In [44], the Schwarz problem for the Beltrami equation

ws+cw, = fIinD
Rew =+, Imw(0)=c on D
is solved as a particular form of the above problem.
The Schwarz problem for Poisson equation is explicitly solved in [14].

Open Problent.5. The Schwarz problem is not considered for higher-order Poisson
equations irD, in unbounded domains and in multiply connected domains.
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6 Mixed Type Problems for Complex PDEs

6.1 Mixed Type Problems for Complex Model PDEs
6.1.1 Simply Connected Domain Case

In order to state and solve the mixed problems containing Schwarz, Neumann, Dirichlet
and Robin problems, we define the following polyharmonic hybrid Green type func-

tions:
i, :——// Nu(C, Q) déd,
I =——[/ Ra(C, C)déd,

D

which are obtained by convoluting Green, Neumann and Robin functions iteratively, [8].
The integral operators

B::Il),m_(a_%)’n_mf(z) = afaéfn—m(]a,b,m—(a-i-b)f(Z))

are defined in relation to the mixed problems, [8]. The higher-order model differential
equation with mixed boundary conditions is discussed in the following theorem.

Theorem 6.1. The mixed problem for model equation
ol'0lw=finD, n>m,

Redfw =0 ondD, Imdw(0)=0,0<pu<n—m-—1,
oML My =0,0< u<a—1 on ID
D, (OPFTaQEF =4y = 0, 0 < p < b—1 on oD

1
L [ <00 p -1 on 0
™
oD

8M+a+bag+n—m+a+bw + ay (au+a+ba§+n—m+a+b)w =0,
0<pu<m-—a—b—1 on oD

for f € LP(D), is uniquely solvable iff

(/@MWMMommmzo (6.1)
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for a suitablef. The solution is
w(z) = ngg,mfafb,nfmf(z)’
where(9.0;)™ " f = f satisfy the conditions

guratbLnTmteth f 4 g, (gutertolTmeth f— o, 6.2)

0<pu<m-—a—b—1 on ID.

Remark6.2 The problem given in Theorem 6.1 covers some mixed problems given
in [16, 18] for bi-Poisson equation and in [30, 48] for inhomogeneous polyanalytic and
polyharmonic equations with homogeneous boundary conditions cases.

6.2 Mixed Type Problems for Complex Elliptic Linear PDEs

We consider the following mixed problem for higher-order complex differential equa-
tion of arbitrary order [8].
Problem M. Findw € W™*™?(DD) as a solution to the equation

orotw+ Y (a)(2)050kw + qff (:)0L0k0)
k+l=m+n
(k,1)#(m,m)

+ Y (aa(2)0k0kw + b (2)0L0kw) = f(2) (6.3)

0<k+l<m+n

satisfying boundary conditions

Redfw =0 ondD ,

Imdfw(0)=0, 0<pu<n—-m-—1 (6.4)
LT My =0, 0 < p<a—1 on ID (6.5)
O, (0P Yy =0, 0< p<b—1 on OD (6.6)

1
21

d
/ag.;.aag—i-n—m—&-aw(g)?c — 07 0< 0 < b—1 on QD,
oD

ag+a+ba/;+n—m+a+bw + ayz (8u+a+ba/;+n—m+a+b)w =0 (67)

0<pu<m-—a—b-—1 on JID,

where
agl, bkla f S LP(D) (68)
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andq,(j) andq,(j), are measurable bounded functions

> (o) @)+ () < a0 < 1 (6.9)
k+l=m+n
(k,1)#(m,n)

andl <n—mfork+1l>n—m,k+l<m+nforl>n—m,k+1=m-+nfor
[>n—m.
We transform the Problem M to a singular integral equation.

Lemma 6.3. The mixed problen(6.3), (6.4), (6.5), (6.6) and (6.7) is equivalent to the
singular integral equation

(I+M+K)g=f, (6.10)
if
w_Babm a—b,n— mg’
where
~ 1) pk,l 2
Mg: Z ( ()B a,bom—a—bn— mg+ql(cl)Babm a—bn— mg)
k+l=m+n
(k,1)#(m,n)

[A(g: Z (aleabm a—b,n— mg+bleabm a—bn— mg>
k+l<m4n

Solvability of the problem is given in the next theorem.

Theorem 6.4. If the inequality

qok-l-rlri%ri(-l- HBabm a—b,n— meLP(D) Sl (611)

is satisfied, then equatiof6.3) with the conditiong6.4), (6.5), (6.6) and (6.7) has a
solution of the formw = Bobm a_bn_md» Whereg € LP(D) is a solution of the singular
integral equatior(6.1O)W|th p > 2 andy satisfies the solvability condition

%/'@»wﬂﬂw@@M@mwnzm (6.12)
D

where(9,0;)™ % g = g satisfy the conditions
ag+a+b8§+n—m+a+b§ + ayz (ag+a+bag+n—m+a+b)§ =0, (6.13)
0<pu<m-—a—b—1o0onJD.

Open Problen6.5. On unbounded domains and multiply connected domains, mixed
type problems are not studied for higher-order linear equations and model equations.
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