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Abstract

In this article, the recent results on basic boundary value problems of complex
analysis are surveyed for complex model equations and linear elliptic complex par-
tial differential equations of arbitrary order on simply connected bounded domains,
particularly in the unit disc, on unbounded domains such as upper half plane and
upper right quarter plane and on multiply connected domains containing circular
rings.
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1 Introduction

The investigations on the boundary value problems for complex differential equations
had a new starting point for complex differential equations in the middle of the nine-
teenth century. Riemann has stated the problem

“Find a function w(z) = u + iv analytic in the domainΩ, which satisfies at every
boundary point the relation

F (u, v) = 0 (on ∂Ω)”

in his famous thesis [51]. Later, this statement is known as Riemann problem. However,
he stated only some general considerations regarding with the solvability of the prob-
lem. The generalization of Riemann problem to a linear first-order differential equation
together with the linear boundary condition

αu + βv = Re[λ(z)w] = γ on∂Ω
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was considered by Hilbert [45]. This new form of the problem is called as the gener-
alized Riemann–Hilbert problem. Some extensions of this problem has been treated by
many researchers [43,46,50,53,57,59].

The first-order linear complex partial differential equation

wz̄ = a(z)w(z) + b(z)w(z)

has been considered by Vekua [58] and Bers [40] separately and simultaneously. Its
solutions are called as generalized analytic (or pseudo-holomorphic) functions. The
boundary value problems described above and their particular cases known as Schwarz,
Dirichlet, Neumann and Robin problems are treated by many researchers.

Boundary value problems for higher-order linear complex partial differential equa-
tions gained attraction in the last twelve years. Dirichlet, Neumann, Robin, Schwarz
and mixed boundary value problems for model equations, that is for the equations of the
form

∂m
z ∂n

z̄ w = f(z) ,

are introduced in the unit disc of the complex plane by Begehr [14]. In this article we
want to give a directed survey of the relevant literature on the boundary value problems
of complex analysis, and reveal some problems which are still open.

2 Dirichlet Problem for Complex PDEs

2.1 Dirichlet Problem for Complex Model PDEs

2.1.1 Simply Connected Bounded Domain Case

Many authors have investigated the Dirichlet problem in simply connected domains. To
give the explicit representations for the solutions of the problems, we will consider the
particular case of the unit discD of the complex plane. Let us start by giving the related
harmonic and polyharmonic Green functions.

In D, the harmonic Green function is defined as

G1(z, ζ) = log

∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2
and its properties are given in [16, 18]. A polyharmonic Green functionGn is defined
iteratively by

Gn(z, ζ) = − 1

π

∫∫
D

G1(z, ζ̃)Gn−1(ζ̃ , ζ)dξ̃dη̃

for n ≥ 2, [33]. The explicit expressions ofGn(z, ζ) for n = 2 and forn = 3 are
given in [16,18] and in [41], respectively.Gn(z, ζ) are employed to solve the following
n-Dirichlet problems for then-Poisson equation, [33].
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Theorem 2.1.The Dirichlet problem

(∂z∂z̄)
nw = f in D, (∂z∂z̄)

µw = γµ, 0 ≤ µ ≤ n− 1 on ∂D

f ∈ L1(D), γµ ∈ C(∂D), 0 ≤ µ ≤ n− 1 is uniquely solvable. The solution is

w(z) = −
n∑

µ=1

1

4πi

∫
∂D

∂νζ
Gµ(z, ζ)γµ−1(ζ)

dζ

ζ
− 1

π

∫∫
D

Gn(z, ζ)f(ζ)dξdη. (2.1)

The explicit forms of the solutions (2.1) are given in [15,16,18] in the case ofn = 2.
In [49], authors considered the problem given in Theorem 2.1 and they gave the explicit
representation of the unique solution using the iterative sums forn = 2 andn = 3
are given. Begehr, Du and Wang [20] solved the Dirichlet problem for polyharmonic
functions by using the decomposition of polyharmonic functions and transforming the
problem into an equivalent Riemann boundary value problem for polyanalytic functions.
In [39], authors solved the Dirichlet problem investigated in [20] by a new approach.
The explicit expression of the unique solution for the Dirichlet problem of triharmonic
functions in the unit disc is obtained by using the so-called weak decomposition of poly-
harmonic functions and converting the problem into an equivalent Dirichlet boundary
value problem for analytic functions. In contrast to the boundary condition according
to [20], the requirement of smoothness for the given functions is reduced.

Another polyharmonic kernel function is the so-called Green–Almansi functionG̃n

[9] which is given by

G̃n(z, ζ) =
|ζ − z|2(n−1)

(n− 1)!2
log

∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2
−

n−1∑
µ=1

1

µ(n− 1)!2
|ζ − z|2(n−1−µ)(1− |z|2)µ(1− |ζ|2)µ . (2.2)

UsingG̃n, the following theorem is proved in [33].

Theorem 2.2.The Dirichlet problem

(∂z∂z̄)
nw = f in D, f ∈ L1(D) (2.3)

(∂z∂z̄)
µw = γµ, γµ ∈ Cn−2µ(∂D) 0 ≤ 2µ ≤ n− 1 on ∂D (2.4)

∂νz(∂z∂z̄)
µw = γ̂µ, γ̂µ ∈ Cn−2µ(∂D) 0 ≤ 2µ ≤ n− 2 on ∂D (2.5)

is uniquely solvable. The solution is

w(z) = −
[n
2
]−1∑

µ=0

1

4πi

∫
∂D

∂νζ
(∂ζ∂ζ̄)

n−µ−1G̃n(z, ζ)γµ(ζ)
dζ

ζ
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+

[n−1
2

]∑
µ=0

1

4πi

∫
∂D

(∂ζ∂ζ̄)
n−µ−1G̃n(z, ζ)γ̂µ(ζ)

dζ

ζ

− 1

π

∫∫
D

G̃n(z, ζ)f(ζ)dξdη.

A variant of the problem (2.3), (2.4), (2.5) is discussed in the case ofγµ andγ̂µ are
continuous on∂D, [17, 38]. The solution is attained by modifying the related Cauchy–
Pompeiu representation with the help of the polyharmonic Green function.

The problem defined in Theorem 2.1 has also been solved using the Green–Almansi
functionG̃n by Kumar and Prakash [47,49].

The Green-m-Green Almansi-n function Gm,n(z, ζ) for m, n ∈ N (which is also
called as a polyharmonic hybrid Green function) is defined [7,34] by the convolution of
Gm andG̃n as

Gm,n(z, ζ) = − 1

π

∫∫
D

Gm(z, ζ̃)G̃n(ζ̃ , ζ)dξ̃dη̃ . (2.6)

Note that,Gm,1(z, ζ) = Gm+1(z, ζ) for m ∈ N and we takeG0,n(z, ζ) = G̃n(z, ζ) for
n ∈ N. Thus,G0,1(z, ζ) = G1(z, ζ). Also, G2,2(z, ζ) is defined in [33]. Eq. (2.6) is
employed in the following(m,n)-type Dirichlet problem, [7].

Theorem 2.3.The(m, n)-Dirichlet problem

(∂z∂z̄)
nw = f in D,

(∂z∂z̄)
µw = 0, 0 ≤ µ ≤ m− 1 on ∂D

(∂z∂z̄)
µ+mw = 0, 0 ≤ 2µ ≤ n−m− 1 on ∂D

∂νz(∂z∂z̄)
µ+mw = 0, 0 ≤ 2µ ≤ n−m− 2 on ∂D

for f ∈ L1(D) ∩ C(D), is uniquely solvable. The solution is

w(z) = − 1

π

∫∫
D

Gm,n−m(z, ζ)f(ζ)dξdη.

Begehr and Vaitekhovich [34] have considered the following similar problem with
the inhomogeneous boundary conditions,

(∂z∂z̄)
m+nw = f in D

(∂z∂z̄)
µw = γµ on∂D for 0 ≤ 2µ ≤ m− 1, m ≤ µ ≤ m + n− 1

∂ν(∂z∂z̄)
µw = γ̃µ on∂D for 0 ≤ 2µ ≤ m− 2.

They have given the solution by an iterative technique.
The inhomogeneous polyanalytic equation is studied by Begehr and Kumar [28] in

D with Dirichlet conditions and the following result is obtained.
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Theorem 2.4. The Dirichlet problem for the inhomogeneous polyanalytic equation in
D

∂n
z̄ w = f in D (2.7)

∂ν
z̄ w = γν 0 ≤ ν ≤ n− 1 on ∂D

is uniquely solvable forf ∈ L1(D; C), γν ∈ C(D; C), 0 ≤ ν ≤ n− 1, if and only if for
0 ≤ ν ≤ n− 1

n−1∑
λ=ν

[
z̄

2πi

∫
∂D

(−1)λ−ν γλ(ζ)

(λ− ν)!

(ζ − z)
λ−ν

1− z̄ζ
dζ

+
(−1)ν z̄

π

∫∫
D

f(ζ)

(n− 1− ν)!

(ζ − z)
n−1−ν

1− z̄ζ
dξdη

]
= 0 .

If the problem is solvable, the solution is given by

w(z) =
n−1∑
ν=0

(−1)ν

2πi

∫
∂D

γν(ζ)

ν!

(ζ − z)
ν

ζ − z
dζ +

(−1)n

π

∫∫
D

f(ζ)

(n− 1)!

(ζ − z)
n−1

ζ − z
dξdη .

The Dirichlet problem for the equation

∂m+n
z̄ f + α∂n

z ∂m
z̄ f = 0 (2.8)

is investigated in [29] for1 ≤ m,n ∈ N. (2.8) is known as bi-polyanalytic equation. In
the casem = 1, the solutions are called bi-polyanalytic functions.

In a half disc and a half ring of the complex plane, the Green function is given
and the Dirichlet problem for the Poisson equation is explicitly solved by Begehr and
Vaitekhovich, [35].

2.1.2 Simply Connected Unbounded Domain Case

In this subsection we give an overview of the problems defined in the upper half plane
H = {z ∈ C : 0 < Im z} and in right upper quarter planeQ1 = {z ∈ C : 0 <
Re z, 0 < Im z}.

The polyharmonic Green function forH is given using the Almansi expansion [22]:

G̃n(z, ζ) =
|ζ − z|2(n−1)

(n− 1)!2
log

∣∣∣∣ ζ̄ − z

ζ − z

∣∣∣∣2
−

n−1∑
µ=1

1

µ(n− 1)!2
|ζ − z|2(n−1−µ)(ζ − ζ̄)µ(z − z̄)µ.

Begehr and Gaertner [22] have proved the following theorem.
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Theorem 2.5. For givenf satisfying|z|2(n−1)f(z) ∈ L1(H; C), γν ∈ Cn−2ν(R; C) for
0 ≤ 2ν ≤ n−1, γ̂ν ∈ Cn−1−2ν(R; C) for 0 ≤ 2ν ≤ n−2 with the respective derivatives
bounded, the Dirichlet problem

(∂z̄∂z)
nw = f in H

(∂z∂z̄)
νw = γν for 0 ≤ 2ν ≤ n− 1,

∂ν
z ∂ν+1

z̄ w = γ̂ν for 0 ≤ 2ν ≤ n− 2 on R

is uniquely solvable in a weak sense by

w(z) =
1

2πi

∫ ∞

−∞

[(
z − z̄

t− z̄

)n
γ0(t)

t− z
+

n−1∑
µ=1

(−1)µ (z − z̄)µ

µ
gµ(z, t)γ̂0(t)

+

[n−1
2

]∑
ν=1

[
n−1∑
µ=2ν

(−1)µ−ν (µ− ν − 1)!

µ!(ν − 1)!

(z − z̄)µ

(t− z)µ−2ν+1

+
n−1∑
µ=2ν

(−1)ν−1 (µ− ν)!

µ!ν!

(z − z̄)µ

(t− z̄)µ−2ν+1

]
γν(t)

+

[n
2
]−1∑

ν=1

n−1∑
µ=2ν+1

(−1)µ−ν (µ− ν − 1)!

µ!ν!
(z − z̄)µgµ−2ν(z, t)γ̂ν(t)

]
dt

− 1

π

∫∫
H

Gn(z, ζ)f(ζ)dξdη,

where for1 ≤ α,

gα(z, ζ) =
1

(ζ̄ − z)α
+

(−1)α

(ζ − z̄)α
.

In Q1 = {z ∈ C : 0 < Re z, 0 < Im z}, the following result for the Dirichlet
boundary value problem is given for the inhomogeneous Cauchy–Riemann equation
in [23].

Theorem 2.6.The Dirichlet problem

wz̄ = f in Q1,

w = γ1 for x ≥ 0, y = 0, w = γ2 for x = 0, y ≥ 0

for f ∈ Lp,2(Q1; C), 2 < p, γ1, γ2 ∈ C(R; C) such that(1 + t)δγ1(t), (1 + t)δγ2(t) are
bounded for someδ > 0 and satisfying the compatibility conditionγ1(0) = γ2(0) = 0
is uniquely weakly solvable in the classC1(Q1; C) ∩ C(Q1; C) if and only if

1

2πi

∫ ∞

0

γ1(t)
dt

t− z̄
− 1

2πi

∫ ∞

0

γ2(t)
dt

t + iz̄
− 1

π

∫∫
Q1

f(ζ)
dξdη

ζ − z̄
= 0 ,
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1

2πi

∫ ∞

0

γ1(t)
dt

t + z̄
− 1

2πi

∫ ∞

0

γ2(t)
dt

t− iz̄
− 1

π

∫∫
Q1

f(ζ)
dξdη

ζ + z̄
= 0 ,

1

2πi

∫ ∞

0

γ1(t)
dt

t + z
− 1

2πi

∫ ∞

0

γ2(t)
dt

t− iz
− 1

π

∫∫
Q1

f(ζ)
dξdη

ζ + z
= 0 .

The solution is

w(z) =
1

2πi

∫ ∞

0

γ1(t)
dt

t− z
− 1

2πi

∫ ∞

0

γ2(t)
dt

t + iz
− 1

π

∫∫
Q1

f(ζ)
dξdη

ζ − z
.

The equation∂n+1
z̄ f+α∂n

z ∂z̄f = 0 which represents the bi-polyanalytic functions, is
investigated in the upper half plane and different forms of boundary conditions leading
to the well-known Schwarz, Dirichlet and Neumann problems in complex analysis are
solved in the upper half plane in [19].

Open Problem2.7. The results given for half disc, half ring and unbounded domains
have not been extended to linear higher-order differential equations yet.

2.1.3 Multiply Connected Domain Case

The main contributions for boundary value problems are given by Begehr and Vai-
tekhovich [35,54,56]. They have considered the boundary value problems for inhomo-
geneous Cauchy–Riemann equation and Poisson equation in concentric ring domains.

Open Problem2.8. The Dirichlet problems for higher-order linear differential equations
in multiply connected domains have not been solved yet.

2.2 Dirichlet Problem for Complex Linear Elliptic PDEs

Now we take the linear differential equations which have the form

(∂z∂z̄)
nw +

∑
k+l=2n

(k,l) 6=(n,n)

(q
(1)
kl (z)∂k

z ∂l
z̄w + q

(2)
kl (z)∂l

z∂
k
z̄ w)

+
∑

0≤k+l<2n

(akl(z)∂k
z ∂l

z̄w + bkl(z)∂l
z∂

k
z̄ w) = f(z) in D (2.9)

where
akl, bkl, f ∈ Lp(D), (2.10)

andq
(1)
kl andq

(2)
kl , are measurable bounded functions subject to∑

k+l=2r
(k,l) 6=(r,r)

(|q(1)
kl (z)|+ |q(2)

kl (z)|) ≤ q0 < 1 . (2.11)

The equation (2.9) is called a generalized higher-order Poisson equation. We pose
the following problem [7] in the unit disc.
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Dirichlet- (m,n) Problem. Find w ∈ W 2n,p(D) as a solution to equation (2.9) satisfy-
ing the Dirichlet condition

(∂z∂z̄)
µw = 0, 0 ≤ µ ≤ m− 1 on ∂D (2.12)

(∂z∂z̄)
µ+mw = 0, 0 ≤ 2µ ≤ n−m− 1 on ∂D (2.13)

∂νz(∂z∂z̄)
µ+mw = 0, 0 ≤ 2µ ≤ n−m− 2 on ∂D . (2.14)

We need some preparations to find the solutions.

2.2.1 A Class of Integral Operators Related to Dirichlet Problems

In this section, usingGm,n(z, ζ) and its derivatives with respect toz andz̄ as the kernels,
we define a class of integral operators related to(m, n)-type Dirichlet problems.

Definition 2.9. Form, k, l ∈ N0, n ∈ N with (k, l) 6= (n, n) andk + l ≤ 2n, we define

Gk,l
m,nf(z) := − 1

π

∫∫
D

∂k
z ∂l

z̄Gm,n−m(z, ζ)f(ζ)dξdη

for a suitable complex valued functionf given inD.

It is easy to observe that the operatorsGk,l
m,n are weakly singular fork + l < 2n and

strongly singular fork + l = 2n.
Using Definition 2.9, we can obtain the following operators by some particular

choices ofn, k, l:

G0,0
0,1f(z) = − 1

π

∫∫
D

G1(z, ζ)f(ζ)dξdη = − 1

π

∫∫
D

log

∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2f(ζ)dξdη,

G1,0
0,1f(z) = − 1

π

∫∫
D

∂zG1(z, ζ)f(ζ)dξdη

= − 1

π

∫∫
D

(
1

(ζ − z)
− ζ̄

(1− zζ̄)

)
f(ζ)dξdη,

G2,0
0,1f(z) = − 1

π

∫∫
D

∂2
zG1(z, ζ)f(ζ)dξdη

= − 1

π

∫∫
D

(
1

(ζ − z)2
− ζ̄2

(1− zζ̄)2

)
f(ζ)dξdη.

One should observe that,G0,0
0,1, G1,0

0,1 andG2,0
0,1 are the operatorsΠ0, Π1 andΠ2 respec-

tively, which were investigated by Vekua [58]. It is easy to show that these operators
satisfy

∂zG
0,0
0,1f = G1,0

0,1f and ∂2
zG

0,0
0,1f = G2,0

0,1f (2.15)
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for f ∈ Lp(D), p > 2, in Sobolev’s sense. The other properties of these operators can
be found in [7]. We will mention just one of them:

For k ∈ N, if f ∈ W k,p(D), then

∂k−1
z G2,0

0,1f(z) = G1,0
0,1((D −D∗)

kf(z)) (2.16)

whereDf(z) = ∂zf(z), D∗f(z) = ∂z̄(z̄
2f(z)).

(2.16) is very important for the solution of the boundary value problem for linear
partial differential equations. Our main result is given by the following theorem.

Theorem 2.10.The equation(2.9)with the conditions(2.12), (2.13)and (2.14)is solv-
able if

q0 max
k+l=2n

‖Gk,l
m,n‖Lp(D) ≤ 1 (2.17)

and a solution is of the formw(z) = G0,0
m,n−mg(z) whereg ∈ Lp(D), p > 2, is a solution

of the singular integral equation

(I + D + K)g = f (2.18)

where
Dg =

∑
k+l=2n

(k,l) 6=(n,n)

(q
(1)
kl (z)Gk,l

m,n + q
(2)
kl (z)Gk,l

m,n) ,

Kg =
∑

0≤k+l<2n

(akl(z)Gk,l
m,n + bkl(z)Gk,l

m,n) .

3 Neumann Problem for Complex PDEs

3.1 Neumann Problem for Complex Model PDEs

3.1.1 Simply Connected Bounded Domain Case

The harmonic Neumann function for the domainD is given by

N1(z, ζ) = log |(ζ − z)(1− zζ̄) |2 (3.1)

for z, ζ ∈ D, [37]. (3.1) satisfies

∂νzN1(z, ζ) = (z∂z + z̄∂z̄)N1(z, ζ) = 2 (3.2)

for z ∈ ∂D, ζ ∈ D. But the higher-order Neumann functions are not easy to find in their
explicit forms. They may be defined iteratively forn ∈ N wheren ≥ 2, as

Nn(z, ζ) =
1

π

∫∫
D

N1(z, ζ̃)Nn−1(ζ̃ , ζ)dξ̃dη̃ . (3.3)

For the explicit form in the case ofn = 2 andn = 3, see [18, 37, 41]. By the aid of
(3.3), the higher-order Poisson equation is investigated under the Neumann conditions
and the following result is obtained [37].
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Theorem 3.1.The Neumann-n problem

(∂z∂z̄)
nw = f in D , f ∈ Lp(D) for 1 < p < +∞,

∂ν(∂z∂z̄)
σw = γσ on∂D , γσ ∈ C(∂D) for 0 ≤ σ ≤ n− 1,

satisfying
1

2πi

∫
∂D

(∂ζ∂ζ̄)
σw(ζ)

dζ

ζ
= cσ , cσ ∈ C for 0 ≤ σ ≤ n− 1,

is solvable if and only if

1

2πi

∫
∂D

γσ(ζ)
dζ

ζ
=

n−1∑
µ=σ+1

αµ−σcµ +
1

π

∫∫
D

∂νzNn−σ(z, ζ)f(ζ)dξdη . (3.4)

Hereα1 = 2 and for3 ≤ k

αk−1 = −
k−2∑

µ=[ k
2
]

µ!2

(k − 1)!(k − 1− µ)!2(2µ− k + 1)!
αµ. (3.5)

The solution is unique and given by

w(z)=
n−1∑
µ=0

{1

2
cµ∂νζ

Nµ+1(z, ζ)− 1

4πi

∫
∂D

Nµ+1(z, ζ)γµ(ζ)
dζ

ζ

}

+
1

π

∫∫
D

Nn(z, ζ)f(ζ)dξdη .

Particularly, for the inhomogeneous biharmonic equation, analogous results are pre-
sented in [16,18]. We may consult with [13] for the solutions of Bitsadze equation under
Neumann conditions.

The inhomogeneous polyanalytic equation (2.7) with the half-Neumann conditions

z∂ν
z̄ ∂zw = γν on∂D, ∂ν

z̄ w(0) = cν

is uniquely solved with some solvability conditions in [28].

3.1.2 Unbounded Domain Case

The Neumann boundary value problem is considered for the inhomogeneous Cauchy–
Riemann equation in a quarter plane and the solvability conditions and solutions are
given in explicit form in [23].
Neumann Problem.Let f ∈ Lp,2(Q1; C) ∩ Cα(Q1; C) for 2 < p, 0 < α < 1, γ1, γ2 ∈
C(R+; C) such that(1 + t)δγ1(t), (1 + t)δγ2(t), (1 + t)δf(t), (1 + t)δf(it) are bounded
for some0 < δ, c ∈ C. Findw ∈ C1(Q1; C) satisfying

wz̄ = f in Q1, ∂yw = γ1 for 0 < x, y = 0, ∂xw = γ2 for 0 < y, x = 0, w(0) = c.
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Theorem 3.2.The Neumann problem is uniquely solvable in the weak sense if and only
if for any z /∈ Q1

1

2π

+∞∫
0

[γ1(t) + if(t)]
dt

t− z
+

1

2πi

+∞∫
0

[γ2(t)− f(it)]
dt

t + iz
+

1

π

∫∫
Q1

f(ζ)
dξdη

(ζ − z)2
= 0

(3.6)
holds. The solution is

w(z) = c +
1

2π

+∞∫
0

[γ1(t) + if(t)] log

∣∣∣∣t2 − z2

t2

∣∣∣∣2dt

+
1

2π

+∞∫
0

[γ2(t)− f(it)] log

∣∣∣∣t2 + z2

t2

∣∣∣∣2dt− z

π

∫∫
Q1

f(ζ)

ζ

dξdη

ζ − z
. (3.7)

Also, in the upper half plane the Neumann problem is considered for the inhomoge-
neous Cauchy–Riemann equation and Poisson equation, [42].

3.1.3 Multiply Connected Domain Case

The Neumann problem for analytic functions, more generally for the inhomogeneous
Cauchy–Riemann equation and Poisson equation are investigated in a circular ring do-
main; the representations to the solutions and solvability conditions are given in an
explicit form by Vaitekhovich [54–56].

3.2 Neumann Problem for Complex Linear Elliptic PDEs

Forn ∈ N, k, l ∈ N0 with (k, l) 6= (n, n) andk + l ≤ 2n, the operators given by

Sn,k,lf(z) =
1

π

∫∫
D

∂k
z ∂l

z̄Nn(z, ζ)f(ζ)dξdη

for a suitable complex valued functionf given inD, are the operators related to Neu-
mann problem for generalizedn-Poisson equations. In [6], these operators are shown
to be uniformly bounded and uniformly continuous for the casen ≤ 2 andf ∈ Lp(D)
for p > 2 and bounded inLp(D) for f ∈ Lp(D) andn > 1. Using these operators and a
property similar to (2.16), the following problem is investigated.
Neumann Problem. Find w ∈ W 2n,p(D) as a solution of the linear complex partial
differential equation (generalizedn-Poisson equation)

∂2nw

∂zn∂z̄n
+
∑

k+l=2n
k 6=l

(
q
(1)
kl (z)

∂2nw

∂zk∂z̄l
+ q

(2)
kl (z)

∂2nw

∂zk∂z̄l

)
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+
∑

0≤k+l<2n

[
akl(z)

∂k+lw

∂z̄k∂zl
+ bkl(z)

∂k+lw

∂zk∂z̄l

]
= f(z) in D, (3.8)

where
akl, bkl, f ∈ Lp(D), (3.9)

andq
(1)
kl andq

(2)
kl , are measurable bounded functions satisfying∑

k+l=2n
k 6=l

(|q(1)
kl (z)|+ |q(2)

kl (z)|) ≤ q0 < 1 (3.10)

with Neumann conditions

∂ν(∂z∂z̄)
σw = γσ on∂D , γσ ∈ C(∂D; C) for 0 ≤ σ ≤ n− 1 (3.11)

satisfying
1

2πi

∫
∂D

(∂ζ∂ζ̄)
σw(ζ)

dζ

ζ
= cσ , cσ ∈ C for 0 ≤ σ ≤ n− 1. (3.12)

The solvability of this problem is given in the following theorem.

Theorem 3.3. If the inequality

q0 max
k+l=2n
|k−l|6=2

‖Sn,k,l‖Lp(D)‖(I + N̂1)
−1 −K‖Lp(D) < 1 (3.13)

holds for someK ∈ K(Lp(D)), 0 < p − 2 < ε, then the equation(3.8) with the
boundary conditions(3.11)and normalization conditions(3.12)has a solution of the
form w(z) = Sn,0,0g(z) + ϕ(z), whereg ∈ Lp(D) is a solution of the singular integral
equation

(I + N̂ + K̂)g = f̂ , (3.14)

where

ϕ(z) =
n−1∑
µ=0

{1

2
cµ∂νζ

Nµ+1(z, ζ)− 1

4πi

∫
∂D

Nµ+1(z, ζ)γµ(ζ)
dζ

ζ

}
and

N̂g =
∑

k+l=2n
|k−l|=2

(q
(1)
kl Sn,k,lg + q

(2)
kl Sn,k,lg) +

∑
k+l=2n
|k−l|6=2

(q
(1)
kl Sn,k,lg + q

(2)
kl Sn,k,lg)

:= N̂1g + N̂2g,

K̂g =
∑

k+l<2n

(
aklSn,k,lg + bklSn,k,lg

)
,

f̂ = f − Lϕ
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in which

Lϕ :=
∑

k+l=2n
k 6=l

(
q
(1)
kl (z)

∂2nϕ

∂zk∂z̄(l)
+ q

(2)
kl (z)

∂2nϕ

∂zl∂z̄k

)

+
∑

0≤k+l<2n

[
akl(z)

∂k+lϕ

∂z̄k∂zl
+ bkl(z)

∂k+lϕ

∂zk∂z̄l

]
subject to the solvability conditions

1

2πi

∫
∂D

γσ(ζ)
dζ

ζ
=

n−1∑
µ=σ+1

αµ−σcµ +
1

π

∫∫
D

∂νzNn−σ(z, ζ)g(ζ)dξdη, (3.15)

where0 ≤ σ ≤ n− 1, α1 = 2 and for3 ≤ k

αk−1 = −
k−2∑

µ=[ k
2
]

µ!2

(k − 1)!(k − 1− µ)!2(2µ− k + 1)!
αµ. (3.16)

Open Problem3.4. The Neumann problems for higher-order linear complex partial dif-
ferential equations are not considered in half plane, quarter plane and concentric rings.
These problems can be handled after some studies of the corresponding integral opera-
tors.

4 Robin Problem for Complex PDEs

4.1 Robin Problem for Complex Model PDEs

4.1.1 Simply Connected Domain Case

Begehr and Harutyunyan [24] obtained the following result for the Robin problem inD.

Theorem 4.1. The Robin problem for the inhomogeneous Cauchy–Riemann equation
in the unit disc

wz̄ = f in D, w + ∂νw = γ on D

is uniquely solvable for givenf ∈ L1(D) ∩ C(∂D), γ ∈ C(∂D) if and only if for all z,
|z| < 1,

z

[
1

2πi

∫
∂D

(γ(ζ)− ζ̄f(ζ))
dζ

1− z̄ζ
+

1

π

∫∫
D

z̄ζ

(1− z̄ζ)2
f(ζ)dξdη

]
= 0,

and the solution is

w(z) =
1

2πi

∫
∂D

(ζ̄f(ζ)− γ(ζ))
ln(1− zζ̄)

z
dζ +

1

π

∫∫
D

1

z − ζ
f(ζ)dξdη.
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In the same article, they have also investigated the problem

wn
z̄ = f in D,

∂ν−1
z̄ w + z∂ν−1

z̄ w + z̄∂ν
z̄ w = γν on D, ν = 1, . . . , n

and obtained the representation of the solution with the corresponding solvability con-
ditions by converting the problem into an equivalent system ofn Robin problems for
the Cauchy–Riemann operator.

The Robin function for harmonic operator is

R1(z, ζ) = log

∣∣∣∣1− zζ̄

ζ − z

∣∣∣∣2 − 2

[
log(1− zζ̄)

zζ̄
+

log(1− z̄ζ)

z̄ζ
+ 1

]
and for polyharmonic operator

Rn(z, ζ) = − 1

π

∫∫
D

R1(z, ζ̃)Rn−1(ζ̃ , ζ)dξ̃dη̃ .

The Robin problem for inhomogeneous harmonic equation is treated in [16,18,36]. For
the higher-order Poisson operators the problem is defined by

(∂z∂z̄)
nw = f in D

(∂z∂z̄)
ν−1w + z∂ν

z ∂ν−1
z̄ w + z̄∂ν−1

z ∂ν
z̄ w = γν , ν = 1, . . . n on ∂D

This problem is studied by Begehr and Harutyunyan [25]. In the casesn = 1 andn = 2,
the explicit solutions are given for the corresponding problems.

4.1.2 Unbounded Domain Case

The following Robin boundary value problem is investigated inQ1 for the inhomoge-
neous Cauchy–Riemann equation in [1].
Robin Problem. Let f ∈ Lp,2(Q1; C) ∩ Cα(Q1; C) for 2 < p, 0 < α < 1, γ1, γ2 ∈
C(R+; C) such that for some0 < δ the functions(1 + t)δγ1(t), (1 + t)δγ2(t), (1 +
t)δf(t), (1 + t)δf(it) are bounded onR+, c ∈ C. Findw ∈ C1(Q1; C) satisfying

wz̄ = f in Q1, w(0) = c,

w − i∂yw = γ1 for 0 < x, y = 0,

w + ∂xw = γ2 for 0 < y, x = 0.

Theorem 4.2. This particular Robin problem is uniquely solvable in the weak sense if
and only if forz /∈ Q1

1

2πi

+∞∫
0

t∫
0

[
γ1(τ) +

3

2
f(τ)

]
eτ−tdτ

dt

t− z

− i

2πi

+∞∫
0

t∫
0

[
γ2(τ)− 1

2
f(iτ)

]
ei(τ−t)dτ

idt

it− z
= 0. (4.1)
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The solution is

w(z) = [c− Tf(0)]e−z +
1

2πi

+∞∫
0

t∫
0

[
γ1(τ) +

3

2
f(τ)

]
eτ−tdτ

dt

t− z

− 1

2πi

+∞∫
0

t∫
0

[
γ2(τ)− 1

2
f(iτ)

]
ei(τ−t)idτ

idt

it− z
(4.2)

−
z∫

0

T (f + fζ)(ζ)eζ−zdζ +

z∫
0

1

2πi

∫
∂Q1

f(ζ̃)
dζ̃

ζ̃ − ζ
eζ−zdζ + Tf(z).

In Theorem 4.2,

Tf(z) = − 1

π

∫∫
Q1

f(ζ)
dξdη

ζ − z
.

4.1.3 Multiply Connected Domain Case

Explicit Robin functions are given for Poisson equation for a circular ring in the complex
plane by Begehr and Vaitekhovich [36]. Robin boundary value problem for analytic
functions and for the inhomogeneous Cauchy–Riemann equation are investigated in
ring domains [56].

4.2 Open Problems with Robin Conditions

For the higher-order linear differential equations, Robin boundary value problem is not
considered particularly. Just in the last section of this survey, it will be considered as
a part of a mixed problem in the unit disc. The Robin problem is not considered for
higher-order model and linear differential equations in the case of unbounded domains
and multiply connected domains. The corresponding Robin functions are not known
yet.

5 Schwarz Problem for Complex PDEs

5.1 Schwarz Problem for Complex Model PDEs

5.1.1 Simply Connected Domain Case

The first article in Schwarz problem for analytic functions is given in [52]. The fol-
lowing theorem gives the unique solution of the Schwarz problem for inhomogeneous
polyanalytic equation, [10,14,31].
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Theorem 5.1. The Schwarz problem for the homogeneous polyanalytic equation in the
unit discD defined by

∂k
z w = f in D , Re ∂l

zw = 0 on∂D , Im ∂l
zw(0) = 0 , 0 ≤ l ≤ n− 1 ,

is uniquely solvable forf ∈ L1(D). The solution is

w(z) =
(−1)k

2π(k − 1)!

∫∫
D

(f(ζ)

ζ

ζ + z

ζ − z
+

f(ζ)

ζ

1 + zζ

1− zζ

)
(ζ − z + ζ − z)k−1dξdη .

Previously the cases ofk = 1 andk = 2 have been studied [13].

5.1.2 Unbounded Domain Case

In the upper right quarter plane, the following problem is defined and solved by Abdy-
manapov et al [2].
Schwarz Problem. Let f ∈ L1(Q1; C), γ1, γ2 ∈ C(R+; R) be bounded onR+ =
(0, +∞). Find a solution of

wz̄ = f in Q1 satisfying

Re w = γ1 on0 < x, y = 0,

Im w = γ2 on0 < y, x = 0.

Theorem 5.2.The Schwarz problem is uniquely weakly solvable. The solution is

w(z) =
2

πi

+∞∫
0

γ1(t)
z

t2 − z2
dt− 2

πi

+∞∫
0

γ2(t)
z

t2 + z2
dt

− 2

π

∫∫
Q1

[
zf(ζ)

ζ2 − z2
− zf(ζ)

ζ̄2 − z2

]
dξdη. (5.1)

In the case of upper half planeH, the following result is obtained in [42].

Theorem 5.3. Let f ∈ Lp,2(H; C), 2 < p, γ ∈ C(R), c ∈ R such thatγ is bounded on
R. Then the Schwarz problem

wz̄ = f in H
Re w = γ on H, Im w(i) = c

is uniquely solvable in the weak sense. The solution is

w(z) = ic +
1

πi

∫ ∞

−∞
γ(t)

(
1

t− z
− t

t2 + 1

)
dt

− 1

πi

∫∫
H

[
f(ζ)

(
1

ζ − z
− ζ

ζ2 + 1

)
− f(ζ)

(
1

ζ̄ − z
− ζ̄

ζ̄2 + 1

)]
dξdη.
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5.1.3 Multiply Connected Domain Case

Schwarz problems are solved for the inhomogeneous Cauchy–Riemann equation and
Poisson equation in a concentric ring domain (concentric annulus) by Vaitekhovich [54–
56]

5.2 Schwarz Problem for Complex Linear Elliptic PDEs

Begehr [10, 31] considered the Schwarz problem for some higher-order equations and
proved the solvability of the problem. Schwarz problem for a general linear elliptic
complex partial differential equation whose leading term is the polyanalytic operator is
discussed in [3,5].
Schwarz Problem. Find w ∈ W k,p(D) as a solution to thek-th order complex differ-
ential equation

∂kw

∂z̄k
+

k∑
j=1

q1j(z)
∂kw

∂z̄k−j∂zj
+

k∑
j=1

q2j(z)
∂kw

∂zk−j∂z̄j

+
k−1∑
l=0

l∑
m=0

[
aml(z)

∂lw

∂z̄l−m∂zm
+ bml(z)

∂lw

∂zl−m∂z̄m

]
= f(z) in D, (5.2)

where
aml, bml ∈ Lp(D), f ∈ Lp(D), (5.3)

andq1j andq2j, j = 1, . . . , k, are measurable bounded functions satisfying

k∑
j=1

(|q1j(z)|+ |q2j(z)|) ≤ q0 < 1 (5.4)

satisfying the nonhomogeneous Schwarz boundary conditions

Re
∂lw

∂z̄l
= γl on ∂D , Im

∂lw

∂z̄l
(0) = cl , 0 ≤ l ≤ k − 1 , (5.5)

whereγl ∈ C(∂D; R), cl ∈ R, 0 ≤ l ≤ k − 1.

Theorem 5.4. If the inequality

q0 max
1≤j≤k

‖Pj‖Lp(D)‖(I + T̂ )−1 −K1‖Lp(D) < 1 (5.6)

is satisfied for someK1 ∈ K(Lp(D)), 0 < p − 2 < ε, then equation(5.2) with the
boundary conditions(5.5)has a solution of the form

w = T̃kg1 + i
k−1∑
l=0

cl

l!
(z + z)l +

k−1∑
l=0

(−1)l

2πil!

∫
∂D

γl(ζ)
ζ + z

ζ − z
(ζ − z + ζ − z)l dζ

ζ
, (5.7)
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whereg1 ∈ Lp(D), p > 2, is a solution of the singular integral equation

(I + Π̂ + K̂)g1 = f̃ , (5.8)

where

Π̂g =
k∑

j=1

(q1jΠjg + q2jΠjg) =
k∑

j=1

(q1j(Pj + T−j,j)g + q2j(Pjg + T−j,jg))

= P̂ g + T̂ g (5.9)

and

K̂g =
k−1∑
l=0

l∑
m=0

(
aml

∂mT̃k−l+mg

∂zm
+ bml

∂mT̃k−l+mg

∂z̄m

)
. (5.10)

In Theorem 5.4, the operators̃Tk are defined as

T̃kf(z) :=
(−1)k

2π(k − 1)!

∫∫
D
(ζ − z + ζ − z)k−1

[
f(ζ)

ζ

ζ + z

ζ − z
+

f(ζ)

ζ̄

1 + zζ̄

1− zζ̄

]
dξdη

for k ∈ N with T̃0f(z) = f(z), see [11, 12, 27].∂l
zT̃k are weakly singular integral

operators for0 ≤ l ≤ k − 1, while

Πkf(z) :=
∂k

∂zk
T̃kf(z) =

(−1)kk

π

∫∫
D

[(
ζ − z

ζ − z

)k−1
f(ζ)

(ζ − z)2

+

(
ζ − z + ζ − z

1− zζ̄
ζ̄ − 1

)k−1
f(ζ)

(1− zζ̄)2

]
dξdη (5.11)

is a Calderon-Zygmund type strongly singular integral operator.Πk are shown to be
bounded in the spaceLp for 1 < p < ∞ and in particular theirL2 norms are estimated
in [4]. These operators are investigated by decomposing them into two parts asΠk =
T−k,k + Pk, where

T−k,kf(z) =
(−1)kk

π

∫∫
D

(
ζ − z

ζ − z

)k−1
f(ζ)

(ζ − z)2
dξdη, (5.12)

which is investigated extensively in [21,26].
In [44], the Schwarz problem for the Beltrami equation

wz̄ + cwz = f in D

Re w = γ, Im w(0) = c on D
is solved as a particular form of the above problem.

The Schwarz problem for Poisson equation is explicitly solved in [14].

Open Problem5.5. The Schwarz problem is not considered for higher-order Poisson
equations inD, in unbounded domains and in multiply connected domains.
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6 Mixed Type Problems for Complex PDEs

6.1 Mixed Type Problems for Complex Model PDEs

6.1.1 Simply Connected Domain Case

In order to state and solve the mixed problems containing Schwarz, Neumann, Dirichlet
and Robin problems, we define the following polyharmonic hybrid Green type func-
tions:

Hm,n(z, ζ) = − 1

π

∫∫
D

Gm(z, ζ̃)Nn(ζ̃ , ζ)dξ̃dη̃,

Im,n(z, ζ) = − 1

π

∫∫
D

Gm(z, ζ̃)Rn(ζ̃ , ζ)dξ̃dη̃,

Jm,n(z, ζ) = − 1

π

∫∫
D

Nm(z, ζ̃)Rn(ζ̃ , ζ)dξ̃dη̃

which are obtained by convoluting Green, Neumann and Robin functions iteratively, [8].
The integral operators

Bk,l
a,b,m−(a+b),n−mf(z) := ∂k

z ∂l
z̄T̃n−m(Ia,b,m−(a+b)f(z))

are defined in relation to the mixed problems, [8]. The higher-order model differential
equation with mixed boundary conditions is discussed in the following theorem.

Theorem 6.1.The mixed problem for model equation

∂m
z ∂n

z̄ w = f in D, n ≥ m ,

Re ∂µ
z̄ w = 0 on ∂D , Im ∂µ

z̄ w(0) = 0 , 0 ≤ µ ≤ n−m− 1 ,

∂µ
z ∂µ+n−m

z̄ w = 0, 0 ≤ µ ≤ a− 1 on ∂D

∂νz(∂
µ+a
z ∂µ+n−m+a

z̄ )w = 0, 0 ≤ µ ≤ b− 1 on ∂D
1

2πi

∫
∂D

∂µ+a
ζ ∂µ+n−m+a

ζ̄
w(ζ)

dζ

ζ
= 0, 0 ≤ µ ≤ b− 1 on ∂D

∂µ+a+b
z ∂µ+n−m+a+b

z̄ w + ∂νz(∂
µ+a+b
z ∂µ+n−m+a+b

z̄ )w = 0,

0 ≤ µ ≤ m− a− b− 1 on ∂D

for f ∈ Lp(D), is uniquely solvable iff

1

π

∫∫
D

∂νzNn−m+a−µ(z, ζ)f̃(ζ)dξdη = 0 (6.1)
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for a suitablef̃ . The solution is

w(z) = B0,0
a,b,m−a−b,n−mf(z),

where(∂z∂z̄)
m−a−bf̃ = f satisfy the conditions

∂µ+a+b
z ∂µ+n−m+a+b

z̄ f̃ + ∂νz(∂
µ+a+b
z ∂µ+n−m+a+b

z̄ )f̃ = 0, (6.2)

0 ≤ µ ≤ m− a− b− 1 on ∂D.

Remark6.2. The problem given in Theorem 6.1 covers some mixed problems given
in [16, 18] for bi-Poisson equation and in [30, 48] for inhomogeneous polyanalytic and
polyharmonic equations with homogeneous boundary conditions cases.

6.2 Mixed Type Problems for Complex Elliptic Linear PDEs

We consider the following mixed problem for higher-order complex differential equa-
tion of arbitrary order [8].
Problem M. Findw ∈ Wm+n,p(D) as a solution to the equation

∂m
z ∂n

z̄ w +
∑

k+l=m+n
(k,l) 6=(m,n)

(
q
(1)
kl (z)∂k

z ∂l
z̄w + q

(2)
kl (z)∂l

z∂
k
z̄ w̄
)

+
∑

0≤k+l<m+n

(
akl(z)∂k

z ∂l
z̄w + bkl(z)∂l

z∂
k
z̄ w̄
)

= f(z) (6.3)

satisfying boundary conditions

Re ∂µ
z̄ w = 0 on ∂D ,

Im ∂µ
z̄ w(0) = 0 , 0 ≤ µ ≤ n−m− 1 (6.4)

∂µ
z ∂µ+n−m

z̄ w = 0, 0 ≤ µ ≤ a− 1 on ∂D (6.5)

∂νz(∂
µ+a
z ∂µ+n−m+a

z̄ )w = 0, 0 ≤ µ ≤ b− 1 on ∂D (6.6)

1

2πi

∫
∂D

∂µ+a
ζ ∂µ+n−m+a

ζ̄
w(ζ)

dζ

ζ
= 0, 0 ≤ µ ≤ b− 1 on ∂D,

∂µ+a+b
z ∂µ+n−m+a+b

z̄ w + ∂νz(∂
µ+a+b
z ∂µ+n−m+a+b

z̄ )w = 0 (6.7)

0 ≤ µ ≤ m− a− b− 1 on ∂D,

where
akl, bkl, f ∈ Lp(D) (6.8)
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andq
(1)
kl andq

(2)
kl , are measurable bounded functions∑

k+l=m+n
(k,l) 6=(m,n)

(|q(1)
kl (z)|+ |q(2)

kl (z)|) ≤ q0 < 1 (6.9)

andl < n −m for k + l ≥ n −m, k + l < m + n for l ≥ n −m, k + l = m + n for
l ≥ n−m .

We transform the Problem M to a singular integral equation.

Lemma 6.3. The mixed problem(6.3), (6.4), (6.5), (6.6) and (6.7) is equivalent to the
singular integral equation

(I + M̂ + K̂)g = f, (6.10)

if
w = B0,0

a,b,m−a−b,n−mg,

where
M̂g =

∑
k+l=m+n
(k,l) 6=(m,n)

(q
(1)
kl Bk,l

a,b,m−a−b,n−mg + q
(2)
kl Bk,l

a,b,m−a−b,n−mg),

K̂g =
∑

k+l<m+n

(
aklB

k,l
a,b,m−a−b,n−mg + bklB

k,l
a,b,m−a−b,n−mg

)
.

Solvability of the problem is given in the next theorem.

Theorem 6.4. If the inequality

q0 max
k+l=m+n

‖Bk,l
a,b,m−a−b,n−mf‖Lp(D) ≤ 1 (6.11)

is satisfied, then equation(6.3) with the conditions(6.4), (6.5), (6.6) and (6.7) has a
solution of the formw = B0,0

a,b,m−a−b,n−mg, whereg ∈ Lp(D) is a solution of the singular
integral equation(6.10)with p > 2 andg satisfies the solvability condition

1

π

∫∫
D

∂νzNn−m+a−µ(z, ζ)g̃(ζ)dξdη = 0, (6.12)

where(∂z∂z̄)
m−a−bg̃ = g satisfy the conditions

∂µ+a+b
z ∂µ+n−m+a+b

z̄ g̃ + ∂νz(∂
µ+a+b
z ∂µ+n−m+a+b

z̄ )g̃ = 0, (6.13)

0 ≤ µ ≤ m− a− b− 1 on ∂D .

Open Problem6.5. On unbounded domains and multiply connected domains, mixed
type problems are not studied for higher-order linear equations and model equations.
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(Eds.), Further Progress in Analysis, Proc. 6th ISAAC Congress, World Sci., 2009,
327–336.

[35] H. Begehr and T. Vaitekhovich, Harmonic boundary value problems in half disc
and half ring,Funct. Approx. Comment. Math., 40(2009), 251–282.

[36] H. Begehr and T. Vaitekhovich, Some harmonic Robin functions in the complex
plane,Adv. Pure Appl. Math., 1(2010), 19–34.

[37] H. Begehr and C. J. Vanegas, Iterated Neumann problem for higher order Poisson
equation,Math. Nachr., 279(2006), 38–57.

[38] H. Begehr, T. N. H. Vu, and Z. X. Zhang, Polyharmonic Dirichlet problems,Proc.
Steklov. Inst. Math., 255(2006), 13–34.

[39] H. Begehr and Y. Wang, A new approach for solving a Dirichlet problem for poly-
harmonic functions,Complex Var. Elliptic Eqs., 52(2007), 907–920.

[40] L. Bers,Theory of Pseudo-Analytic Functions, Lecture Notes, New York Univ.,
1953.

[41] S. Burgumbayeva, Boundary Value Problems for Tri-harmonic Functions in the
Unit Disc, PhD Thesis, 2009, FU Berlin.



Boundary Value Problems for Complex PDEs 157

[42] E. Gaertner, Basic Complex Boundary Value Problems in the Upper Half Plane,
PhD thesis, 2006, FU Berlin.

[43] F. D. Gakhov,Boundary Value Problems, Pergamon Press, Oxford, 1966.

[44] G. Harutyunyan, Boundary value problems for the Beltrami operator, 52(2007),
475–484.

[45] D. Hilbert, Grundz̈uge einer allgemeinen Theorie der linearen Integralgleichun-
gen, Leipzig-Berlin, 1924.

[46] D. A. Kveselava, Riemann-Hilbert problem for a multiply connected domain,
Soobshcheniya AN Gruz, S. S. R., 6(1945), 581–590.

[47] A. Kumar and R. Prakash, Boundary value problems for the Poisson equation and
bi-analytic functions,Complex Var. Elliptic Eqs., 50(2005), 597–609.

[48] A. Kumar and R. Prakash, Mixed boundary value problems for inhomogeneous
polyanalytic equation,Complex Var. Elliptic Eqs., 51(2006), 209–223.

[49] A. Kumar and R. Prakash, Dirichlet problem for inhomogeneous polyharmonic
equation,Complex Var. Elliptic Eqs., 53(2008), 643–651.

[50] N. I. Muskhelishvili,Singular Integral Equations, Groningen-Holland, 1953.

[51] B. Riemann,Gesammelte Mathematische Werke, herausgegeben von H. Weber,
zweite Auflage, Leipzig, 1892.

[52] H. A. Schwarz, Zur Integration der partiellen Differentialgleichung∂2u/∂x2 +
∂2u/∂y2 = 0, J. Reine Angew. Math., 74(1872), 218–253.

[53] D. Sherman, On the general problem of the potential theory,Izv. Akad. Nauk.,
49(1946), 121–134.

[54] T. S. Vaitekhovich, Boundary value problems to second-order complex partial dif-
ferential equations in a ring domain,Siauliai Math. Semin., (10)2007, 117–146

[55] T. S. Vaitekhovich, Boundary Value Problems for Complex Partial Differential
Equations, PhD Thesis, 2008, FU Berlin.

[56] T. S. Vaitekhovich, Boundary value problems to first-order complex partial dif-
ferential equations in a ring domain,Integral Transforms Spec. Funct., 19(2008),
211–233.

[57] I. N. Vekua, On a linear Riemann boundary value problem,Trudy Tbil. Matem.
Inst., 11(1942), 109–139.
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