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Abstract

Let T be a time scale such that 0, T ∈ T. In this paper, we consider the
nonlinear second-order three-point boundary value problem

u∆∇(t) + q(t)f(t, u(t), u∆(t)) = 0, t ∈ (0, T )T

βu(0)− γu∆(0) = 0, αu(η) = u(T ),

where β, γ ≥ 0, β + γ > 0, η ∈ (0, ρ(T ))T, 0 < α < T/η, and d = β(T −
αη) + γ(1 − α) > 0. By using a fixed point theorem due to Avery and Peterson,
sufficient conditions are obtained for the existence of three positive solutions of
the above problem. The interesting point is the nonlinear term f which is involved
with the first order derivative explicitly.

AMS Subject Classifications: 34B15, 39A10.
Keywords: Positive solution, fixed point theorem, time scales.

1 Introduction
Going back to its founder Stefan Hilger (1988), the study of dynamic equations on time
scales is a fairly new area of mathematics. Motivating the subject is the notion that
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dynamic equations on time scales can build bridges between differential equations and
difference equations. Now, the study of time scales theory has led to many important
applications, for example, in the study of insect population models, neural networks,
heat transfer, quantum mechanics, epidemic, crop harvest and stock market [3, 5, 6, 8].
Atici et al present a dynamic optimization problem from economics [3], by constructing
a time scale model, they told us time scale calculus could allow exploration of a variety
of situations in economics.

Very recently, the existence problems of positive solutions for three-point boundary
value problems, especially on time scales, have attracted many authors’ attention and
concern [1, 2, 5–7, 9–14]. But the nonlinear term f is not involved with the first-order
delta derivative. Many difficulties occur when the nonlinear term f is involved with the
first-order delta derivative.

In [11], Sun and Li considered the existence of positive solution of the problem

u∆∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T )T,

βu(0)− γu∆(0) = 0, αu(η) = u(T )

by using fixed point theorem in cones. The authors obtained the existence of at least
one, two and three positive solutions of the above problems.

In [7], by a new fixed point theorem, Guo and Ge gave sufficient conditions for the
existence of at least one solution to the three-point boundary value problem

u′′(t) + f(t, u, u′) = 0, 0 < t < 1,

u(0) = 0, u(1) = αu(η).

Motivated by those works, in this paper we study the existence of multiple positive
solutions for the second-order nonlinear three-point dynamic equation on time scales

u∆∇(t) + q(t)f(t, u(t), u∆(t)) = 0, t ∈ (0, T )T, (1.1)

βu(0)− γu∆(0) = 0, αu(η) = u(T ), (1.2)

where β, γ ≥ 0, β + γ > 0, η ∈ (0, ρ(T ))T, 0 < α < T/η, and d = β(T − αη) +
γ(1− α) > 0. We assume a : [0, T ]T → [0,∞) is ld-continuous, with a (t0) > 0 for at
least one t0 ∈ (η, T )T ; f : [0, T ]T × [0,∞) × R → [0,∞) is continuous. We establish
the existence of at least three positive solutions for boundary value problem (1.1) and
(1.2). To our best knowledge, no work has been done for (1.1) and (1.2) on time scales
by using the fixed point theorem of Avery and Peterson.

2 Preliminaries
In a cone P , let φ and θ be nonnegative continuous convex functionals, ϕ a nonnegative
continuous concave functional and ψ a nonnegative continuous functional. Then for
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positive real numbers m1, m2, m3, m4, we define the following convex sets:

P (φ,m4) = {u ∈ P |φ(u) < m4},

P (φ, ϕ,m2,m4) = {u ∈ P |m2 ≤ ϕ(u), φ(u) ≤ m4},

P (φ, θ, ϕ,m2,m3,m4) = {u ∈ P |m2 ≤ ϕ(u), θ(u) ≤ m3, φ(u) ≤ m4},

and a closed set

R(φ, ψ,m1,m4) = {u ∈ P |m1 ≤ ψ(u), φ(u) ≤ m4}.

Lemma 2.1 (see [4]). Let P be a cone in a real Banach space E. Let θ and φ be non-
negative continuous convex functionals, ϕ a nonnegative continuous concave functional
and ψ a nonnegative continuous functional satisfying ψ(λu) ≤ λψ(u) for 0 ≤ λ ≤ 1,
such that for some positive numbers M and m4,

ψ(u) ≤ ψ(u), ‖u‖ ≤Mφ(u)

for all u ∈ P (φ,m4). Suppose that

A : P (φ,m4) → P (φ,m4)

is completely continuous and there exist positive numbersm1,m2 andm3 withm1 < m2

such that

(S1) {u ∈ P (φ, θ, ϕ,m2,m3,m4)|ϕ(u) > m2} 6= ∅, and ϕ(Au) > m2 for u ∈
P (φ, θ, ϕ,m2,m3,m4);

(S2) ϕ(Au) > m2 for u ∈ P (φ, ϕ,m2,m4) with θ(Au) > m3;

(S3) 0 /∈ R(φ, ψ,m1,m4) and ψ(Au) < m1 for u ∈ P (φ, ψ,m1,m4) with ψ(u) = m1.

Then A has at least three fixed points u1, u2, u3 ∈ P (φ,m4), such that

φ(ui) ≤ m4 for i = 1, 2, 3; m2 < ϕ(u1);

m1 < ψ(u2) with ϕ(u2) < m2; ψ(u3) < m1.

3 Main Results
Now we define the real Banach space E = C∆([0, T ]T) as the set of all ∆-differentiable
functions with continuous ∆-derivative on [0, T ]T with the norm

‖u‖ = max{‖u‖0, ‖u∆‖1}, u ∈ E,
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where

‖u‖0 := sup{|u(t)| : t ∈ [0, T ]T}, ‖u∆‖1 := sup{|u∆(t)| : t ∈ [0, T ]Tκ}.

We define the cone P ⊂ E by

P = {u ∈ E : u(t) is nonnegative and concave on [0, T ]T,

βu(0)− γu∆(0) = 0, αu(η) = u(T )
}
.

The following lemma will play an important role in the proof of our main results.

Lemma 3.1. For u ∈ P , there exists a constant M > 0 such that

max
t∈[0,T ]T

|u(t)| ≤M max
t∈[0,T ]Tκ

|u∆(t)|.

Proof. We first consider the case β > 0. In this case, by the concavity of u, we have

u(t)− u(0) ≤ tu∆(0) ≤ T max
t∈[0,T ]Tκ

|u∆(t)|.

From the boundary condition βu(0)− γu∆(0) = 0, we know u(0) =
γ

β
u∆(0), thus

max
t∈[0,T ]T

|u(t)| ≤ γ

β
u∆(0) + T max

t∈[0,T ]Tκ

|u∆(t)| ≤
(
γ

β
+ T

)
max

t∈[0,T ]Tκ

|u∆(t)|.

Next we consider the case β = 0. First, by

u(t) = u(T )−
∫ T

t

u∆(s)∆s,

we have
max

t∈[0,T ]T
|u(t)| ≤ u(T ) + T max

t∈[0,T ]Tκ

|u∆(t)|. (3.1)

From the boundary condition αu(η) = u(T ) and d = γ(1− α) > 0, we get

(1− α)u(T ) = αu(η)− αu(T ) ≤ α(T − η)| max
t∈[0,T ]Tκ

|u∆(t)|. (3.2)

In view of (3.1) and (3.2), we obtain

max
t∈[0,T ]T

|u(t)| ≤
(
α(T − η)

1− α
+ T

)
max

t∈[0,T ]Tκ

|u∆(t)| =
(
T − αη

1− α

)
max

t∈[0,T ]Tκ

|u∆(t)|.

The proof is complete.
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For the sake of applying Lemma 2.1, we let the nonnegative continuous concave
functional ϕ, the nonnegative continuous convex functional θ, φ, and the nonnegative
continuous functional ψ be defined on the cone P by

ϕ(u) = min
t∈[η,T ]T

|u(t)|, φ(u) = max
t∈[0,T ]Tκ

|u∆(t)|, ψ(u) = θ(u) = max
t∈[0,T ]T

|u(t)|, u ∈ P.

For convenience, we introduce the following notations.

S = max

{
β

d

∫ T

0

(T − s) q(s)∇s,
∫ T

0

q(s)∇s+
αβ

d

∫ η

0

(η − s) q(s)∇s
}
,

L =
min{1, a}(βη + γ)

d

∫ T

η

(T − s) q(s)∇s,

N =
βT + γ

d

∫ T

0

(T − s) q(s)∇s,

r = min

{
α(T − η)

T − αη
,
αη

T
,
η

T

}
, a =

1

min{1, α}(T − η)(βηT + γη)
,

b = daT 2 + a
[
β(T 2 − αη2) + γ(1− α)σ(0)

]
T

+a
[
γ(β(T 2 − αη2)− γ(T − αη)σ(0)

]
+

1

r
,

c = d(T + σ(T )) + β(T 2 − αη2) + γ(1− α)σ(0).

Theorem 3.2. If there exist positive numbers m1,m2 and m4 with m1 < m2 ≤ m4/c
such that

(C1) f(t, u, v) ≤ m4/S for (t, u, v) ∈ [0, T ]T × [0,Mm4]× [−m4,m4];

(C2) f(t, u, v) > m2/L for (t, u, v) ∈ [η, T ]T × [m2, bm2]× [−m4,m4];

(C3) f(t, u, v) < m1/N for (t, u, v) ∈ [0, T ]T × [0,m1]× [−m4,m4],

then the problem (1.1) and (1.2) has at least three positive solutions u1, u2, u3 satisfying

max
t∈[0,T ]Tκ

|u∆
i (t)| ≤ m4 for i = 1, 2, 3;

m2 < min
t∈[η,T ]T

u1(t); m1 < max
t∈[0,T ]T

u2(t), with min
t∈[η,T ]T

u2(t) < m2;

max
t∈[0,T ]T

u3(t) < m1.
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Proof. Define an operator A : P → E by

Au (t) = −
∫ t

0

(t− s) q(s)f(s, u(s), u∆(s))∇s

+
βt+ γ

d

∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s

−α(βt+ γ)

d

∫ η

0

(η − s) q(s)f(s, u(s), u∆(s))∇s.

From [11, Lemma 2.2], we have Au ∈ P . By a standard argument, it is easy to see that
A : P → P is completely continuous. We now show that all the conditions of Lemma
2.1 are satisfied.

Firstly, we show that if (C1) is satisfied, then

A : P (φ,m4) → P (φ,m4). (3.3)

For u ∈ P (φ,m4), we have φ(u) = max
t∈[0,T ]Tκ

|u∆(t)| ≤ m4. With Lemma 3.1, we have

max
t∈[0,T ]T

|u(t)| ≤ Mm4. Then condition (C1) implies that f(t, u(t), u∆(t)) ≤ m4/S for

t ∈ [0, T ]T. On the other hand, for u ∈ P , we have Au ∈ P . Then Tu is concave on
[0, T ]T, so we have

γ(Au) = max
t∈[0,T ]Tκ

|(Au)∆(t)|

= max
{
|(Au)∆(0)|, |(Au)∆(T )|

}
= max

{∣∣∣∣βd
∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s

−αβ
d

∫ η

0

(η − s) q(s)f(s, u(s), u∆(s))∇s
∣∣∣∣ ,∣∣∣∣−∫ T

0

q(s)f(s, u(s), u∆(s))∇s+
β

d

∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s

−αβ
d

∫ η

0

(η − s) q(s)f(s, u(s), u∆(s))∇s
∣∣∣∣}

≤ max

{
β

d

∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s,∫ T

0

q(s)f(s, u(s), u∆(s))∇s+
αβ

d

∫ η

0

(η − s) q(s)f(s, u(s), u∆(s))∇s
}

≤ m4

S
max

{
β

d

∫ T

0

(T − s) q(s)∇s,
∫ T

0

q(s)∇s+
αβ

d

∫ η

0

(η − s) q(s)∇s
}

= m4.

Therefore, (3.3) holds.
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We choose

u(t) = −dam2t
2 + a

[
β(T 2 − αη2) + γ(1− α)σ(0)

]
m2t

+a
[
γ(T 2 − αη2)− γ(T − αη)σ(0)

]
m2 for t ∈ [0, T ]T.

It is easy to see that βu(0) − γu∆(0) = 0, αu(η) = u(T ), u(t) ≥ 0 and is concave on
[0, T ]T, so u ∈ P . Again

ϕ(u) = min
t∈[η,T ]T

|u(t)| = min{1, α}(T − η)(βηT + γT + γη − γσ(0))am2 > m2,

θ(u) = max
t∈[0,T ]T

|u(t)| ≤ dam2T
2 + a

[
β(T 2 − αη2) + γ(1− α)σ(0)

]
m2T

+a
[
γ(T 2 − αη2)− γ(T − αη)σ(0)

]
m2 = bm2,

φ(u) ≤
[
d(T + σ(T )) + β(T 2 − αη2) + γ(1− α)σ(0)

]
m2 = cm2 ≤ m4.

Hence, u ∈ P (φ, θ, ϕ,m2, bm2,m4) and

{u ∈ P (φ, θ, ϕ,m2, bm2,m4)|ϕ(u) > m2} 6= ∅.

For u ∈ P (φ, θ, ϕ,m2, bm2,m4), we have m2 ≤ u(t) ≤ bm2 and |u∆(t)| ≤ m4 for
t ∈ [η, T ]T. Hence by condition (C2), one has that f(t, u(t), u∆(t)) > m2/L for t ∈
[η, T ]T. So by the definition of the functional ϕ, we see that

ϕ(Au) = min
t∈[η,T ]T

|Au(t)| = min{Au(η), Au(T )}

= min{1, α}
(
βη + γ

d

∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s

−βT + γ

d

∫ η

0

(η − s) q(s)f(s, u(s), u∆(s))∇s
)

> min{1, α}
(
βη + γ

d

∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s

−βT + γ

d

∫ η

0

(η − s) q(s)f(s, u(s), u∆(s))∇s
)

−T − η

d

∫ η

0

(βs+ γ)q(s)f(s, u(s), u∆(s))∇s

= min{1, α}
(
βη + γ

d

∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s

−βη + γ

d

∫ η

0

(T − s) q(s)f(s, u(s), u∆(s))∇s
)

=
min{1, a}(βη + γ)

d

∫ T

η

(T − s) q(s)f(s, u(s), u∆(s))∇s

>
min{1, a}(βη + γ)

d

∫ T

η

(T − s) q(s)
m2

L
∇s = m2.
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Therefore, we get ϕ(Au) > m2 for u ∈ P (φ, θ, ϕ,m2, bm2,m4), and condition (S1) in
Lemma 2.1 is satisfied.

Next, it follows from [11, Lemma 2.4] that for any u ∈ P (φ, ϕ,m2,m4) with
θ(Au) > bm2, we have

ϕ(Au) = min
t∈[η,T ]T

|A(u)| ≥ r max
t∈[0,T ]T

A(u) ≥ rθ(Au) > m2.

Thus, condition (S2) of Lemma 2.1 is satisfied.
Finally, we assert that (S3) in Lemma 2.1 also holds. Clearly, as ψ(0) = 0 < m1, so

0 /∈ R(φ, ψ,m1,m4). Assume that u ∈ P (φ, ψ,m1,m4) with ψ(u) = m1. Then by the
condition (C3), we obtain that

ψ(Au) = max
t∈[0,T ]T

|(Au)(t)|

= max

∣∣∣∣−∫ t

0

(t− s) q(s)f(s, u(s), u∆(s))∇s

+
βt+ γ

d

∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s

−α(βt+ γ)

d

∫ η

0

(η − s) q(s)f(s, u(s), u∆(s))∇s
∣∣∣∣

≤ max
t∈[0,T ]T

∣∣∣∣βt+ γ

d

∫ T

0

(T − s) q(s)f(s, u(s), u∆(s))∇s
∣∣∣∣

<
βT + γ

d

∫ T

0

(T − s) q(s)
m1

N
∇s = m1.

Therefore, an application of Lemma 2.1 implies that the BVP (1.1) and (1.2) has at least
three positive solutions u1, u2 and u3 such that

max
t∈[0,T ]Tκ

|u∆
i (t)| ≤ m4 for i = 1, 2, 3; m2 < min

t∈[η,T ]T
u1(t);

m1 < max
t∈[0,T ]T

u2(t) with min
t∈[η,T ]T

u2(t) < m2; max
t∈[0,T ]T

u3(t) < m1.

The proof is complete.

4 Example

Let T =

[
0,

1

2

]
∪

{
1

2
+

1

2n
, n = 1, 2, 3 · · ·

}
, β = 1, γ =

1

2
, α =

1

2
, T = 1, η =

1

2
.

Now we consider the BVP

u∆∇(t) + f(t, u(t), u∆(t)) = 0, t ∈ (0, 1)T, (4.1)
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u(0)− 1

2
u∆(0) = 0,

1

2
u

(
1

2

)
= u(1), (4.2)

where

f(t, u, v) =


1

100
t+ 13u3 +

sin v

100
, u ≤ 12,

1

100
t+ 22464 +

sin v

100
, u > 12.

It is easy to see by calculating that d = 1, M = 2, r =
1

4
and

S =

∫ 1

0

∇s+
1

2

∫ 1
2

0

(
1

2
− s

)
∇s =

17

16
,

L =
min{1, 1

2
}(1

2
+ 1

2
)

1
2

∫ 1

1
2

(1− s)∇s =
1

12
,

N =
1
2

+ 1
2

1
2

∫ 1

0

(1− s)∇s =
11

12
.

If we choose m1 =
1

4
, m2 = 1, m4 = 105, then f(t, u, v) satisfies

(1) f(t, u, v) <
16

17
× 105 =

m4

S
for

(t, u, v) ∈ [0, 1]T × [0, 2× 105]× [−105, 105];

(2) f(t, u, v) ≥ 1

200
+ 13− 1

100
> 12 =

m2

L
for

(t, u, v) ∈
[
1

2
, 1

]
T
×

[
1,

49

3

]
× [−105, 105];

(3) f(t, u, v) ≤ 1

100
+

13

64
+

1

100
<

3

11
=
m1

N
for

(t, u, v) ∈ [0, 1]T ×
[
0,

1

4

]
× [−105, 105].

Then all assumptions of Theorem 3.2 hold. Thus by Theorem 3.2, the problem (4.1)
and (4.2) has at least three positive solutions u1, u2 and u3 such that

max
t∈[0,1]Tκ

|u∆
i (t)| ≤ 105 for i = 1, 2, 3, 1 < min

t∈[ 1
2
,1]T

u1(t);

1

2
< max

t∈[0,1]T
u2(t) with min

t∈[ 1
2
,1]T

u2(t) < 1; max
t∈[0,1]T

u3(t) <
1

2
.
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