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Abstract

We present a step by step algorithm which allows to compute a formal funda-
mental solution for certain systems of first order linear difference equations.
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1 Introduction

In many applications, one is concerned with higher order difference equations, or even
more generally with first order systems of difference equations, in an independent vari-
ablen that varies within either the set of natural numbers or the set of integers. In
the elementary cases when the equations are linear and its coefficients are constants,
fundamental solutions can be computed explicitly, but even when these coefficients are
polynomials, no explicit formulas for solutions are known, in general. On the other
hand, given initial conditions, the difference equation can serveresuasion formula

for computing the values of the corresponding solution, but little can be said about its
behavior as — oo. In this article we in a sense take the opposite approach and compute
“solutions” that have a known behavior at infinity, but since these “solutions” involve
power series (in /n) whose radius of convergence may be equal to zero, we refer to
them adormal solutions According to known results (see the discussion below), these
formal solutions determine the asymptotic behavior of any solution of the underlying
equation, except for the nontrivial question of how a solution of an initial value problem
is related to these formal solutions.any case, however, one may read off from the for-
mal solutions what kind of asymptotic behavior a solution may have-asoco. So our
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results should be interesting even for experts who are not so familiar with the concept
of formal solutions

Whenever working with power series, it is more natural to denote the independent
variable byz instead ofn, regardingz as a complex variable, but in our context this
is just a trivial change of notation. More importantly, since we are concerned with
formal power series anyway, we may just as well allow such series to come up in the
coefficients of our difference equation, too. In addition, we shall apply various kinds
of transformationdo a given system, and some of these are such that the transformed
system has a coefficient matrix that is a formal power sémi@esoot of1/z. Therefore,
we choose to consider such systems right from the beginning. For these reasons, we
consider al-dimensionaformal system of difference equatiarithe following form:

~

(z+1) = A(2)z(2), Alz) = p(zY)I + iz_”/q A, (1.1)
n=0

for which the following additional assumptions hold:

e p(z2) € CJz] is a scalar polynomial without constant term that may be identically
zero, but otherwise is of degreleg p(z) < ¢. Hence the (rational) powers of
occurring in the termp(z'/9)I have exponents at most equallto

e The dimension/ = 1 is also considered as a particularly simple case.dFar2,
however, we shall assume that not all the matridgsare diagonal, since other-
wise the system decouples intescalar equations.

e If deg(p(z)) < ¢ holds, then we assume in addition that the matijxs not equal
to a scalar multiple of the identity matrix. As shall be made clear later, a general
system can be put into this form by some elementary transformation. Also note
that this case cannot occur in dimensiba: 1.

e We assume the formal determinant4fz) not to be the zero series, which is a
natural assumption for difference equations. However, observe that no assump-
tion is made concerning the radius of convergence of the power series occurring
in (1.1). Only occasionally we shall speak otanvergent systenmeaning to
say that this power series has a positive, but otherwise arbitrary, radius of conver-
gence.

Starting in1882, afterH. Poinca® developed the notion of asymptotic representa-
tion, J. Horn[12], G. D. Birkhoff[3,4], andBirkhoff and Trjitzinsky5], as well as many
others, applied Poincas concept and proved so-calliethdamental existence theorems
for convergent systems (1.1). This is to say that, given a formal fundamental solution
of a form described later, they showed existence of solutions which are analytic and
have the formal one as their asymptotic expansion as oo in a sufficiently small
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sector of the complex plane. Aftdr Ecallepresented his concept of multisummabil-

ity, G. Immink B. BraaksmaandB. Faberin various publications [6, 7, 10, 13] showed
that formal solutions even for nonlinear systems are, under relatively weak assumptions,
multisummable in all but a discrete set of directions. This, however, shall not be dis-
cussed further in this article. Instead, we shall concentrate on the question of how to
compute a set of formal fundamental solutions, even for formal systems @&..Du-

val [9] andC. Praagmar{14] have shown existence of formal solutions using algebraic
tools, whileH. L. Turrittin [15] gave such a proof in a more algorithmic manner, but
left out many details. Our treatment here is similar to that in the articléhen and
Fahim[8], but differs from their approach in the situation of a nilpotent highest term:
Here, we proceed analogously to results of the first author [1, 2] for systems of linear
ordinary differential equations. In detail, we shall present a completely algorithmic ap-
proach, which enables us to compute explicitly a formal fundamental solution (2.1) of
(1.1), and which gives rise to recursion formulas which can in principle be implemented
in computer algebra packages. We use techniques which are analogous to those for the
computation of formal solutions of systems of meromorphic differential equations, and
which have been simplified in this case by the first author in [1, 2].

This paper is organized as follows: First, we discuss the form of the formal funda-
mental solutions whose existence is to be shown later. In Section 3 we introduce formal
transformations of several different kinds, while in the next one we recall briefly some
properties of matrix equations that are needed later on. In Section 5 we compute formal
solutions for systems in case< deg p(z) = ¢, whereas in Section 6 we discuss cases
when a system can be transformed into one that is a direct sum of smaller systems (for
which the formal fundamental solutions can be computed individually). In the next,
main, section we treat the remaining cases, showing that one can still make transforma-
tions to a new system that, in some sense, is easier to solve than the previous one. We
conclude with a summary of our results in the final section.

2 Formal Fundamental Solutions

By definition, a formal fundamental solution of (1.1) ig & d matrix of the following
form:
X(2) = F(z) (T(2))" eF® 2P (2.1)

consisting of a formal invertible matrix power seﬁefé(z) in z~'/%, for someg € N, a
constant diagonal matrix of rational numbers with common denominagg@andI’(z)
denoting the well-known Gamma function), a diagonal ma#tix) of polynomials in
z'/7 of degree less than or equalg¢without constant term, and a constant mafpithat
may even be chosen in Jordan canonical form. Moreover, the matrjdes:), and D

*Observe that the terrimvertible refers to the fact thaflet £'(z) is not the zero series — however,
observe that the inverse matrix need not be a power series, but in general is a formal Laurent series.



32 Werner Balser and Thomas Bothner

all commute with one another, but in general do not commute With. By definition,

~

X(z) is a formal solution of (1.1) if, and only if
AZ) = X(z+1D)X(2)™! = Fz+1)22ePEDPE 1 1 1/2)P F(2)7, (2.2)

with the second identity using the commutativity of the matrices involved. Observe that
for anyr € C we have

(z+1) — 2" = 2" (;) 2k, |z > 1.
k=1

Therefore, due to the fact that the matfixz) only involves powers of with exponents

at mostl, one can verify that the ternd**1)="() can be expanded into a Laurent series
in z~'/% that does not involve terms with positive rational powers.dh addition, using
amatrix versiorof the binomial coefficients, namély

(lk?) _ %D(D_m...(z)—ml),

we can expand the teri + 1/z)” into the (matrix) binomial series as

(1+1/2) = i (lk)) zF lz| > 1.

k=0

Accordingly, both sides of (2.2) are of the same (formal) nature, namely are formal
Laurent serigsin z~'/%. So by comparing coefficients one can always verify whether
or nota givenf((z) is a solution of (1.1) — however, it is nontrivial to show existence of
X () for which (2.2) holds, and this is what this article is about!

Remark2.1 Instead ofT'(z))*, one may in the definition of formal fundamental solu-
tions also use the more elementary terih — due to Stirling’s formula for the asymp-
totic expansion of the Gamma function, the quotient of the two terms formally gives
a power series in"! timese > z~(!/2A which may be absorbed int&(z), resp.

eP® 2P This is a form which is theoretically more satisfactory, since it avoids us-
ing a transcendental function which by itself solves a difference equation of the form
we study here. On the other hand, the tgemi- 1)+D42=A which would come up
frequently in later calculations, is not so easy to use, and that is why we use formal
solutions of the form (2.1). Correspondingly, we shall in the next section define pole
transformations using the Gamma function instead®of

THere and throughout, for a square matfixand a complex number we shall writeA — « instead
of A—al.

1By definition, a formal Laurent series is one with terminating principal part, and a power series part
whose radius of convergence may vanish.
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In order to prove existence of, or even to compute a formal fundamental solution
(2.1), we shall apply finitely many (formal) transformations of various kinds, all of
which are discussed in the next section. Each of these transformations simplifies a
given system in one way or another, such that in the end we obtain a system of which
we can compute a formal fundamental solution directly. Such systems are discussed in
Section 5.

3 Formal Transformations

In this section we consider a formal system with a coefficient matrix that is an arbitrary
formal Laurent series in~'/?; i. e., we assume

p(z+1) = Az)a(z),  A(z) = Y zIA,, A, #0, (31)

n=—m

wherem may be an arbitrary integer number, andq is referred to as théormal pole
order of the system. To exclude trivial cases, we shall assume that not all coefficients
A,, are diagonal matrices, since otherwise the system decouplesami@-dimensional
equations. Note that every system (1.1) is of the form (3.1), with- degp(z), and
we shall explain that the first transformation introduced below may be used to reduce a
general system to the form (1.1).

Given anyd x d invertible matrix7'(z) and setting:(z) = T(z) y(z), we observe
thatz(z) is a solution of (3.1) if, and only ify(z) solves tharansformed equation

y(z+1) = B(2)y(z), B(z) = T(z+ 1) A(2)T(2). (3.2)

For a generatransformation matrix'(z), the new coefficient matri¥3(z) may not
again be of the form (3.1), and that is why we are going to restrict ourselves and consider
very particular kinds of transformations which we shall now present:

1. fT(z) = (T'(2))"I for somer € Q, we callT'(z) apole transformationsince

then we haveB(z) = 27" A(z). Therefore, unlike in the case of differential
equations, the pole order df( z) has no special meaning when computing formal
solutions of difference equations! Instead, for a general system (3.1) it is of im-
portance to determine thmaximal numbek > —m for which the matricesd,,,

with —m < n < k all are scalar multiples of the identity matrix. If we then apply

a pole transformation with valuer = min{k/q, m/q + 1}, we obtain a trans-
formed system that, after a change of notation, is of the form (InJjarticular,
observe that in dimensiah= 1 we can always transform a given system into one
of this form, and in addition have thatg p(z) = g.

2. ForT(z) = exp[p(z*/?)]I, with a scalar polynomiali(z) € C|[z] of degree less
than or equal ta;, we speak of arexponential shift In this case,B(z) =
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exp[—p((1 + 2)Y7) 4+ p(z*/9)] A(z), and such transformations shall be used to
normalize the termp(z'/9) in systems of the form (1.1) — for details, compare the
proof of Proposition 5.1.

. As the main type of transformations, we disemally g—analytic transformations

T(z) = Z e, detTy #0.

n=0

Note that the inverse is again a transformation of the same type. As an especially

simple case we may have that = 0 for all » > 1, and then we shall occasionally
speak of aconstant transformatianin order to avoid dealing with the inverse
matrix, we shall always rewrite the transformation equation in the form

T(z+1)B(2) = A(2)T(z). (3.3)
One may directly verify that

T(z+1) = T(z) + i T, T, = g <<n__j§q )T] (3.4)

n=qg+1 j=1 )/q

and this implies for a matrix(z) as in (3.1) that théransformed matrix3(z) is
of the same form, with coefficients that we denoteR)y Inserting into (3.3) and
comparing coefficients, we obtain

n+m n+m
> (TByy — Ay T)) = = > T,Byy  Yn=-m. (35)
v=0 v=q+1

For a system of the form (1.1) we have< ¢, andA,, = a,, I forn < —1. Hence
we conclude from (3.5) that

> T,(Biy = any) =0 (-m<n<-—1).

Using the invertibility of 7, we inductively obtainB,, = a, I forn < —1,

so the new system is again of the form (1.1), and the polynoptigl remains
unchanged. So we may say thét) is a formalg-analytic invariant In particular,
we observe that (3.5) is satisfied fern < n < —1, and for othem simplifies to

n n+m

> (TVBwy — Ay T,) = = > T, By, ¥n>0. (3.6)

v=0 v=q+1

(0%
n:

§In order to simplify notation we use the following conventic( ) =0if « € C,r € Q\N>o.
- >
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Note that this is also correct for the cas@©f) = 0. The importance of these for-
mally ¢g-analytic transformations lies in the fact that for systems (3.1), for which
the coefficient4, has more than one eigenvalue, we show existence of such a
transformation for whichB(z) is the direct sum of smaller systeno in other
words, we can partially decouple a given system unlés$ias one eigenvalue
only.

4. Transformations of the typ&(z) = diagz",...,z"], with r; € Q, shall be
namedshearing transformationslhese transformations are needed when we are
left with a system (1.1) whose coefficiedt has one eigenvalue only. Observe
that such a shearing transformation, when applied to a system of the form (3.1),
leads to a system that may again be written in this form, but yvéthdm changed
accordingly. However, a system of the form (1.1) will, in general, be transformed
by a shearing transformation to one which no longer is of this form, since off-
diagonal terms may occur that involve positive (rational) powers dfthis is not
the case, then the transformed system can again be written in the Tatinwith
a possibly different value @f, say: ¢, which is a multiple of;. The polynomial
p(z) is accordingly changed t9(z), so thatp(z'/7) = 5(z'/9). However, observe
that the transformed matri®(z) may be so thaB3, is a scalar multiple of the
identity matrix, and a pole transformation then is applied to produce yet another
matrix that then satisfies all the requirements made for sys{&r$ For more
details on this, refer to Section 7.

4 Matrix Equations

The following results are well known, and are used here to solve matrix equations of a
certain form; for proofs a reader may, e. g., refer to [2].

Lemma 4.1. Suppose thatl € C**% and B € C**% for d,d, € N, have disjoint
spectra, i. e., do not have an eigenvalue in common. Then for €vexyC»*% the
matrix—equation

AX - XB=2C (4.1)

possesses a unique solutidhe C™*%,

In caseA and B have eigenvalues in common the situation is more difficult — how-
ever, we only need to deal with and B being two Jordan blocks, i. e., matrices of the
formJ = A+ N, )\ € C, whereN is the nilpotent matrix with ones in all places of the
first superdiagonal, and zeros elsewhere.

Lemma 4.2. Suppose thaf;, € C**% and.J, € C%*% are two Jordan blocks having
the same eigenvalue, and assuine> d, (resp.d, > d,). Then for every’ € Cd1*
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there exists a unique matri® € C**? having nonzero entries in the last row (resp.
first column) only, such that the matrix equation

WX —-XJ,=C-B (4.2)

has a solutionX € C**%, which is unique within the set of matricés having zero
entries in the first row (resp. last column).

5 Elementary Solvable Systems

The following proposition is analogous to the case of a linear system of ODE with
a regular singularity; its proof follows the same line as the corresponding one in the
book of F. R. Gantmachefl1]. More precisely, we shall be concerned with a system
(1.1) with degp(z) = ¢. In particular we wish to recall that in dimensiah= 1,

a formal equation can always be made to satisfy this assumption by means of a pole
transformation! As we shall see in the proof, the differences of the eigenvalues of the
matrix A, which are integer multiples df/q shall play a special role: Let the spectrum

of Ay be the se{ )\, ..., \,}, with the enumeration chosen according to the following
rules:

e Any two eigenvalues\;, \; are said to be equivalent modujponce their differ-
ence is an integer multiple df/¢q. This is an equivalence relation on the set of
eigenvalues, and we assume the enumeration of the spectrum be so that equivalent
eigenvalues come consecutively.

¢ In addition, we enumerate the eigenvalues so that, within each equivalence class,
the real parts of the eigenvaluggs are weakly increasing. So each equivalence
class of eigenvalues is of the forfh + k,/q : v = j,...¢}, with A € C and
integer value® = k; < ... < ki.

Observe that these rules do not uniquely determine the ordering of the eigenvalues,
but this shall not be relevant here. However, since we shall later on observe that an
exponential shift shall changé, to a matrix A, + A, with A € C, it is important to
keep in mind that we may choose the same enumeration of the elements of the shifted
spectrum!

In terms of the spectrum of,, we now define a diagonal matrix

K =diagk, I, ..., k, L,]
with s; being the algebraic multiplicity of the eigenvaldg and thek; being as follows:

e Suppose thaf);, ..., \,} is one of the equivalence classes of eigenvalue$,of
Then we set;; = 0 and define:, = ¢ (\, — \;) forv =5 +1,...,¢. Hence the
entriesk; all are integers, and we have that= \; + k, /¢, for j <v < (.
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Note that the matriXX does not change oncé, is replaced byA4, + A, for arbitrary
A € C, since then the spectrum daf, changes accordingly. Along with the ordering
of the spectrum of4,, we also consider two block structures tbr< d matrices: In
the first, coarser block structure, the diagonal blocks correspond in size and ordering to
the equivalence classes of the spectrum, while in the second, finer one, their sizes are
determined by the multiplicity of each eigenvalue.

With these preparations, we are now ready to formulate the following result.

Proposition 5.1. Let a formal systenfl.1) be given and assum&g p(z) = ¢. Then
there exists a formal fundamental solution of the f¢212), with

e A=TandP(z) = q(zY") I, q(z) € C[z], deg q(2) = q,

o F(2) = T(2)2% ¥, with a formally¢-analytic matrix7'(z) and K as defined
above,

e a constant matrixD that is diagonally blocked in the coarser block structure
induced by the spectrum df), with each diagonal block being upper triangularly
blocked in the finer block structure.

Moreover, in the finer one of the two block structures induced by the spectruiy of
each diagonal block oD has only one eigenvalue, and these eigenvalues are the same
for all such blocks belonging to the same diagonal block of the coarser block structure.

Proof. To construct the formal fundamental solution, we first use an exponential shift
to reduce the polynomial(z) in (1.1) to a monomial. Since any exponential shift is
equivalent to a succession of finitely many such shifts Wt} itself being a monomial,

we begin by observing that the shift* may be used to multiply the coefficient matrix
A(z) by e, and thus we may from now on assume that the highest coefficiert pf

is equal tol. Observing that fot < u < ¢ — 1 we have

ema (DI ) gty

we find that such shifts can be used to, one after the other, remove all lower order terms
from the polynomiap(z). Accordingly, we shall from now on assumg:/?) = 2. Also
note that these exponential shifts shall change the coeffidigot (1.1) into Ay + A, for
some) € C, hence the matri¥’, as well as the two block structures defined in terms of
the spectrum ofd, are left invariant! Next, we observe that a constant transformation
T(z) = T, may be employed in order to reduce to an equation with a coeffidigtitat
is of the form

AO - AOl@...@AO#,

where each blockl,, has only one eigenvalue, and all these eigenvalues are mutually
distinct. In fact, we may even assume that all the blodks are arranged in accor-
dance with our preselected enumeration of the spectrury,pmeaning thatd,; has
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eigenvalue);, for all j = 1,..., . Note that then the block structure df, agrees

with the finer one of the two block structure that were defined above. Moreover, by
definition of the matrixXk, its diagonal entries are constant within each one of its
corresponding blocks. Within any diagonal block of the coarser block structure, the
diagonal entries of< increase strictly when going from one (fine) diagonal block to
the next. In this situation, we intend to find a formajhanalytic transformatiofi’(z)

with leading terrﬁfo = I, to obtain a transformed equation with fundamental solution
Y(z) = (z) 29 %P, with a so far undetermined matrix of the form described above

— if we did so, then the proof is completed, since the exponential shifts we used before
commute withl'(z) andz? ' X. The coefficient matrix of this transformed equation then
necessarily is of the form

B(z) = Y(z4+1)Y(2)" = 2420 'K <q_1K + D+ O(l/z)) K

Due to the required form @b, we observe tha@(z) is diagonally blocked in the coarser
one of the block structures defined above. Moreover, each diagonal block is upper tri-
angularly blocked with respect to the finer block structure. Aside from the leading term
p(2Y9) = 2, the diagonal blocks begin with a constant term which we set equal to the
diagonal blocks of4,, which implies that the diagonal blocks &f have eigenvalues
that satisfy the statement in the proposition. The off-diagonal bloc@li@)‘ begin with

a term of the form:~*i* D;,, with an undetermined blocR;,, j < ¢, of D, and accord-

ing to the definition ofK’, k;, is a positive integer and in fact equal to the difference
of the single eigenvalues ofy; and Ay,. To show existence of a formallyanalytic
transformation linking the one system to the other, we first observe that (3.6) holds for
n = 0, since we have chosen the diagonal blockgo§o thatB, = A,. We now
consider any: > 1: In this case, observing th&t_, = I, B_; =0for1 <k <g—1,

we find that (3.6) is equivalent to

Tn (AO_(n/Q)) - AOTn + Bn = an

where the matrixk,, only involves matriced;, and B,, with m < n. Blocking all
matrices in the block structure induced By, this in turn can be written as

T (A~ (n/g)) = AP TYD + BYY = RV, 1<jk<p. (B.D)

According to Lemma 4.1 we can uniquely determifj¢®) from this identity provided

Ax — A; # n/q. This is always the case when the two eigenvalues are not equivalent
modulo ¢, while for equivalent ones this condition is violated only for one value of
n > 1, and thenk > j follows, due to the assumptions made on the ordering of the
blocks of A;. So wheneven, — \; # n/q, we solve (5.1) forr'U%) . In the opposite
case, we decide to choo#g*) = 0 and determineBY"), i.e. to say, the corresponding
block of D, such that (5.1) holds. In this fashion, we get a unique transformation

that is as desired. O
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Remark5.2 Observe that, unlike in the case of a regular singularity for a system of
differential equations, the formal fundamental solution obtained in the previous propo-
sition involves, in general, a divergent power selﬁés) — that this is so can already be
observed in the most elementary situation/ef 1; for details a reader may refer to the
proof of Stirling’s formula for the Gamma function given in [2, p. 229].

6 The Splitting Lemma

In this and the next section we deal with general systems (1.1) of dimedsionl
anddegp(z) < ¢. Observe that this includes the case wheén) vanishes identically,
since then it is natural to sdbgp(z) = —oo. Whenever the leading term, of (1.1)

has several distinct eigenvalues, we will show existence sifligting transformation

I. e., a formallyg-analytic transformation for which the transformed system is partially
decoupled, or in other words is a direct sum of systems of smaller dimensions. So this
situation is completely analogous to the case of differential equations!

Lemma 6.1 (Splitting Lemma). Let (1.1) be a formal system of dimensian > 1
with degp(z) < ¢, and assume that, = A{'" & A, such that the two diagonal
blocks have no eigenvalue in common. Then there exists a unique formafiglytic
transformation of the form

1= [ ] BE=XI e

such that the transformed formal system is diagonally blocked in the block structure of
Ap.

Proof. SettingB(z) = p(z"/%) I+ B,z "%, By = Ay, andT'(z) = I+ZT 279,
we conclude from (3.2) that

whereR,, only involves coefficientd’,,, B,, with m < n. Blocking

0 T,Em) Aﬁ}” ASQ) szn) 0
T":[T@n o AT Al Al [ By pe | m2t

and inserting into (6.2) leads to
T,rEQl)A(()ll) _ A(()QQ)T(Ql) _ A(Ql) + R(21)

B(u _ 11) + Z A 12)Tn217317 n>1
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plus two other equations with indicés2 permuted that are omitted but can be treated
in the same way. SincBY only involves blocks!?V, B with m < n we can sub-
stitute the second equation into the first one and compute all coeffidightaniquely
according to Lemma 4.1. O

Applying the splitting lemma repeatedly we obtain an analogous resdlj iias
more than two eigenvalues.

Theorem 6.2. Let (1.1) be a formal system of dimensidn> 1 with deg p(z) < ¢, and
assume thatl, = diag[Aé“), . ,Aé““)}, such that any two blocks have no eigenvalue
in common. Then there exists a unique formatpnalytic transformationf(z) with
diagonal blocks all equal té and off—diagonal ones having no constant term, such that
the transformed formal system is diagonally blocked in the block structutg.of

So the results of the previous sections show that we are left with discussing systems
for whichdeg p(z) < ¢, while Ay only has one eigenvalue. This we shall do in the next
section with help of shearing transformations.

7 Shearing Transformations

In the following we have to investigate formal systems (1.1) wlithp(z) < ¢, whose
leading termA, only has one eigenvalue, so that the splitting lemma does not apply.
Without loss of generality we may assurdg to be in Jordan canonical form, since
otherwise we can apply a constant transformation. According to our normalizing as-
sumption we have thai, is not equal to a multiple of the unit matrix, hence we may
assume that

Ay = A + Ny, Ny=N®...&N, #0, IeC, peN, (7.1)

with nilpotent Jordan block$/; of dimensionsi;, which we assume to be ordered so
thatd, > ... > d, > 1. The treatment of these cases shall be completely analogous
to the case of differential equations studied in [2]); in particular we shall use the same
order relation for nilpotent matrices introduced there:

(Order relation for nilpotent matrices) Given any two nilpotent matrices
N4, Ng € C™4, we say thatVy is superior toN, if for somen > 1 we
have rankNV;' = rank N for1 <m <n — 1, and rankN; < rank Ng.

Note that this indeed defines a (partial) order relation on the sét<ofl nilpotent
matrices, with the nilpotent Jordan block, i. e., the matrix with ones above the diagonal
and zeros everywhere else, being a maximal element. The strategy that we shall follow
is to find transformations that will produce a transformed equation with superior nilpo-
tent matrix Nz, and in order to achieve this goal, we shall first arrange finitely many
coefficients4,, ... A,, to have a special form. To do so, it shall be convenient to block
both the transformation as well as the two systems in the block structure induééd by
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Lemma 7.1. Let a formal syster(il.1) with leading term as irff7.1) be given. Then for
everyn, € N there exists a terminating-analytic transformatior’(z) = I + [T};(z)],
blocked in the block structure @f 4, such that the coefficient matrix of the transformed
system has the forf(z) = p(z'/9)1 4+ A, + [By;(2)], with

ng )
no = S B = S
n=1 n=1

and so that forl < n < n, the coefficients3("?)
1. have all zero columns except for the first one in casei < j < p,
2. have all zero rows except for the last one incase j < i < p.
Furthermore the transformatiofi(z) is unique if we require fot < n < n, that
1. all 7\ have vanishing last column in case< i < j < y,
2. all 7" have vanishing first row in case< j < i < p.

Proof. Insertion into (3.2) implies the following recursion formula for the coefficients
of the blocks ofA(z), B(z),T'(2):

TYIN; — NT(D = —BW 1 RUD - n>1, 1<i,j<u, (7.2)

where R() only involves blocks off},,, B,, with m < n. Forn < n, Lemma 4.2
implies existence of a unique matrB{”) with nonzero entries in the first column (resp.
last row), such that (7.2) possesses a soIUﬂﬁﬁ. This solution is unique if we require

its last column (resp. first row) to vanish. Which case applies depends upon the position
of the block. In case > ny we havel) = 0 and choosé3”) so that (7.2) holds. [J

Remark7.2 We say that (1.1) with4, as in (7.1),x > 1, is normalized ugo ny, if all
coefficientsASfj), for 1 < n < ng, have nonzero entries only in the first column resp.
last row (in case < jresp.: > 7). If (1.1) is normalized up ta,, and in addition
all A% with i # j vanish forl < n < n,, then we say that (1.1) ieduced upo

no. We mention briefly that a system (1.1) normalized upd@an be normalized up to
ng > ng using a transformatiof'( z) with coefficientsT;,, = 0 for 1 < n < ny; therefore
the corresponding coefficients, remain unchanged.

Next, we will apply shearing transformations for systems (1.1) normalized up to
someny in order to get a transformed system with leading tdsgn= \I + Nz and
superiorNg.
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Proposition 7.3. For somen, € N, let (1.1) be a formal system with leading term
Ay = M + N4 as in(7.1), normalized up to, and assume; > 2. Assume the
existence oh; € N: 1 < n; < ng, so that

A(z) = Y Apz/e - 1<i<p—1, (7.3)

n=ni
and not all A" vanish. Then the shearing transformation
T(2) = diagly,,. .., Is, ,, 2"/ 1]

produces a system with leading tefsgp = A\l + N, with N being superior taV 4.

Proof. DefiningC; = Aﬁff), 1 <14 < u— 1 one checks easily that the stated shearing
transformation produces a transformed system

~

B(z) = p(z")I + X\ 4+ Np + Z B,z

(7.4)
n=1
with
(N, 0 - 0 Oy ]
0 NQ cee 0 02 Ci1 0o - 0
Np=|: + - : o, Gi=r (7.5)
0 0 R Nﬂ—l Cﬂ—l Ci d; 0 d;xd,,
0 0 -~ 0 N, |
By assumption we hawe; +# 0 for at least oneé and forn > 1 we find
N0 0 o™
0 N 0o o
Np=1{: : |, C"™ = NPIC 4+ CPIN,, n > 2. (7.6)
0 0 N
0 0 0 Ny

We conclude that theth column ofCi(”) equals the first column af’;, while the fol-
lowings vanish. Therefore we have rank; < rankNj;,n > 1 and equality holds iff

the columns ot*i("), for everyl < i < u — 1, are linear combinations of the columns
of N;*. Choosingn = d, we haveN, = 0 and finally rankN¢* < rankN;* because

C\™) £ 0 for at least one.

]

Due to Proposition 7.3 we are left to deal with the following two situations: Either
= Oz~ m*D/7) 1 < <y — 1, or there is a shearing transformation

we haved, ,(z)
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producing a transformed system with leading coefficiBpt= A\l + Ng and superior

Ng. Since the nilpotent matrix with rank equal #tb— 1 is a maximal element for

our order relation, it follows that after finitely many applications of Proposition 7.3,
in combination with constant transformations for the leading terms, we find that either
p=10rA;,(z) = O(z"*tV/7) 1 <i <y — 1. Much more can be said, however.

Theorem 7.4. Let (1.1) be a formal system with leading terdy, = A + N4 as in
(7.1), normalized up to, € N. Moreover, lety > 2. Then we can find a shearing
transformation producing a system with leading telin= A/ + Ng and Ng superior
to N4, except when all coefficients,, 1 < n < nq are already diagonally blocked in
the block structure ofly, i.e. when(1.1)is reduced up ta.

Proof. According to Proposition 7.3 such a shearing transformation always exists, ex-
cept when condition (7.3) is violated, meaning whenAll1 < n < ng, are lower
triangularly blocked in the block structure consisting of two diagonal blocks, with the
second one of the same sizeds Next, one may check that a shearing transformation
inverse to the one used in Proposition 7.3 shall lead to an equation with superior lead-
ing term, except when the coefficients,, 1 < n < ng, even are diagonally blocked

in the same block structure. Repeating the same argument for the first diagonal block
completes the proof. ]

According to the previous results we are left to deal with a formal system (1.1) with
degp(z) < ¢, aleading termi, as in (7.1), and such that for somg € N that we may

choose as large as we want, we have fona# 1,... ,ny, 1 <i,5 < pu
aS}l) 0 --- 0
AP =10 : AW =0 #5). (7.7)
(ivdi) P
a,, 0 0 dixd;

For such a system, with a suitable rational valsatisfyingd < » < 1/¢, we are going
to show existence of a transformation of the form

T(z) = (D(2)) diagTi(2),..., Tu(z)]
(7.8)
Ti(z) = diagl,z", 22, ... z (@]

which is a shearing transformation combined with a pole transformation, for which the
transformed systen(z) is again of the form (1.1), with new entrigsand(z), such

that either; = ¢ anddegp(z) > ¢ hold, or so that the leading teri, has several
eigenvalues. To achieve this goal, it is necessary to discuss the effect of such a trans-
formation: It is natural here to block both(z) and B(z) in the block structure defined

by Ay, and then we obtain from (3.2) thal, (=) = 2" T, ' (= + 1) Aji(2) Ti(2). Ac-
cordingly, elements in off-diagonal blocks é(z) get multiplied by factors of the form
2"T7Y) (14-1/2)"", wherev, T are nonnegative integers bounded by the number of rows,
resp. columns, of this block. Hende(r — v)| < max d;r < dfollows. Consequently,
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e if we assume that, > d + 1, which we shall do without loss of generality, then
the off-diagonal blocks of3(z) are formal power series ier /9, for § being the
least common multiple of and the denominator of

Hence, to continue our discussion, we may concentrate on a diagonal bjocR:
Within this block, the elements directly above the diagonal (which all are series begin-
ning with a constant term equal tp are multlplled by(l1+1/2)"", for0 <v <d; —1,

hence they all become power series:iit/? which again have constant term Other
elements of this block are identically zero (and remain so under this transformation), ex-
cept for some of those in the first column, which are multiplied Bywith 1 < 7 < d;.
Therefore, the corresponding element@@(z) is a formal series beginning with a
power of the formz""~"/4, for somen,; > 1, except if the series happens to vanish
completely, in which case we set; = co. We do not want to have any positive powers

of z occurring, hence we restrigtso thatr » < n.;/q. On the other hand, the idea is to
pick r, if possible, so that equality holds for at least one pairj). This implies that

e we only need to consider a finite set of rationalsincer r = n.;/q for some
7 € {1l <7 <d; <d} and somg implies that the denominator ofis bounded
by d; g, and the set of such< 1/q indeed is finite.

So letr be the maximal value from this finite set for whichr < n.;/q holds for all

1 <7 <djandallj =1,...,u. First,assume that = 1/¢: Theng = ¢, and the
transformed equation is again of the form (1.1), but with) replaced by:(p(z) + \),
hence indeed its degree has risenlbyn the second case of< 1/¢, we haver r <
n.i/qforalll <7 <d;andj = 1,..., u, with equality holding for at least one pair
(1,7). Then, the corresponding transformation leads to

~

B() = 52 + 3 2B, 79)

n=0

with ¢ as abovep(z) so thatp(z"/?) = 2" (p(z"/?) + \), andBy = By, @ ... @ B,
with at least one blockg,; being of the form

By = N; + Cj,

with a nonzero matrixC; whose entries vanish except for some in the first column.
Sincer < 1/q¢, we find that the entry in positiof1, 1) of C; is equal to zero, so that for
C; to be different from the zero matrix we necessarily hdye> 2. Moreover,B) is
a companion matrix and therefore not nilpotent (siage# 0). However, the trace of
B, vanishes, and thuB, has more than one eigenvalue.

We summarize the result of the foregoing discussion as follows.

Theorem 7.5. Let a systenfl.1)with deg p(z) < ¢q and a leading termi, as in(7.1)be
given, and assume théf.7) holds forng > d + 1. Then there exists a transformation
of type(7.8)which produces a transformed matiiX =) being as follows:
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e Ifr = 1/q,thenB(z) is as in(1.1), with the same value gfout withp(z) replaced
by a polynomial of higher degree.

e If 0 < r < 1/q, thenB(z) is as in(1.1), but withq replaced by a larger value
g, with p(z) replaced by a different polynomial z), and the constant terns,
having more than one eigenvalue.

In particular, observe that in the first one of the two cases, we can again apply the
results of this section until either we end with a system as in the second case, or one
with a polynomial of degree equal to

As shall be explained in more detail in the following section, the results of this,
together with those of the preceding sections, enable us to show existence of a formal
fundamental solution of any linear system of difference equations, and at the same time
allow for its computation in an algorithmic manner.

8 Summary

Summing up the results we have obtained in this article, we come to the following
conclusion.

Theorem 8.1 (Main Result). Every formal system of linear difference equations of
the form(3.1) possesses a formal fundamental solution of the f(#r), that can be
computed by the following algorithmic procedure:

(a) Determine the maximal number of leading coefficient$§3ii1) that are scalar
multiples of the unit matrix, and apply a pole transformation to put the coefficient
matrix into the form(1.1).

(b) If the system is as ifl.1), with deg p(z) = ¢, refer toProposition 5.10 compute
the formal fundamental solution. Note that this in particular covers the case of
dimensiond = 1.

(c) Ifthe systemis as ifl.1), withdeg p(z) < g and A, having more than one eigen-
value, applyTheorem 6.20 compute a formally-meromorphic transformation
to obtain a coefficient matrix that is the direct sum of several smaller matrices
that then can be treated separately.

(d) If the system is as iflL.1), with deg p(z) < ¢ and A, having only one eigenvalue,
apply the results of the previous section to produce a new system that either is as
in case(b), or as in cas€c).

In conclusion we wish to say that the computation of a formal fundamental solution
for difference equations can be done in the same fashion as for differential equations.
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What has not been discussed here is the problem of summation of the formal power
series occurring in Theorem 6.2. However, observe that on one hand existing results on
(nonlinear) systems of difference equations may be applied to see how these series can
be summed, and when one meets the phenomenon oflleveDn the other hand, it is

very likely that there are more direct ways of examining this question for the relatively
easy situation of Theorem 6.2, or the even easier one of Lemma 6.1, but this is not done
here.
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