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Abstract

We are concerned with the oscillation of certain forced second-order functional
dynamic equation with mixed nonlinearities. Our results in a particular case solve
a problem posed by Anderson, and our results in the special cases when the time
scale is the set of real numbers and the set of integers involve and improve some
oscillation results for second-order differential and difference equations, respec-

tively.
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1 Introduction

We are concerned with the oscillatory behavior of the forced second-order functional
dynamic equation with mixed nonlinearities

(a()x®(0)* + 3 pilt) |z (7 ()| sanz (7 (1)) = () (L.1)

on an arbitrary time scalg, whereay = 1 anda; > 0,7 =1,2,...,n. We also, assume
thata, e, p; € Cq ([0,00) 1,R),a(t) > 0,7, : T — T are nondecreasing rd-continuous
functions onR, 7; (t) < o (t) andtlim 7,(t) = oo, fori = 0,1,...,n. Our interest is

to establish oscillation criteria for equation (1.1) that do not assume tthaandp; (t),

i = 0,1,2,...,n are of definite sign. Since we are interested in the oscillatory and
asymptotic behavior of solutions near infinity, we assumedhail' = oo, and define

the time scale intervdty, co)r by [ty, 00)r = [to, 00) N T. By a solution of (1.1) we
mean a nontrivial real-valued functianc C,[T,, o), T,, > t, which has the property
thataz™ € CY4[T,, c0) and satisfies equation (1.1) §f,, oo), whereC,, is the space

of rd-continuous functions. The solutions vanishing in some neighborhood of infinity
will be excluded from our consideration. A solutiarof (1.1) is said to be oscillatory

if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory.

The theory of time scales, which has recently received a lot of recent attention,
was introduced by Stefan Hilger in his PhD dissertation written under the direction
of Bernd Aulbach (see [26]). Since then a rapidly expanding body of literature has
sought to unify, extend, and generalize ideas from discrete calculus, quantum calculus,
and continuous calculus to arbitrary time scale calculus. Recall that a timelstsaée
nonempty closed subset of the reals, and the cases when this time scale is the reals or the
integers represent the classical theories of differential and of difference equations. Many
other interesting time scales exist, and they give rise to many applications (see [5]). Not
only does the new theory of the so-called “dynamic equations” unify the theories of
differential equations and difference equations, but also extends these classical cases to
cases “in between”, e.qg., to so-calledifference equations whéh=¢"°, ¢ > 1 (which
has important applications in quantum theory (see [29])) and can be applied on different
types of time scales lik& =hZ, T = N2 andT = H, the space of harmonic numbers.

In this work a knowledge and understanding of time scales and time scale notation is
assumed; for an excellent introduction to the calculus on time scales, see Bohner and
Peterson [5, 6].

A great deal of effort has been spent in obtaining criteria for oscillation of dynamic
equations on time scales without forcing terms and it is usually assumed that the poten-
tial ¢(t) is a positive function. We refer the reader to the papers [7,11-20, 24, 35,36] and
the references cited therein. On the other hand very little is known for related equations
with forcing terms. Saker [34] considered nonlinear dynamic equations with a forcing
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term and also with a positive potential function of the form
(a(t)2z2)2 +q(t) f(27(1)) = e(t), fort € [to, co)r, (1.2)

on atime scal&. The author established some sufficient conditions for oscillation when

the forcing terme(t) is small enough for large values ofc T. Bohner and Tisdell

[9] considered (1.2) with a positive potential function and established some sufficient
conditions for oscillation when the solutions of the equation without a forcing term are
nonoscillatory. Huang and Feng [28] considered the equation

138(t) +q(t) (2 (1)) = e(t), for t € [to, 00)r,

wheng(t) > 0, zf(z) > 0forz # 0, f’(z) > 0 and assumed that there exists an os-
cillatory functionh(t) such thatv®>(t) = e(t). Anderson [2] studied forced functional
dynamic equation with oscillatory potentials of the form

(a()2®)® +p (1) |2 (r () sgna (7 () +q () [« (8 (1))|” sgna (8 (1)) = e(t),

fort € [ty, o), wherea, 5 > 1, 7,5 : T — T are nondecreasing right-dense contin-
uous functions with9 (t) > t andr (t) < t such thattli)rgO T(t) = tliglo 0(t) = oo and
a > 0 is nondecreasing. In that paper, Anderson posed an open question for the case
0 < a, 8 < 1. In [1], Anderson considered a more general nonlinear dynamic equation
of the form

(a(t)z®)® + q(t) f(t, 27, 2°) = 0, for t € [to, 00)T,

and established some interval criteria for oscillation based on the information on only a
sequence of subintervals [8f, co)r.

Our results for dynamic equations, in particular, answer the problem that was posed
in [2] and improve the results that were established earlier in [1,27,28,34]. As a special
case, wherl = R our results reduce to the results of Hassan, Erbe and Peterson [25]
and complement the results that have been established in [10, 22, 23, 31, 37-40], and
whenT = N, our results improve the oscillation results that were obtained by Wong
and Agarwal [33] and Peng et al. [32] in the sense that our results do not require ad-
ditional conditions on the unknown solutions and are based on the information on only
a sequence of subintervals f, co)r. WhenT =hN or T =¢”, i.e., for generalized
difference equations grdifference equations our results are essentially new and can be
applied on different types of time scales. Some examples are considered to illustrate the
main results.

2 Main Results

Before stating our main results, we begin with the following lemmas which we will need
in the proof of our main results.
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Lemma 2.1 (See [25])Let (ay, ao, ... «,) be ann-tuple satisfyingy; > ay > ... >
O > 1 >y > ... > «, > 0. Then there exists an-tuple (9,19, . .., n,) with
0 < n; < 1 satisfying

@ Y aimi=1,
i=1

and which also satisfies either

b) > m<1,
=1

or

() Zﬁi = 1.

Lemma 2.2. Let A be an arbitrary real number3 a positive real number and letbe
a quotient of odd positive integers. Then

y+1 A T+l
e = - ()72
v+1 B

Proof. We let f (u) = Au + Bu's . Itis easy to see that(u) obtains its minimum at

Ay Y\’ A N\ oy
=—"—) andfpn = — | — =) . u
o= (prap) ™e=-(75) ()
Lemma 2.3. Assuméd’ € [ty, co)r and there exist constanig, by, € [T, co)r such that
ap < bk, k= 1,2, with

pi(t) >0, forte[r(ax),bg)r, fori=0,1,2,...,nandk = 1,2,

and
€<t){ SO, tE[T(al),bl)T,
Z 0, te [T (CLQ) y bz)qr,
wherer (t) := min {¢, 79 (t),...,7, (t)}. Assume equatiofl.1) has a solution: such
that z(¢) and z(7;(¢)), i« = 0,1,2,...,n are of one sign o7, co)y. Then, fort €
[ak, bk) T, k= 1, 2, we have

“ sgnz? (t) < e(t),

NN o -
(a®)a®() + > m)8% (1) [ (1)
=0
where, fori = 0,1,2,...,nandk = 1, 2, we have

Sip (1) = /”(” As /”(” as
e ritar) @ (8) \ Jri(ap) @ (5) 7

7

and wherr; (t) = o (t), we set, ;, (t) = 1.
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Proof. We consider the case wher¢t) andxz(7;(t)), i = 1,2,...,n are positive on
[T, 00)r (Whenz (t) andz(7;(t)) are negative offil’, co)r, the proof follows the same
argument using the intervét (ay) , by) v instead of7 (a1) , by) v). From (1.1), we find
thata(t)=>(t) is nonincreasing ofv (a;), b1) . Then, fort € a1, bi) 1

o) q(s)22(s
v (o (1) -z (m () = / a(s)27(s) 5

5 () a(s)

o) A
< @ [ 5

) @ (s)’

and so

200 ¢y, (o) (1) [0 2 o)

x(mi(t) — z(ri (1) Juw als)
Also, we see (using;(t) is nondecreasing) that, forc [a,,b,) T

i) (a(s)z?(s
z(r; () > x(r(t) —a(ri(ar)) = / —( (5) <))

i(a1) a(s)
A i) Ag
> (@) ) [

As

which implies fort € (ay,b;) 1, that
AY (7 (¢ () -1
(ax ) (1: (1)) _ / As ‘ (2.2)
(7 () riar) @(8)
Therefore, (2.1) and (2.2) imply, fore (ay,b1) r

(0 (1)) o(t) As o(t) As -1 o
z (7i (1)) = /Ti(al) a(s) (/Ti(al) a(3)> i (t)

x (Ti (t)) > (51"1 (t) x (O' (t)) , for: e ]1 andt € [al, bl) T (23)
Then, by (1.1) and (2.3), we get, foe [a1,b1) T

Hence

(a(t)a* (1)) +sz )37 (1) 2™ (o (1)) < ().

This completes the proof. ]

First, we state and prove an oscillation criterion for equation (1.1).
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Theorem 2.4.Suppose that for ariy € [t,, co)r there exist constants,, by € [T, co)r
such thata;, < by, k = 1,2, with

pi(t) >0, forte[r(ay),bx)r, fori=0,1,2,...,n, andk =1,2.

Assume further
e(t) Sov te [T(CLl),bl)’E,
Z 07 tE [T (a2)7b2)T7
wherer (t) is defined as in Lemma 2.3. Furthermore, suppose there exigtsfanction
u such that fork = 1,2, u(t) #Z 0 on (ay, bx) andu(ax) = u(b;) = 0 such that, for
k=12,
b,
| 1P @ - at) w7182 0 2.4)
ak

where

m=1-— Z% Py, (t) == po (t) ok () + )" H (£)05k (¢ )"
i=1

=1

and wherea; > ag > ... > a, > 1 > apyr > ... > a, > 0andy; > 0, i =
1,2,...,n satisfy(a)and (b) of Lemma 2.1 and, ;, i = 0,1,2,...,nandk = 1,2 are
defined as in Lemma 2.3. Then every solution of equélidr) is oscillatory.

Proof. Assume (1.1) has a nonoscillatory solutioon [¢y, co)r. Then, without loss of
generality, there is a solutionof (1.1) and &I’ € [t,, co)r such thate(t), x(7;(t)) >
0,7=0,1,2,...,n0n[T,00)r (Whenz (t),z(r;(t)) < 0on|[T,oc0)r, the proof fol-
lows the same argument using the intervala,) , b2) v instead ofi7 (a;) , b1) T). From
Lemma 2.3, we get, far € [ay, b1) 1

(a(t)z™(1)) +Zp, )O55 (1) 2™ (1) < e(t). (2.5)

Define

Then, from (2.5), we have, fare [a1,b;) 1

21 > Zpi(t)fﬁf‘i () (@ ()™ +

But, sincex(t) > 0, we have




Oscillation of Functional Dynamic Equations 67

which implies, fort € [a1,b1) T

NV S 112 B )
(t) > ;pz(t)éz,l (t)( (t)) + xo’(t) + &(t) _ u(t)z(t)' (26)

Corresponding to the exponents 1 < ¢ < n, in equation (1.1), let;, 1 <i < n, be
chosen to satisfy (a) and (b) in Lemma 2.1 apd= 1 — Z n;. Using the arithmetic-

=1
geometric mean inequality, see [4, Page 17],

n n
Zmui > Huf, whereu; > 0,

=0 =0

we get

a;—1

e @@ (0)™ + P (1) (27 (1))
= o (" e (@ @) ) + 2 (0033 () @ ()")

2 (" e®)™ (@7 @)™ [T (0355 ()" 270 0

= (o le®N)™ I ™ (wa(t)s3s (1),

=1

which implies
2(t)

a(t) — p(t)z(t)
Multiplying (2.7) by (u?(t))? and integrating frona, to b;, we have

() (1)
L al®) - 0

22 > Py () + (2.7)

t.

/afl(u(’(t))ng(t)At > /b1 P171(t)(ua(t))2ﬁt+/a

Using integration by parts on the first integral, we get

P08 — [ fult) + v Ol =)
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Rearranging and usinga,) = 0 = u(b,), we get

" 20w (1)) 8 oA
0o > /a1 a(t)—u(t)z(t)At+/a1 [u(t) +u’ (t)]u™(t)z(t) At

by
Adding and subtracting the tery( a(t)(u(t))*At and then using (2.4), we have

RO s s
0 > [ (G 20 (a2 + alt) ~ n)=(0)03 () ) A
= [P0 = a0 16

OO an)
> / ( T Va0~ =0 <t>) At

It follows that

/ | (¢ ag;(j);iizz(t) +Val) - ”<t)2(t>uA(t>> At = 0.

This implies that
u?(t)z(t)
Val(t) = u(t)z(t)

Solving foru®, we get that: solves the IVP

+Va(t) — p(t)z(t)u?(t) = 0, fort € a1, b1)7.

A —Zz o

u” = u’,  u(ay) =0, fort e [a1,b1)7.
a— uz
Sincea - € R, we get from [5, Theorem 2.71] tha{t) = 0 on [ay, by)r. This
completes the proof. O

Theorem 2.5. Suppose that for ariy € [t,, co)r there exist constants,, b, € [T, 00)r
such thata, < b, k=1, 2, with

pi(t) >0, forte[r(ax),bg)r, fori=0,1,2,...,nandk =1, 2,
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and <0, telr(m),bh)
<0, c T (ay ,U1) T,y
6(75){ >0, te[r(a),b)r,

wherer (t) is defined as in Lemma 2.3. Furthermore, suppose there exigtsfanction
u such that fork = 1,2, u () # 0 on (ax, b;) andu(ag) = u(by) = 0 such that, for
k=12,
by,
| P (@0 - a) (7182 0,
ay
where .
Py (1) := po (t) ok (1) + H ()05 (t N,
=1
and wherea; > as > ... > ap, > 1 > apyr > ... > o, > 0andn; > 0, i =
1,2,...,n satisfy(a)and(c) of Lemma 2.1 and, ;, ¢« = 0,1,2,...,nandk = 1,2 are
defined as in Lemma 2.3. Then every solution of equétidr) is oscillatory.

Proof. The proof is the same as the proof of Theorem 2.4 (justjput 0 and then
apply conditions (a) and (c) of Lemma 2.1). O

Example 2.6. Assume there is a strictly increasing sequefiee} C T with s, <
o(5m) < 0*(8m) < 0°(5m) < Smy1, m € Nand lim s, = co. Assume the forcing

functione in (1.1) is rd-continuous off and satisfies

0, t==5m, 0°(sm),

e(t) =< =1, t=o(sam)

1 t= U(82m+1).
Assume the function; : T — T satisfiesry(s,,) = o(sm) ands,, < 7(sm,) <
o(sm), @ = 1,2,...,n, m € N. Note thate(t) < 0 on [7(sam),0”(s2,)) 1 and
e(t) > 0 on [7(sant1),0°(S2m+1)) 1. Further assume;(t) > 0, i = 0,1,2,...,n

n

on [7 (sm),0°(sm)) T, m € N. Letu be a delta differentiable function dhsuch that
u(t) = e(t) oNUZ_, [sm, 02(sm)]. Then

o2 (s2m)
/ [P (1)) — a(t) (u (1)) At

{Pra(s2m) (07 (s2m))? — @ (s2m) (4 (52m) }M S2m)

+{Pra(0(s2m)) (1 (07 (s2m)))* = @ (0 (52m)) (u® (0(52m)))* } (0 (52m))
_ s s _ o (s2m) _a (o(s2m))
= ol ) =) T o)) =

provided
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Similarly,
o?(s2m+1)
/ {Pra(t)(u” (1)* —a(t) (u® (1))} At > 0,
S2m+1
provided

a(som+1) | al(o(s2m+1))
((s2mr1) (0 (s2ma1))
In conclusion we have by Theorem 2.4 that (1.1) is oscillatory if
a(s;)  a(o(si))

Pl 2 46 et

Po(S2m+1)ft(S2m+1) >

fori=m,m-+1,me&N.

Remark2.7. Note that the results of this paper can be extended to the more general
dynamic equation

(a(t)z™(t)) +sz ) | (g: (t

) sgnz (g; (1)) = e(t),

where the functiong; : T — T are nondecreasing rd-continuous functionsfoand
tlirn gi(t) = o0, fori =0,1,...,n (see [25]). We leave this to interested reader.
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