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Abstract

We present a step by step algorithm which allows to compute a formal funda-
mental solution for certain systems of first order linear difference equations.
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1 Introduction

In many applications, one is concerned with higher order difference equations, or even
more generally with first order systems of difference equations, in an independent vari-
ablen that varies within either the set of natural numbers or the set of integers. In
the elementary cases when the equations are linear and its coefficients are constants,
fundamental solutions can be computed explicitly, but even when these coefficients are
polynomials, no explicit formulas for solutions are known, in general. On the other
hand, given initial conditions, the difference equation can serve as arecursion formula
for computing the values of the corresponding solution, but little can be said about its
behavior asn →∞. In this article we in a sense take the opposite approach and compute
“solutions” that have a known behavior at infinity, but since these “solutions” involve
power series (in1/n) whose radius of convergence may be equal to zero, we refer to
them asformal solutions. According to known results (see the discussion below), these
formal solutions determine the asymptotic behavior of any solution of the underlying
equation, except for the nontrivial question of how a solution of an initial value problem
is related to these formal solutions.In any case, however, one may read off from the for-
mal solutions what kind of asymptotic behavior a solution may have asn →∞. So our
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results should be interesting even for experts who are not so familiar with the concept
of formal solutions.

Whenever working with power series, it is more natural to denote the independent
variable byz instead ofn, regardingz as a complex variable, but in our context this
is just a trivial change of notation. More importantly, since we are concerned with
formal power series anyway, we may just as well allow such series to come up in the
coefficients of our difference equation, too. In addition, we shall apply various kinds
of transformationsto a given system, and some of these are such that the transformed
system has a coefficient matrix that is a formal power seriesin a root of1/z. Therefore,
we choose to consider such systems right from the beginning. For these reasons, we
consider ad–dimensionalformal system of difference equationsof the following form:

x(z + 1) = Â(z) x(z), Â(z) = p(z1/q)I +
∞∑

n=0

z−n/q An , (1.1)

for which the following additional assumptions hold:

• p(z) ∈ C[z] is a scalar polynomial without constant term that may be identically
zero, but otherwise is of degreedeg p(z) ≤ q. Hence the (rational) powers ofz
occurring in the termp(z1/q)I have exponents at most equal to1.

• The dimensiond = 1 is also considered as a particularly simple case. Ford ≥ 2,
however, we shall assume that not all the matricesAn are diagonal, since other-
wise the system decouples intod scalar equations.

• If deg(p(z)) < q holds, then we assume in addition that the matrixA0 is not equal
to a scalar multiple of the identity matrix. As shall be made clear later, a general
system can be put into this form by some elementary transformation. Also note
that this case cannot occur in dimensiond = 1.

• We assume the formal determinant ofÂ(z) not to be the zero series, which is a
natural assumption for difference equations. However, observe that no assump-
tion is made concerning the radius of convergence of the power series occurring
in (1.1). Only occasionally we shall speak of aconvergent system, meaning to
say that this power series has a positive, but otherwise arbitrary, radius of conver-
gence.

Starting in1882, afterH. Poincaŕe developed the notion of asymptotic representa-
tion, J. Horn[12], G. D. Birkhoff[3,4], andBirkhoff and Trjitzinsky[5], as well as many
others, applied Poincaré’s concept and proved so-calledfundamental existence theorems
for convergent systems (1.1). This is to say that, given a formal fundamental solution
of a form described later, they showed existence of solutions which are analytic and
have the formal one as their asymptotic expansion asz → ∞ in a sufficiently small
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sector of the complex plane. AfterJ. Ecallepresented his concept of multisummabil-
ity, G. Immink, B. Braaksma, andB. Faberin various publications [6,7,10,13] showed
that formal solutions even for nonlinear systems are, under relatively weak assumptions,
multisummable in all but a discrete set of directions. This, however, shall not be dis-
cussed further in this article. Instead, we shall concentrate on the question of how to
compute a set of formal fundamental solutions, even for formal systems (1.1).A. Du-
val [9] andC. Praagman[14] have shown existence of formal solutions using algebraic
tools, whileH. L. Turrittin [15] gave such a proof in a more algorithmic manner, but
left out many details. Our treatment here is similar to that in the article ofChen and
Fahim [8], but differs from their approach in the situation of a nilpotent highest term:
Here, we proceed analogously to results of the first author [1, 2] for systems of linear
ordinary differential equations. In detail, we shall present a completely algorithmic ap-
proach, which enables us to compute explicitly a formal fundamental solution (2.1) of
(1.1), and which gives rise to recursion formulas which can in principle be implemented
in computer algebra packages. We use techniques which are analogous to those for the
computation of formal solutions of systems of meromorphic differential equations, and
which have been simplified in this case by the first author in [1,2].

This paper is organized as follows: First, we discuss the form of the formal funda-
mental solutions whose existence is to be shown later. In Section 3 we introduce formal
transformations of several different kinds, while in the next one we recall briefly some
properties of matrix equations that are needed later on. In Section 5 we compute formal
solutions for systems in case0 < deg p(z) = q, whereas in Section 6 we discuss cases
when a system can be transformed into one that is a direct sum of smaller systems (for
which the formal fundamental solutions can be computed individually). In the next,
main, section we treat the remaining cases, showing that one can still make transforma-
tions to a new system that, in some sense, is easier to solve than the previous one. We
conclude with a summary of our results in the final section.

2 Formal Fundamental Solutions

By definition, a formal fundamental solution of (1.1) is ad× d matrix of the following
form:

X̂(z) = F̂ (z)
(
Γ(z)

)Λ
eP (z) zD , (2.1)

consisting of a formal invertible matrix power series∗ F̂ (z) in z−1/q, for someq ∈ N, a
constant diagonal matrixΛ of rational numbers with common denominatorq (andΓ(z)
denoting the well-known Gamma function), a diagonal matrixP (z) of polynomials in
z1/q of degree less than or equal toq without constant term, and a constant matrixD that
may even be chosen in Jordan canonical form. Moreover, the matricesΛ, P (z), andD

∗Observe that the terminvertible refers to the fact thatdet F̂ (z) is not the zero series – however,
observe that the inverse matrix need not be a power series, but in general is a formal Laurent series.
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all commute with one another, but in general do not commute withF̂ (z). By definition,
X̂(z) is a formal solution of (1.1) if, and only if

Â(z) = X̂(z + 1) X̂(z)−1 = F̂ (z + 1) zΛ eP (z+1)−P (z) (1 + 1/z)D F̂ (z)−1 , (2.2)

with the second identity using the commutativity of the matrices involved. Observe that
for anyr ∈ C we have

(z + 1)r − zr = zr

∞∑
k=1

(
r

k

)
z−k , |z| > 1 .

Therefore, due to the fact that the matrixP (z) only involves powers ofz with exponents
at most1, one can verify that the termeP (z+1)−P (z) can be expanded into a Laurent series
in z−1/q that does not involve terms with positive rational powers ofz. In addition, using
amatrix versionof the binomial coefficients, namely†(

D

k

)
=

1

k!
D (D − 1) . . . (D − k + 1) ,

we can expand the term(1 + 1/z)D into the (matrix) binomial series as

(1 + 1/z)D =
∞∑

k=0

(
D

k

)
z−k , |z| > 1 .

Accordingly, both sides of (2.2) are of the same (formal) nature, namely are formal
Laurent series‡ in z−1/q. So by comparing coefficients one can always verify whether
or not a givenX̂(z) is a solution of (1.1) – however, it is nontrivial to show existence of
X̂(z) for which (2.2) holds, and this is what this article is about!

Remark2.1. Instead of(Γ(z))Λ, one may in the definition of formal fundamental solu-
tions also use the more elementary termzzΛ – due to Stirling’s formula for the asymp-
totic expansion of the Gamma function, the quotient of the two terms formally gives
a power series inz−1 times e−zΛ z−(1/2)Λ, which may be absorbed intôF (z), resp.
eP (z) zD. This is a form which is theoretically more satisfactory, since it avoids us-
ing a transcendental function which by itself solves a difference equation of the form
we study here. On the other hand, the term(z + 1)(z+1)Λz−zΛ, which would come up
frequently in later calculations, is not so easy to use, and that is why we use formal
solutions of the form (2.1). Correspondingly, we shall in the next section define pole
transformations using the Gamma function instead ofzz.

†Here and throughout, for a square matrixA and a complex numberα we shall writeA − α instead
of A− α I.

‡By definition, a formal Laurent series is one with terminating principal part, and a power series part
whose radius of convergence may vanish.



Computation of Formal Solutions of First Order Linear Difference Equations 33

In order to prove existence of, or even to compute a formal fundamental solution
(2.1), we shall apply finitely many (formal) transformations of various kinds, all of
which are discussed in the next section. Each of these transformations simplifies a
given system in one way or another, such that in the end we obtain a system of which
we can compute a formal fundamental solution directly. Such systems are discussed in
Section 5.

3 Formal Transformations

In this section we consider a formal system with a coefficient matrix that is an arbitrary
formal Laurent series inz−1/q; i. e., we assume

x(z + 1) = Â(z) x(z) , Â(z) =
∞∑

n=−m

z−n/q An , A−m 6= 0 , (3.1)

wherem may be an arbitrary integer number, andm/q is referred to as theformal pole
order of the system. To exclude trivial cases, we shall assume that not all coefficients
An are diagonal matrices, since otherwise the system decouples intod one-dimensional
equations. Note that every system (1.1) is of the form (3.1), withm = deg p(z), and
we shall explain that the first transformation introduced below may be used to reduce a
general system to the form (1.1).

Given anyd × d invertible matrixT̂ (z) and settingx(z) = T̂ (z) y(z), we observe
thatx(z) is a solution of (3.1) if, and only if,y(z) solves thetransformed equation

y(z + 1) = B̂(z) y(z) , B̂(z) = T̂ (z + 1)−1 Â(z) T̂ (z) . (3.2)

For a generaltransformation matrixT̂ (z), the new coefficient matrix̂B(z) may not
again be of the form (3.1), and that is why we are going to restrict ourselves and consider
very particular kinds of transformations which we shall now present:

1. If T̂ (z) =
(
Γ(z)

)r
I for somer ∈ Q, we call T̂ (z) a pole transformation, since

then we haveB̂(z) = z−r Â(z). Therefore, unlike in the case of differential
equations, the pole order of̂A(z) has no special meaning when computing formal
solutions of difference equations! Instead, for a general system (3.1) it is of im-
portance to determine themaximal numberk ≥ −m for which the matricesAn,
with −m ≤ n < k all are scalar multiples of the identity matrix. If we then apply
a pole transformation with value−r = min{k/q, m/q + 1}, we obtain a trans-
formed system that, after a change of notation, is of the form (1.1).In particular,
observe that in dimensiond = 1 we can always transform a given system into one
of this form, and in addition have thatdeg p(z) = q.

2. For T̂ (z) = exp[p̃(z1/q)]I, with a scalar polynomial̃p(z) ∈ C[z] of degree less
than or equal toq, we speak of anexponential shift. In this case,B̂(z) =
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exp[−p̃((1 + z)1/q) + p̃(z1/q)] Â(z), and such transformations shall be used to
normalize the termp(z1/q) in systems of the form (1.1) – for details, compare the
proof of Proposition 5.1.

3. As the main type of transformations, we useformally q–analytic transformations

T̂ (z) =
∞∑

n=0

z−n/q Tn , det T0 6= 0 .

Note that the inverse is again a transformation of the same type. As an especially
simple case we may have thatTn = 0 for all n ≥ 1, and then we shall occasionally
speak of aconstant transformation. In order to avoid dealing with the inverse
matrix, we shall always rewrite the transformation equation in the form

T̂ (z + 1) B̂(z) = Â(z) T̂ (z) . (3.3)

One may directly verify that§

T̂ (z + 1) = T̂ (z) +
∞∑

n=q+1

z−n/q T̃n , T̃n =

n−q∑
j=1

(
−j/q

(n− j)/q

)
Tj , (3.4)

and this implies for a matrix̂A(z) as in (3.1) that thetransformed matrixB̂(z) is
of the same form, with coefficients that we denote byBn. Inserting into (3.3) and
comparing coefficients, we obtain

n+m∑
ν=0

(Tν Bn−ν − An−ν Tν) = −
n+m∑

ν=q+1

T̃ν Bn−ν ∀ n ≥ −m . (3.5)

For a system of the form (1.1) we havem ≤ q, andAn = an I for n ≤ −1. Hence
we conclude from (3.5) that

n+m∑
ν=0

Tν (Bn−ν − an−ν) = 0 (−m ≤ n ≤ −1) .

Using the invertibility ofT0, we inductively obtainBn = an I for n ≤ −1,
so the new system is again of the form (1.1), and the polynomialp(z) remains
unchanged. So we may say thatp(z) is a formalq-analytic invariant. In particular,
we observe that (3.5) is satisfied for−m ≤ n ≤ −1, and for othern simplifies to

n∑
ν=0

(Tν Bn−ν − An−ν Tν) = −
n+m∑

ν=q+1

T̃ν Bn−ν ∀ n ≥ 0 . (3.6)

§In order to simplify notation we use the following convention:

(
α

r

)
= 0 if α ∈ C, r ∈ Q\N≥0.
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Note that this is also correct for the case ofp(z) ≡ 0. The importance of these for-
mally q-analytic transformations lies in the fact that for systems (3.1), for which
the coefficientA0 has more than one eigenvalue, we show existence of such a
transformation for whichB̂(z) is the direct sum of smaller systems. So in other
words, we can partially decouple a given system unlessA0 has one eigenvalue
only.

4. Transformations of the typêT (z) = diag[zr1 , . . . , zrd ], with ri ∈ Q, shall be
namedshearing transformations. These transformations are needed when we are
left with a system (1.1) whose coefficientA0 has one eigenvalue only. Observe
that such a shearing transformation, when applied to a system of the form (3.1),
leads to a system that may again be written in this form, but withq andm changed
accordingly. However, a system of the form (1.1) will, in general, be transformed
by a shearing transformation to one which no longer is of this form, since off-
diagonal terms may occur that involve positive (rational) powers ofz. If this is not
the case, then the transformed system can again be written in the form(1.1), with
a possibly different value ofq, say: q̃, which is a multiple ofq. The polynomial
p(z) is accordingly changed tõp(z), so thatp(z1/q) = p̃(z1/q̃). However, observe
that the transformed matrix̂B(z) may be so thatB0 is a scalar multiple of the
identity matrix, and a pole transformation then is applied to produce yet another
matrix that then satisfies all the requirements made for systems(1.1). For more
details on this, refer to Section 7.

4 Matrix Equations

The following results are well known, and are used here to solve matrix equations of a
certain form; for proofs a reader may, e. g., refer to [2].

Lemma 4.1. Suppose thatA ∈ Cd1×d1 andB ∈ Cd2×d2 , for d1, d2 ∈ N, have disjoint
spectra, i. e., do not have an eigenvalue in common. Then for everyC ∈ Cd1×d2 the
matrix–equation

A X − X B = C (4.1)

possesses a unique solutionX ∈ Cd1×d2 .

In caseA andB have eigenvalues in common the situation is more difficult – how-
ever, we only need to deal withA andB being two Jordan blocks, i. e., matrices of the
form J = λI + N, λ ∈ C, whereN is the nilpotent matrix with ones in all places of the
first superdiagonal, and zeros elsewhere.

Lemma 4.2. Suppose thatJ1 ∈ Cd1×d1 andJ2 ∈ Cd2×d2 are two Jordan blocks having
the same eigenvalue, and assumed1 ≥ d2 (resp.d2 ≥ d1). Then for everyC ∈ Cd1×d2
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there exists a unique matrixB ∈ Cd1×d2 having nonzero entries in the last row (resp.
first column) only, such that the matrix equation

J1X −XJ2 = C −B (4.2)

has a solutionX ∈ Cd1×d2 . which is unique within the set of matricesX having zero
entries in the first row (resp. last column).

5 Elementary Solvable Systems

The following proposition is analogous to the case of a linear system of ODE with
a regular singularity; its proof follows the same line as the corresponding one in the
book ofF. R. Gantmacher[11]. More precisely, we shall be concerned with a system
(1.1) with deg p(z) = q. In particular we wish to recall that in dimensiond = 1,
a formal equation can always be made to satisfy this assumption by means of a pole
transformation! As we shall see in the proof, the differences of the eigenvalues of the
matrixA0 which are integer multiples of1/q shall play a special role: Let the spectrum
of A0 be the set{λ1, . . . , λµ}, with the enumeration chosen according to the following
rules:

• Any two eigenvaluesλj, λk are said to be equivalent moduloq, once their differ-
ence is an integer multiple of1/q. This is an equivalence relation on the set of
eigenvalues, and we assume the enumeration of the spectrum be so that equivalent
eigenvalues come consecutively.

• In addition, we enumerate the eigenvalues so that, within each equivalence class,
the real parts of the eigenvaluesλk are weakly increasing. So each equivalence
class of eigenvalues is of the form{λ + kν/q : ν = j, . . . `}, with λ ∈ C and
integer values0 = kj < . . . < k`.

Observe that these rules do not uniquely determine the ordering of the eigenvalues,
but this shall not be relevant here. However, since we shall later on observe that an
exponential shift shall changeA0 to a matrixA0 + λ, with λ ∈ C, it is important to
keep in mind that we may choose the same enumeration of the elements of the shifted
spectrum!

In terms of the spectrum ofA0, we now define a diagonal matrix

K = diag[k1 Is1 , . . . , kµ Isµ ]

with sj being the algebraic multiplicity of the eigenvalueλj, and thekj being as follows:

• Suppose that{λj, . . . , λ`} is one of the equivalence classes of eigenvalues ofA0.
Then we setkj = 0 and definekν = q (λν − λj) for ν = j + 1, . . . , `. Hence the
entrieskj all are integers, and we have thatλν = λj + kν/q, for j ≤ ν ≤ `.
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Note that the matrixK does not change onceA0 is replaced byA0 + λ, for arbitrary
λ ∈ C, since then the spectrum ofA0 changes accordingly. Along with the ordering
of the spectrum ofA0, we also consider two block structures ford × d matrices: In
the first, coarser block structure, the diagonal blocks correspond in size and ordering to
the equivalence classes of the spectrum, while in the second, finer one, their sizes are
determined by the multiplicity of each eigenvalue.

With these preparations, we are now ready to formulate the following result.

Proposition 5.1. Let a formal system(1.1) be given and assumedeg p(z) = q. Then
there exists a formal fundamental solution of the form(2.2), with

• Λ = I andP (z) = q(z1/q) I, q(z) ∈ C[z], deg q(z) = q,

• F̂ (z) = T̂ (z) zq−1K , with a formallyq-analytic matrixT̂ (z) and K as defined
above,

• a constant matrixD that is diagonally blocked in the coarser block structure
induced by the spectrum ofA0, with each diagonal block being upper triangularly
blocked in the finer block structure.

Moreover, in the finer one of the two block structures induced by the spectrum ofA0,
each diagonal block ofD has only one eigenvalue, and these eigenvalues are the same
for all such blocks belonging to the same diagonal block of the coarser block structure.

Proof. To construct the formal fundamental solution, we first use an exponential shift
to reduce the polynomialp(z) in (1.1) to a monomial. Since any exponential shift is
equivalent to a succession of finitely many such shifts withp̃(z) itself being a monomial,
we begin by observing that the shiftea z may be used to multiply the coefficient matrix
Â(z) by e−a, and thus we may from now on assume that the highest coefficient ofp(z)
is equal to1. Observing that for1 ≤ µ ≤ q − 1 we have

e−a ((z+1)µ/q−zµ/q) = 1 − µ a/q zµ/q−1 + . . . ,

we find that such shifts can be used to, one after the other, remove all lower order terms
from the polynomialp(z). Accordingly, we shall from now on assumep(z1/q) = z. Also
note that these exponential shifts shall change the coefficientA0 of (1.1) intoA0 +λ, for
someλ ∈ C, hence the matrixK, as well as the two block structures defined in terms of
the spectrum ofA0, are left invariant! Next, we observe that a constant transformation
T̂ (z) ≡ T0 may be employed in order to reduce to an equation with a coefficientA0 that
is of the form

A0 = A01 ⊕ . . .⊕ A0µ ,

where each blockA0k has only one eigenvalue, and all these eigenvalues are mutually
distinct. In fact, we may even assume that all the blocksA0j are arranged in accor-
dance with our preselected enumeration of the spectrum ofA0, meaning thatA0j has
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eigenvalueλj, for all j = 1, . . . , µ. Note that then the block structure ofA0 agrees
with the finer one of the two block structure that were defined above. Moreover, by
definition of the matrixK, its diagonal entries are constant within each one of its
corresponding blocks. Within any diagonal block of the coarser block structure, the
diagonal entries ofK increase strictly when going from one (fine) diagonal block to
the next. In this situation, we intend to find a formallyq-analytic transformation̂T (z)
with leading termT0 = I, to obtain a transformed equation with fundamental solution
Ŷ (z) = Γ(z) zq−1KzD, with a so far undetermined matrixD of the form described above
– if we did so, then the proof is completed, since the exponential shifts we used before
commute withT̂ (z) andzq−1K . The coefficient matrix of this transformed equation then
necessarily is of the form

B̂(z) = Ŷ (z + 1) Ŷ (z)−1 = z + zq−1K
(
q−1K + D + O(1/z)

)
z−q−1K .

Due to the required form ofD, we observe that̂B(z) is diagonally blocked in the coarser
one of the block structures defined above. Moreover, each diagonal block is upper tri-
angularly blocked with respect to the finer block structure. Aside from the leading term
p(z1/q) = z, the diagonal blocks begin with a constant term which we set equal to the
diagonal blocks ofA0, which implies that the diagonal blocks ofD have eigenvalues
that satisfy the statement in the proposition. The off-diagonal blocks ofB̂(z) begin with
a term of the formz−kj` Dj`, with an undetermined blockDj`, j < `, of D, and accord-
ing to the definition ofK, kj` is a positive integer and in fact equal to the difference
of the single eigenvalues ofA0j andA0`. To show existence of a formallyq-analytic
transformation linking the one system to the other, we first observe that (3.6) holds for
n = 0, since we have chosen the diagonal blocks ofD so thatB0 = A0. We now
consider anyn ≥ 1: In this case, observing thatB−q = I, B−k = 0 for 1 ≤ k ≤ q − 1,
we find that (3.6) is equivalent to

Tn

(
A0 − (n/q)

)
− A0 Tn + Bn = Rn ,

where the matrixRn only involves matricesTm andBm with m < n. Blocking all
matrices in the block structure induced byA0, this in turn can be written as

T (jk)
n

(
A

(kk)
0 − (n/q)

)
− A

(jj)
0 T (jk)

n + B(jk)
n = R(jk)

n , 1 ≤ j, k ≤ µ . (5.1)

According to Lemma 4.1 we can uniquely determineT (jk)
n from this identity provided

λk − λj 6= n/q. This is always the case when the two eigenvalues are not equivalent
modulo q, while for equivalent ones this condition is violated only for one value of
n ≥ 1, and thenk > j follows, due to the assumptions made on the ordering of the
blocks ofA0. So wheneverλk − λj 6= n/q, we solve (5.1) forT (jk)

n . In the opposite
case, we decide to chooseT (jk)

n = 0 and determineB(jk)
n , i.e. to say, the corresponding

block of D, such that (5.1) holds. In this fashion, we get a unique transformationT̂ (z)
that is as desired.
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Remark5.2. Observe that, unlike in the case of a regular singularity for a system of
differential equations, the formal fundamental solution obtained in the previous propo-
sition involves, in general, a divergent power seriesF̂ (z) – that this is so can already be
observed in the most elementary situation ofd = 1; for details a reader may refer to the
proof of Stirling’s formula for the Gamma function given in [2, p. 229].

6 The Splitting Lemma

In this and the next section we deal with general systems (1.1) of dimensiond > 1
anddeg p(z) < q. Observe that this includes the case whenp(z) vanishes identically,
since then it is natural to setdeg p(z) = −∞. Whenever the leading termA0 of (1.1)
has several distinct eigenvalues, we will show existence of asplitting transformation,
i. e., a formallyq-analytic transformation for which the transformed system is partially
decoupled, or in other words is a direct sum of systems of smaller dimensions. So this
situation is completely analogous to the case of differential equations!

Lemma 6.1 (Splitting Lemma). Let (1.1) be a formal system of dimensiond > 1

with deg p(z) < q, and assume thatA0 = A
(11)
0 ⊕ A

(22)
0 , such that the two diagonal

blocks have no eigenvalue in common. Then there exists a unique formallyq–analytic
transformation of the form

T̂ (z) =

[
I T̂12(z)

T̂21(z) I

]
, T̂ij(z) =

∞∑
n=1

T (ij)
n z−n/q, (6.1)

such that the transformed formal system is diagonally blocked in the block structure of
A0.

Proof. SettingB̂(z) = p(z1/q) I+
∞∑
0

Bnz
−n/q, B0 = A0, andT̂ (z) = I+

∞∑
1

Tnz
−n/q,

we conclude from (3.2) that

Tn A0 − A0 Tn = An − Bn + Rn ∀ n ≥ 1 , (6.2)

whereRn only involves coefficientsTm, Bm with m < n. Blocking

Tn =

[
0 T (12)

n

T (21)
n 0

]
, An =

[
A(11)

n A(12)
n

A(21)
n A(22)

n

]
, Bn =

[
B(11)

n 0

0 B(22)
n

]
, n ≥ 1

and inserting into (6.2) leads to

T (21)
n A

(11)
0 − A

(22)
0 T (21)

n = A(21)
n + R(21)

n

B(11)
n = A(11)

n +
n−1∑
m=1

A(12)
m T

(21)
n−m, n ≥ 1
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plus two other equations with indices1, 2 permuted that are omitted but can be treated
in the same way. SinceR(21)

n only involves blocksT (21)
m , B(11)

m with m < n we can sub-
stitute the second equation into the first one and compute all coefficientsT (21)

n uniquely
according to Lemma 4.1.

Applying the splitting lemma repeatedly we obtain an analogous result ifA0 has
more than two eigenvalues.

Theorem 6.2. Let (1.1)be a formal system of dimensiond > 1 with deg p(z) < q, and
assume thatA0 = diag[A(11)

0 , . . . , A
(µµ)
0 ], such that any two blocks have no eigenvalue

in common. Then there exists a unique formallyq–analytic transformation̂T (z) with
diagonal blocks all equal toI and off–diagonal ones having no constant term, such that
the transformed formal system is diagonally blocked in the block structure ofA0.

So the results of the previous sections show that we are left with discussing systems
for whichdeg p(z) < q, while A0 only has one eigenvalue. This we shall do in the next
section with help of shearing transformations.

7 Shearing Transformations

In the following we have to investigate formal systems (1.1) withdeg p(z) < q, whose
leading termA0 only has one eigenvalue, so that the splitting lemma does not apply.
Without loss of generality we may assumeA0 to be in Jordan canonical form, since
otherwise we can apply a constant transformation. According to our normalizing as-
sumption we have thatA0 is not equal to a multiple of the unit matrix, hence we may
assume that

A0 = λ I + NA , NA = N1 ⊕ . . .⊕Nµ 6= 0 , λ ∈ C , µ ∈ N , (7.1)

with nilpotent Jordan blocksNj of dimensionsdj, which we assume to be ordered so
thatd1 ≥ . . . ≥ dµ ≥ 1. The treatment of these cases shall be completely analogous
to the case of differential equations studied in [2]); in particular we shall use the same
order relation for nilpotent matrices introduced there:

(Order relation for nilpotent matrices) Given any two nilpotent matrices
NA, NB ∈ Cd×d, we say thatNB is superior toNA, if for somen ≥ 1 we
have rankNm

A = rankNm
B for 1 ≤ m ≤ n− 1, and rankNn

A < rankNn
B.

Note that this indeed defines a (partial) order relation on the set ofd × d nilpotent
matrices, with the nilpotent Jordan block, i. e., the matrix with ones above the diagonal
and zeros everywhere else, being a maximal element. The strategy that we shall follow
is to find transformations that will produce a transformed equation with superior nilpo-
tent matrixNB, and in order to achieve this goal, we shall first arrange finitely many
coefficientsA1, . . . An0 to have a special form. To do so, it shall be convenient to block
both the transformation as well as the two systems in the block structure induced byNA:
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Lemma 7.1. Let a formal system(1.1)with leading term as in(7.1)be given. Then for
everyn0 ∈ N there exists a terminatingq–analytic transformation̂T (z) = I + [Tij(z)],
blocked in the block structure ofNA, such that the coefficient matrix of the transformed
system has the form̂B(z) = p(z1/q)I + A0 + [B̂ij(z)], with

Tij(z) =

n0∑
n=1

T (ij)
n z−n/q , B̂ij(z) =

∞∑
n=1

B(ij)
n z−n/q ,

and so that for1 ≤ n ≤ n0 the coefficientsB(ij)
n

1. have all zero columns except for the first one in case1 ≤ i ≤ j ≤ µ,

2. have all zero rows except for the last one in case1 ≤ j < i ≤ µ.

Furthermore the transformation̂T (z) is unique if we require for1 ≤ n ≤ n0 that

1. all T (ij)
n have vanishing last column in case1 ≤ i ≤ j ≤ µ,

2. all T (ij)
n have vanishing first row in case1 ≤ j < i ≤ µ.

Proof. Insertion into (3.2) implies the following recursion formula for the coefficients
of the blocks ofÂ(z), B̂(z), T̂ (z):

T (ij)
n Nj −NiT

(ij)
n = −B(ij)

n + R(ij)
n , n ≥ 1, 1 ≤ i, j ≤ µ, (7.2)

whereR(ij)
n only involves blocks ofTm, Bm with m < n. For n ≤ n0 Lemma 4.2

implies existence of a unique matrixB(ij)
n with nonzero entries in the first column (resp.

last row), such that (7.2) possesses a solutionT (ij)
n . This solution is unique if we require

its last column (resp. first row) to vanish. Which case applies depends upon the position
of the block. In casen > n0 we haveT (ij)

n ≡ 0 and chooseB(ij)
n so that (7.2) holds.

Remark7.2. We say that (1.1) withA0 as in (7.1),µ ≥ 1, is normalized upto n0, if all
coefficientsA(ij)

n , for 1 ≤ n ≤ n0, have nonzero entries only in the first column resp.
last row (in casei ≤ j resp. i > j). If (1.1) is normalized up ton0, and in addition
all A(ij)

n with i 6= j vanish for1 ≤ n ≤ n0, then we say that (1.1) isreduced upto
n0. We mention briefly that a system (1.1) normalized up ton0 can be normalized up to
ñ0 > n0 using a transformationT (z) with coefficientsTn = 0 for 1 ≤ n ≤ n0; therefore
the corresponding coefficientsAn remain unchanged.

Next, we will apply shearing transformations for systems (1.1) normalized up to
somen0 in order to get a transformed system with leading termB0 = λI + NB and
superiorNB.
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Proposition 7.3. For somen0 ∈ N, let (1.1) be a formal system with leading term
A0 = λI + NA as in (7.1), normalized up ton0 and assumeµ ≥ 2. Assume the
existence ofn1 ∈ N : 1 ≤ n1 ≤ n0, so that

Âiµ(z) =
∞∑

n=n1

A(iµ)
n z−n/q , 1 ≤ i ≤ µ− 1 , (7.3)

and not allA(iµ)
n1

vanish. Then the shearing transformation

T (z) = diag[Id1 , . . . , Idµ−1 , z
n1/qIdµ ]

produces a system with leading termB0 = λI + NB, with NB being superior toNA.

Proof. DefiningCi = A(iµ)
n1

, 1 ≤ i ≤ µ − 1 one checks easily that the stated shearing
transformation produces a transformed system

B̂(z) = p(z1/q)I + λI + NB +
∞∑

n=1

Bnz
−n/q (7.4)

with

NB =


N1 0 · · · 0 C1

0 N2 · · · 0 C2
...

...
...

...
...

0 0 · · · Nµ−1 Cµ−1

0 0 · · · 0 Nµ

 , Ci =

 ci,1 0 · · · 0
...

...
...

ci,di
0 · · · 0


di×dµ

. (7.5)

By assumption we haveCi 6= 0 for at least onei and forn ≥ 1 we find

Nn
B =


Nn

1 0 · · · 0 C
(n)
1

0 Nn
2 · · · 0 C

(n)
2

...
...

. ..
...

...
0 0 · · · Nn

µ−1 C
(n)
µ−1

0 0 · · · 0 Nn
µ

 , C
(n)
i = Nn−1

i Ci + Cn−1
i Nµ, n ≥ 2. (7.6)

We conclude that thenth column ofC(n)
i equals the first column ofCi, while the fol-

lowings vanish. Therefore we have rankNn
A ≤ rankNn

B, n ≥ 1 and equality holds iff
the columns ofC(n)

i , for every1 ≤ i ≤ µ − 1, are linear combinations of the columns
of Nn

i . Choosingn = dµ we haveNn
µ = 0 and finally rankNdµ

A < rankNdµ

B because

C
(dµ)
i 6= 0 for at least onei.

Due to Proposition 7.3 we are left to deal with the following two situations: Either
we haveÂiµ(z) = O

(
z−(n0+1)/q

)
, 1 ≤ i ≤ µ − 1, or there is a shearing transformation
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producing a transformed system with leading coefficientB0 = λI + NB and superior
NB. Since the nilpotent matrix with rank equal tod − 1 is a maximal element for
our order relation, it follows that after finitely many applications of Proposition 7.3,
in combination with constant transformations for the leading terms, we find that either
µ = 1 or Âiµ(z) = O

(
z−(n0+1)/q

)
, 1 ≤ i ≤ µ− 1. Much more can be said, however.

Theorem 7.4. Let (1.1) be a formal system with leading termA0 = λI + NA as in
(7.1), normalized up ton0 ∈ N. Moreover, letµ ≥ 2. Then we can find a shearing
transformation producing a system with leading termB0 = λI + NB andNB superior
to NA, except when all coefficientsAn, 1 ≤ n ≤ n0 are already diagonally blocked in
the block structure ofA0, i.e. when(1.1) is reduced up ton0.

Proof. According to Proposition 7.3 such a shearing transformation always exists, ex-
cept when condition (7.3) is violated, meaning when allAn, 1 ≤ n ≤ n0, are lower
triangularly blocked in the block structure consisting of two diagonal blocks, with the
second one of the same size asNµ. Next, one may check that a shearing transformation
inverse to the one used in Proposition 7.3 shall lead to an equation with superior lead-
ing term, except when the coefficientsAn, 1 ≤ n ≤ n0, even are diagonally blocked
in the same block structure. Repeating the same argument for the first diagonal block
completes the proof.

According to the previous results we are left to deal with a formal system (1.1) with
deg p(z) < q, a leading termA0 as in (7.1), and such that for somen0 ∈ N that we may
choose as large as we want, we have for alln = 1, . . . , n0, 1 ≤ i, j ≤ µ

A(ii)
n =

a(i,1)
n 0 · · · 0
...

...
...

a(i,di)
n 0 · · · 0


di×di

, A(ij)
n = 0 (i 6= j). (7.7)

For such a system, with a suitable rational valuer satisfying0 < r ≤ 1/q, we are going
to show existence of a transformation of the form

T (z) = (Γ(z))r diag[T1(z), . . . , Tµ(z)]

Ti(z) = diag[1, z−r, z−2r, . . . , z−(di−1)r]

 (7.8)

which is a shearing transformation combined with a pole transformation, for which the
transformed system̂B(z) is again of the form (1.1), with new entries̃q andp̃(z), such
that eitherq̃ = q anddeg p̃(z) > q̃ hold, or so that the leading termB0 has several
eigenvalues. To achieve this goal, it is necessary to discuss the effect of such a trans-
formation: It is natural here to block botĥA(z) andB̂(z) in the block structure defined
by A0, and then we obtain from (3.2) that̂Bjk(z) = z−r T−1

j (z + 1) Âjk(z) Tk(z). Ac-

cordingly, elements in off-diagonal blocks of̂A(z) get multiplied by factors of the form
zr(τ−ν) (1+1/z)rτ , whereν, τ are nonnegative integers bounded by the number of rows,
resp. columns, of this block. Hence,|r(τ − ν)| ≤ max

j
dj r ≤ d follows. Consequently,



44 Werner Balser and Thomas Bothner

• if we assume thatn0 ≥ d + 1, which we shall do without loss of generality, then
the off-diagonal blocks of̂B(z) are formal power series inz−1/q̃, for q̃ being the
least common multiple ofq and the denominator ofr.

Hence, to continue our discussion, we may concentrate on a diagonal blockÂjj(z):
Within this block, the elements directly above the diagonal (which all are series begin-
ning with a constant term equal to1) are multiplied by(1 + 1/z)νr, for 0 ≤ ν ≤ dj − 1,
hence they all become power series inz−1/q̃ which again have constant term1. Other
elements of this block are identically zero (and remain so under this transformation), ex-
cept for some of those in the first column, which are multiplied byzτr, with 1 ≤ τ ≤ dj.
Therefore, the corresponding element ofB̂jj(z) is a formal series beginning with a
power of the formzτr−nτj/q, for somenτj ≥ 1, except if the series happens to vanish
completely, in which case we setnτj = ∞. We do not want to have any positive powers
of z occurring, hence we restrictr so thatτ r ≤ nτj/q. On the other hand, the idea is to
pick r, if possible, so that equality holds for at least one pair(τ, j). This implies that

• we only need to consider a finite set of rationalsr, sinceτ r = nτj/q for some
τ ∈ {1 ≤ τ ≤ dj ≤ d1} and somej implies that the denominator ofr is bounded
by d1 q, and the set of suchr ≤ 1/q indeed is finite.

So letr be the maximal value from this finite set for whichτ r ≤ nτj/q holds for all
1 ≤ τ ≤ dj, and allj = 1, . . . , µ. First, assume thatr = 1/q: Then q̃ = q, and the
transformed equation is again of the form (1.1), but withp(z) replaced byz(p(z) + λ),
hence indeed its degree has risen by1. In the second case ofr < 1/q, we haveτ r ≤
nτj/q for all 1 ≤ τ ≤ dj andj = 1, . . . , µ, with equality holding for at least one pair
(τ, j). Then, the corresponding transformation leads to

B̂(z) = p̃(z1/q̃) +
∞∑

n=0

z−n/q̃ Bn , (7.9)

with q̃ as above,̃p(z) so thatp̃(z1/q̃) = zr (p(z1/q) + λ), andB0 = B01 ⊕ . . . ⊕ B0µ,
with at least one blockB0j being of the form

B0j = Nj + Cj ,

with a nonzero matrixCj whose entries vanish except for some in the first column.
Sincer < 1/q, we find that the entry in position(1, 1) of Cj is equal to zero, so that for
Cj to be different from the zero matrix we necessarily havedj ≥ 2. Moreover,Bj0 is
a companion matrix and therefore not nilpotent (sinceCj 6= 0). However, the trace of
Bj0 vanishes, and thusB0 has more than one eigenvalue.

We summarize the result of the foregoing discussion as follows.

Theorem 7.5.Let a system(1.1)with deg p(z) < q and a leading termA0 as in(7.1)be
given, and assume that(7.7) holds forn0 ≥ d + 1. Then there exists a transformation
of type(7.8)which produces a transformed matrix̂B(z) being as follows:
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• If r = 1/q, thenB̂(z) is as in(1.1), with the same value ofq but withp(z) replaced
by a polynomial of higher degree.

• If 0 < r < 1/q, thenB̂(z) is as in(1.1), but withq replaced by a larger value
q̃, with p(z) replaced by a different polynomial̃p(z), and the constant termB0

having more than one eigenvalue.

In particular, observe that in the first one of the two cases, we can again apply the
results of this section until either we end with a system as in the second case, or one
with a polynomial of degree equal toq.

As shall be explained in more detail in the following section, the results of this,
together with those of the preceding sections, enable us to show existence of a formal
fundamental solution of any linear system of difference equations, and at the same time
allow for its computation in an algorithmic manner.

8 Summary

Summing up the results we have obtained in this article, we come to the following
conclusion.

Theorem 8.1 (Main Result). Every formal system of linear difference equations of
the form(3.1) possesses a formal fundamental solution of the form(2.1), that can be
computed by the following algorithmic procedure:

(a) Determine the maximal number of leading coefficients in(3.1) that are scalar
multiples of the unit matrix, and apply a pole transformation to put the coefficient
matrix into the form(1.1).

(b) If the system is as in(1.1), with deg p(z) = q, refer toProposition 5.1to compute
the formal fundamental solution. Note that this in particular covers the case of
dimensiond = 1.

(c) If the system is as in(1.1), withdeg p(z) < q andA0 having more than one eigen-
value, applyTheorem 6.2to compute a formallyq-meromorphic transformation
to obtain a coefficient matrix that is the direct sum of several smaller matrices
that then can be treated separately.

(d) If the system is as in(1.1), with deg p(z) < q andA0 having only one eigenvalue,
apply the results of the previous section to produce a new system that either is as
in case(b), or as in case(c).

In conclusion we wish to say that the computation of a formal fundamental solution
for difference equations can be done in the same fashion as for differential equations.
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What has not been discussed here is the problem of summation of the formal power
series occurring in Theorem 6.2. However, observe that on one hand existing results on
(nonlinear) systems of difference equations may be applied to see how these series can
be summed, and when one meets the phenomenon of level1+. On the other hand, it is
very likely that there are more direct ways of examining this question for the relatively
easy situation of Theorem 6.2, or the even easier one of Lemma 6.1, but this is not done
here.
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[12] J. Horn. Über das Verhalten der Integrale linearer Differenzen– und Differential-
gleichungen f̈ur große Werte der Veränderlichen.J. Reine Angew. Math., pages
159–191, 1910.



Computation of Formal Solutions of First Order Linear Difference Equations 47

[13] G. K. Immink. Asymptotics of analytic difference equations. Springer-Verlag,
Berlin, 1984.

[14] C. Praagman. The formal classification of linear difference operators.Proc. Kon.
Ned. Ac. Wet., 86:249–261, 1983.

[15] H. L. Turrittin. The formal theory of irregular homogeneous linear difference and
differential equations.Bol. Soc. Mat. Mexicana, pages 225–264, 1960.


