
Advances in Dynamical Systems and Applications
ISSN 0973-5321, Volume 5, Number 1, pp. 61–73 (2010)
http://campus.mst.edu/adsa

Oscillation Criteria for Forced Second-Order
Functional Dynamic Equations with Mixed

Nonlinearities on Time Scales

Lynn Erbe
University of Nebraska–Lincoln

Department of Mathematics
Lincoln, NE 68588-0130, U.S.A.

lerbe2@math.unl.edu

Taher Hassan
Mansoura University

Department of Mathematics, Faculty of Science
Mansoura, 35516, Egypt

tshassan@mans.edu.eg

Allan Peterson
University of Nebraska–Lincoln

Department of Mathematics
Lincoln, NE 68588-0130, U.S.A.
apeterson1@math.unl.edu

Abstract

We are concerned with the oscillation of certain forced second-order functional
dynamic equation with mixed nonlinearities. Our results in a particular case solve
a problem posed by Anderson, and our results in the special cases when the time
scale is the set of real numbers and the set of integers involve and improve some
oscillation results for second-order differential and difference equations, respec-
tively.

AMS Subject Classifications:34K11, 39A10, 39A99.
Keywords: Oscillation, forced delay dynamic equations, time scales.

Received January 31, 2009; Accepted November 4, 2009
Communicated by Mustafa Kulenovi ć
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1 Introduction

We are concerned with the oscillatory behavior of the forced second-order functional
dynamic equation with mixed nonlinearities

(
a(t)x∆(t)

)∆
+

n∑
i=0

pi(t) |x (τi (t))|αi sgnx (τi (t)) = e(t) (1.1)

on an arbitrary time scaleT, whereα0 = 1 andαi > 0, i = 1, 2, . . . , n. We also, assume
thata, e, pi ∈ Crd ([0,∞) T, R), a (t) > 0, τi : T → T are nondecreasing rd-continuous
functions onR, τi (t) ≤ σ (t) and lim

t→∞
τi(t) = ∞, for i = 0, 1, . . . , n. Our interest is

to establish oscillation criteria for equation (1.1) that do not assume thate (t) andpi (t),
i = 0, 1, 2, . . . , n are of definite sign. Since we are interested in the oscillatory and
asymptotic behavior of solutions near infinity, we assume thatsup T = ∞, and define
the time scale interval[t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. By a solution of (1.1) we
mean a nontrivial real-valued functionx ∈ C1

rd[Tx,∞), Tx ≥ t0 which has the property
thatax∆ ∈ C1

rd[Tx,∞) and satisfies equation (1.1) on[Tx,∞), whereCrd is the space
of rd-continuous functions. The solutions vanishing in some neighborhood of infinity
will be excluded from our consideration. A solutionx of (1.1) is said to be oscillatory
if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory.

The theory of time scales, which has recently received a lot of recent attention,
was introduced by Stefan Hilger in his PhD dissertation written under the direction
of Bernd Aulbach (see [26]). Since then a rapidly expanding body of literature has
sought to unify, extend, and generalize ideas from discrete calculus, quantum calculus,
and continuous calculus to arbitrary time scale calculus. Recall that a time scaleT is a
nonempty closed subset of the reals, and the cases when this time scale is the reals or the
integers represent the classical theories of differential and of difference equations. Many
other interesting time scales exist, and they give rise to many applications (see [5]). Not
only does the new theory of the so-called “dynamic equations” unify the theories of
differential equations and difference equations, but also extends these classical cases to
cases “in between”, e.g., to so-calledq-difference equations whenT =qN0, q > 1 (which
has important applications in quantum theory (see [29])) and can be applied on different
types of time scales likeT =hZ, T = N2

0 andT = Hn the space of harmonic numbers.
In this work a knowledge and understanding of time scales and time scale notation is
assumed; for an excellent introduction to the calculus on time scales, see Bohner and
Peterson [5,6].

A great deal of effort has been spent in obtaining criteria for oscillation of dynamic
equations on time scales without forcing terms and it is usually assumed that the poten-
tial q(t) is a positive function. We refer the reader to the papers [7,11–20,24,35,36] and
the references cited therein. On the other hand very little is known for related equations
with forcing terms. Saker [34] considered nonlinear dynamic equations with a forcing
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term and also with a positive potential function of the form

(a(t)x∆)∆ + q(t)f(xσ(t)) = e(t), for t ∈ [t0,∞)T, (1.2)

on a time scaleT. The author established some sufficient conditions for oscillation when
the forcing terme(t) is small enough for large values oft ∈ T. Bohner and Tisdell
[9] considered (1.2) with a positive potential function and established some sufficient
conditions for oscillation when the solutions of the equation without a forcing term are
nonoscillatory. Huang and Feng [28] considered the equation

x∆∆(t) + q(t)f(xσ(t)) = e(t), for t ∈ [t0,∞)T,

whenq(t) > 0, xf(x) > 0 for x 6= 0, f ′(x) > 0 and assumed that there exists an os-
cillatory functionh(t) such thath∆∆(t) = e(t). Anderson [2] studied forced functional
dynamic equation with oscillatory potentials of the form

(a(t)x∆)∆ + p (t) |x (τ (t))|α sgnx (τ (t)) + q (t) |x (θ (t))|β sgnx (θ (t)) = e(t),

for t ∈ [t0,∞)T, whereα, β ≥ 1, τ, β : T → T are nondecreasing right-dense contin-
uous functions withθ (t) ≥ t andτ (t) ≤ t such thatlim

t→∞
τ(t) = lim

t→∞
θ(t) = ∞ and

a > 0 is nondecreasing. In that paper, Anderson posed an open question for the case
0 < α, β < 1. In [1], Anderson considered a more general nonlinear dynamic equation
of the form

(a(t)x∆)∆ + q(t)f(t, xσ, x∆) = 0, for t ∈ [t0,∞)T,

and established some interval criteria for oscillation based on the information on only a
sequence of subintervals of[t0,∞)T.

Our results for dynamic equations, in particular, answer the problem that was posed
in [2] and improve the results that were established earlier in [1,27,28,34]. As a special
case, whenT = R our results reduce to the results of Hassan, Erbe and Peterson [25]
and complement the results that have been established in [10, 22, 23, 31, 37–40], and
whenT = N, our results improve the oscillation results that were obtained by Wong
and Agarwal [33] and Peng et al. [32] in the sense that our results do not require ad-
ditional conditions on the unknown solutions and are based on the information on only
a sequence of subintervals of[t0,∞)T. WhenT =hN or T =qN , i.e., for generalized
difference equations orq-difference equations our results are essentially new and can be
applied on different types of time scales. Some examples are considered to illustrate the
main results.

2 Main Results

Before stating our main results, we begin with the following lemmas which we will need
in the proof of our main results.
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Lemma 2.1 (See [25]).Let (α1, α2, . . . αn) be ann-tuple satisfyingα1 > α2 > . . . >
αm > 1 > αm+1 > . . . > αn > 0. Then there exists ann-tuple (η1, η2, . . . , ηn) with
0 < ηi < 1 satisfying

(a)
n∑

i=1

αiηi = 1,

and which also satisfies either

(b)
n∑

i=1

ηi < 1,

or

(c)
n∑

i=1

ηi = 1.

Lemma 2.2. LetA be an arbitrary real number,B a positive real number and letγ be
a quotient of odd positive integers. Then

Au + Bu
γ+1

γ ≥ −
(

A

γ + 1

)γ+1 ( γ

B

)γ

.

Proof. We letf (u) = Au + Bu
γ+1

γ . It is easy to see thatf (u) obtains its minimum at

u =

(
−Aγ

B (γ + 1)

)γ

andfmin = −
(

A

γ + 1

)γ+1 ( γ

B

)γ

.

Lemma 2.3. AssumeT ∈ [t0,∞)T and there exist constantsak, bk ∈ [T,∞)T such that
ak < bk, k = 1, 2, with

pi (t) ≥ 0, for t ∈ [τ (ak) , bk) T, for i = 0, 1, 2, . . . , n andk = 1, 2,

and

e (t)

{
≤ 0, t ∈ [τ (a1) , b1) T,
≥ 0, t ∈ [τ (a2) , b2) T,

whereτ (t) := min {t, τ0 (t) , . . . , τn (t)}. Assume equation(1.1)has a solutionx such
that x(t) and x(τi(t)), i = 0, 1, 2, . . . , n are of one sign on[T,∞)T. Then, fort ∈
[ak, bk) T, k = 1, 2, we have(

a(t)x∆(t)
)∆

+
n∑

i=0

pi(t)δ
αi
i,k (t) |xσ (t)|αi sgnxσ (t) ≤ e(t),

where, fori = 0, 1, 2, . . . , n andk = 1, 2, we have

δi,k (t) :=

∫ τi(t)

τi(ak)

∆s

a (s)

(∫ σ(t)

τi(ak)

∆s

a (s)

)−1

,

and whenτi (t) = σ (t), we setδi,k (t) = 1.
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Proof. We consider the case wherex(t) andx(τi(t)), i = 1, 2, . . . , n are positive on
[T,∞)T (whenx (t) andx(τi(t)) are negative on[T,∞)T, the proof follows the same
argument using the interval[τ (a2) , b2) T instead of[τ (a1) , b1) T). From (1.1), we find
thata(t)x∆(t) is nonincreasing on[τ (a1) , b1) T. Then, fort ∈ [a1, b1) T

x (σ (t))− x (τi (t)) =

∫ σ(t)

τi(t)

a(s)x∆(s)

a (s)
∆s

≤
(
ax∆

)
(τi (t))

∫ σ(t)

τi(t)

∆s

a (s)
,

and so
x (σ (t))

x (τi (t))
≤ 1 +

(
ax∆

)
(τi (t))

x (τi (t))

∫ σ(t)

τi(t)

∆s

a (s)
. (2.1)

Also, we see (usingτi(t) is nondecreasing) that, fort ∈ [a1, b1) T

x (τi (t)) > x (τi (t))− x (τi (a1)) =

∫ τi(t)

τi(a1)

(
a(s)x∆(s)

)
a (s)

∆s

≥
(
ax∆

)
(τi (t))

∫ τi(t)

τi(a1)

∆s

a (s)
,

which implies fort ∈ (a1, b1) T, that(
ax∆

)
(τi (t))

x (τi (t))
<

(∫ τi(t)

τi(a1)

∆s

a (s)

)−1

. (2.2)

Therefore, (2.1) and (2.2) imply, fort ∈ (a1, b1) T

x (σ (t))

x (τi (t))
<

∫ σ(t)

τi(a1)

∆s

a (s)

(∫ τi(t)

τi(a1)

∆s

a (s)

)−1

=
1

δi,1 (t)
.

Hence
x (τi (t)) > δi,1 (t) x (σ (t)) , for i ∈ I1 andt ∈ [a1, b1) T. (2.3)

Then, by (1.1) and (2.3), we get, fort ∈ [a1, b1) T

(
a(t)x∆(t)

)∆
+

n∑
i=0

pi(t)δ
αi
i,1 (t) xαi (σ (t)) ≤ e(t).

This completes the proof.

First, we state and prove an oscillation criterion for equation (1.1).
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Theorem 2.4.Suppose that for anyT ∈ [t0,∞)T there exist constantsak, bk ∈ [T,∞)T
such thatak < bk, k = 1, 2, with

pi (t) ≥ 0, for t ∈ [τ (ak) , bk) T, for i = 0, 1, 2, . . . , n, andk = 1, 2.

Assume further

e (t)

{
≤ 0, t ∈ [τ (a1) , b1) T,
≥ 0, t ∈ [τ (a2) , b2) T,

whereτ (t) is defined as in Lemma 2.3. Furthermore, suppose there exists aC1
rd function

u such that fork = 1, 2, u (t) 6≡ 0 on (ak, bk) andu(ak) = u(bk) = 0 such that, for
k = 1, 2, ∫ bk

ak

[P1,k(t)(u
σ (t))2 − a (t) (u∆ (t))2]∆t ≥ 0, (2.4)

where

η0 := 1−
n∑

i=1

ηi, P1,k (t) := p0 (t) δ0,k (t) +
(
η−1

0 |e(t)|
)η0

n∏
i=1

(
η−1

i pi(t)δ
αi
i,k (t)

)ηi ,

and whereα1 > α2 > . . . > αm > 1 > αm+1 > . . . > αn > 0 and ηi > 0, i =
1, 2, . . . , n satisfy(a) and (b) of Lemma 2.1 andδi,k, i = 0, 1, 2, . . . , n andk = 1, 2 are
defined as in Lemma 2.3. Then every solution of equation(1.1) is oscillatory.

Proof. Assume (1.1) has a nonoscillatory solutionx on [t0,∞)T. Then, without loss of
generality, there is a solutionx of (1.1) and aT ∈ [t0,∞)T such thatx(t), x(τi(t)) >
0, i = 0, 1, 2, . . . , n on [T,∞)T (whenx (t) , x(τi(t)) < 0 on [T,∞)T, the proof fol-
lows the same argument using the interval[τ (a2) , b2) T instead of[τ (a1) , b1) T). From
Lemma 2.3, we get, fort ∈ [a1, b1) T

(
a(t)x∆(t)

)∆
+

n∑
i=0

pi(t)δ
αi
i,1 (t) xαiσ (t) ≤ e(t). (2.5)

Define

z (t) := −a(t)x∆(t)

x(t)
.

Then, from (2.5), we have, fort ∈ [a1, b1) T

z∆(t) ≥
n∑

i=0

pi(t)δ
αi
i,1 (t) (xσ (t))αi−1 +

|e (t)|
xσ(t)

+
x(t)z2(t)

xσ(t)a (t)
.

But, sincex(t) > 0, we have

0 <
x(t)

a(t)xσ(t)
=

1

a(t) + µ(t)a(t)x∆(t)
x(t)

=
1

a(t)− µ(t)z(t)
,
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which implies, fort ∈ [a1, b1) T

z∆(t) ≥
n∑

i=0

pi(t)δ
αi
i,1 (t) (xσ (t))αi−1 +

|e (t)|
xσ(t)

+
z2(t)

a(t)− µ(t)z(t)
. (2.6)

Corresponding to the exponentsαi, 1 ≤ i ≤ n, in equation (1.1), letηi, 1 ≤ i ≤ n, be

chosen to satisfy (a) and (b) in Lemma 2.1 andη0 := 1 −
n∑

i=1

ηi. Using the arithmetic-

geometric mean inequality, see [4, Page 17],

n∑
i=0

ηiui ≥
n∏

i=0

uηi

i , whereui ≥ 0,

we get

|e (t)| (xσ(t))−1 +
n∑

i=1

pi(t)δ
αi
i,1 (t) (xσ (t))

αi−1

= η0

(
η−1

0 |e (t)| (xσ(t))−1)+
n∑

i=1

ηi

(
η−1

i pi(t)δ
αi
i,1 (t) (xσ (t))

αi−1
)

≥
(
η−1

0 |e(t)|
)η0 (xσ(t))−η0

n∏
i=1

η−ηi

i

(
pi(t)δ

αi
i,1 (t)

)ηi xηi(αi−1) (t)

=
(
η−1

0 |e(t)|
)η0

n∏
i=1

η−ηi

i

(
pi(t)δ

αi
i,1 (t)

)ηi ,

which implies

z∆(t) ≥ P1,1 (t) +
z2(t)

a(t)− µ(t)z(t)
. (2.7)

Multiplying (2.7) by(uσ(t))2 and integrating froma1 to b1, we have∫ b1

a1

(uσ(t))2z∆(t)∆t ≥
∫ b1

a1

P1,1(t)(u
σ(t))2∆t +

∫ b1

a1

z2(t)(uσ(t))2

a(t)− µ(t)z(t)
∆t.

Using integration by parts on the first integral, we get

u2(t)z(t)]b1a1
−
∫ b1

a1

[u(t) + uσ(t)]u∆(t)z(t)∆t

≥
∫ b1

a1

P1,1(t)(u
σ(t))2∆t +

∫ b1

a1

z2(t)(uσ(t))2

a(t)− µ(t)z(t)
∆t.
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Rearranging and usingu(a1) = 0 = u(b1), we get

0 ≥
∫ b1

a1

z2(t)(uσ(t))2

a(t)− µ(t)z(t)
∆t +

∫ b1

a1

[u(t) + uσ(t)]u∆(t)z(t)∆t

+

∫ b1

a1

P1,1(t)(u
σ(t))2∆t

=

∫ b1

a1

z2(t)(uσ(t))2

a(t)− µ(t)z(t)
∆t +

∫ b1

a1

[2uσ(t)− µ(t)u∆(t)]u∆(t)z(t)∆t

+

∫ b1

a1

P1,1(t)(u
σ(t))2∆t.

Adding and subtracting the term
∫ b1

a1

a(t)(u∆(t))2∆t and then using (2.4), we have

0 ≥
∫ b1

a1

(
z2(t)(uσ(t))2

a(t)− µ(t)z(t)
+ 2uσ(t)u∆(t)z(t) + [a(t)− µ(t)z(t)](u∆(t))2

)
∆t

+

∫ b1

a1

[P1,1(t)(u
σ(t))2 − a(t)(u∆(t))2]∆t

≥
∫ b1

a1

(
uσ(t)z(t)√

a(t)− µ(t)z(t)
+
√

a(t)− µ(t)z(t)u∆(t)

)2

∆t.

It follows that∫ b1

a1

(
uσ(t)z(t)√

a(t)− µ(t)z(t)
+
√

a(t)− µ(t)z(t)u∆(t)

)2

∆t = 0.

This implies that

uσ(t)z(t)√
a(t)− µ(t)z(t)

+
√

a(t)− µ(t)z(t)u∆(t) = 0, for t ∈ [a1, b1)T.

Solving foru∆, we get thatu solves the IVP

u∆ =
−z

a− µz
uσ, u(a1) = 0, for t ∈ [a1, b1)T.

Since
z

a− µz
∈ R, we get from [5, Theorem 2.71] thatu(t) ≡ 0 on [a1, b1)T. This

completes the proof.

Theorem 2.5.Suppose that for anyT ∈ [t0,∞)T there exist constantsak, bk ∈ [T,∞)T
such thatak < bk, k = 1, 2, with

pi (t) ≥ 0, for t ∈ [τ (ak) , bk) T, for i = 0, 1, 2, . . . , n andk = 1, 2,
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and

e (t)

{
≤ 0, t ∈ [τ (a1) , b1) T,
≥ 0, t ∈ [τ (a2) , b2) T,

whereτ (t) is defined as in Lemma 2.3. Furthermore, suppose there exists aC1
rd function

u such that fork = 1, 2, u (t) 6≡ 0 on (ak, bk) andu(ak) = u(bk) = 0 such that, for
k = 1, 2, ∫ bk

ak

[P2,k(t)(u
σ (t))2 − a (t) (u∆ (t))2]∆t ≥ 0,

where

P2,k (t) := p0 (t) δ0,k (t) +
n∏

i=1

(
η−1

i pi(t)δ
αi
i,k (t)

)ηi ,

and whereα1 > α2 > . . . > αm > 1 > αm+1 > . . . > αn > 0 and ηi > 0, i =
1, 2, . . . , n satisfy(a) and (c) of Lemma 2.1 andδi,k, i = 0, 1, 2, . . . , n andk = 1, 2 are
defined as in Lemma 2.3. Then every solution of equation(1.1) is oscillatory.

Proof. The proof is the same as the proof of Theorem 2.4 (just putη0 = 0 and then
apply conditions (a) and (c) of Lemma 2.1).

Example 2.6. Assume there is a strictly increasing sequence{sm} ⊂ T with sm <
σ(sm) < σ2(sm) < σ3(sm) ≤ sm+1, m ∈ N and lim

m→∞
sm = ∞. Assume the forcing

functione in (1.1) is rd-continuous onT and satisfies

e(t) =


0, t = sm, σ2(sm),

−1, t = σ(s2m)

1 t = σ(s2m+1).

Assume the functionτi : T → T satisfiesτ0(sm) = σ(sm) and sm ≤ τi(sm) ≤
σ(sm), i = 1, 2, . . . , n, m ∈ N. Note thate(t) ≤ 0 on

[
τ(s2m), σ2(s2m)

)
T and

e(t) ≥ 0 on
[
τ(s2m+1), σ

2(s2m+1)
)

T. Further assumepi(t) ≥ 0, i = 0, 1, 2, . . . , n
on
[
τ (sm) , σ2(sm)

)
T, m ∈ N. Let u be a delta differentiable function onT such that

u(t) = e(t) on∪∞m=1[sm, σ2(sm)]. Then∫ σ2(s2m)

s2m

{
P1,1(t)(u

σ (t))2 − a (t) (u∆ (t))2
}

∆t

=
{
P1,1(s2m)(uσ (s2m))2 − a (s2m) (u∆ (s2m))2

}
µ(s2m)

+
{
P1,1(σ(s2m))(u

(
σ2 (s2m)

)
)2 − a (σ(s2m)) (u∆ (σ(s2m)))2

}
µ(σ(s2m))

= p0(s2m)µ(s2m)− a (s2m)

µ(s2m)
− a (σ(s2m))

µ(σ(s2m))
≥ 0,

provided

p0(s2m)µ(s2m) ≥ a (s2m)

µ(s2m)
+

a (σ(s2m))

µ(σ(s2m))
.
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Similarly, ∫ σ2(s2m+1)

s2m+1

{
P1,2(t)(u

σ (t))2 − a (t) (u∆ (t))2
}

∆t ≥ 0,

provided

p0(s2m+1)µ(s2m+1) ≥
a(s2m+1)

µ(s2m+1)
+

a(σ(s2m+1))

µ(σ(s2m+1))
.

In conclusion we have by Theorem 2.4 that (1.1) is oscillatory if

p0(si)µ(si) ≥
a (si)

µ(si)
+

a (σ(si))

µ(σ(si))
,

for i = m, m + 1, m ∈ N.

Remark2.7. Note that the results of this paper can be extended to the more general
dynamic equation

(
a(t)x∆(t)

)∆
+

n∑
i=0

pi(t) |x (gi (t))|αi sgnx (gi (t)) = e(t),

where the functionsgi : T → T are nondecreasing rd-continuous functions onR and
lim
t→∞

gi(t) = ∞, for i = 0, 1, . . . , n (see [25]). We leave this to interested reader.
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