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Abstract

This paper presents some solvability criteria for the second order nonlinear
equation

(@)’ (1) — at)u(t) = f (t/o U(S)ds,U'(f)> , t€(0,1),

with one of the following boundary conditions

au(0) — bp(0)u'(0) =0, cu(1) +dp(1)u'(1) = pru(é),
au(0) — bp(0)u'(0) = pou(§),  cu(l) +dp(1)u'(1) =0,
au(0) —bp(0)u'(0) = pau(€),  cu(l) +dp(1)u'(1) = pzu(f).

Under the appropriate nonlinear restriction of nonlinearity, solvability criteria for
generalized Sturm—Liouville boundary value problems at resonance are established
by means of coincidence degree theory of Mawhin type.

AMS Subject Classifications:34B15.
Keywords: Sturm-Liouville problem, Fredholm mapping, coincidence degree.

1 Introduction

Consider the second order nonlinear equation

(p)u'(t))" = q()u(t) = f (t/o U(S)dSaU'(t)) , e (0,1), (1.1)
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subject to one of the following boundary conditions

au(0) — bp(0)u'(0) =0, cu(l) +dp(1)u'(1) = Z bu(&;), (1.2)
au(0) — bp(0 a;u(& u(1) 4+ dp(1)u'(1) = 0, (1.3)
au(0) — bp(0)u/(0) = 2 au(€),  cu(1) + dp(1 Z bu(€).  (1.4)

=1

It is known [8] that the solutions of (1.1) with the-point boundary conditions (1.2),
(1.3) and (1.4) can be obtained via existence subject to the respective three-point bound-
ary conditions

au(0) — bp(0)u'(0) = 0, cu(1) + dp(L)u'(1) = pmu(§), (1.5)
au(0) — bp(0)u'(0) = pou ( £, cu(l) +dp(1)u'(1) =0, (1.6)
au(0) = bp(0)u'(0) = u(§), cu(l) + dp(1)u'(1) = pau(§). (1.7)

In [6], Gupta studied some existence results for solutions of the boundary value problem

2"(t) = f(t,x(t),2'(1) +e(t), te(0,1),
z(0) =0, 2'(1)= Z a;x' (&)

m—2
with Z a; = 1, wheref(t, z, y) satisfies Cara#odory’s conditions ané(¢) is a func-

=1
tionin L'[0, 1]. Feng and Webb [4] considered the solvability of second order differen-
tial equations

u'(t) = f(t,u(t),u'(t) +e(t), te(0,1) (1.8)

with the three-point boundary conditions
W(0)=0, u(l)=auly), (1.9)
u(0) =0, wu(l) = au(n) (1.10)

whena = 1 for (1.8)/(1.9) anch = % for (1.8)/(1.10) are at resonance.

There has been increasing interest in questions of the solvability of boundary value
problems for ordinary differential equations at resonance. There were many excellent
results on the existence of solutions for two-point or multipoint boundary value prob-
lems, for which the nonlinearity is only dependent of the first-order derivative. The
main techniques used are the Leray—Schauder continuation theorem and the coincidence
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degree theory, see [3-5,7,9, 10, 13, 14] and references therein. The second-order non-
linear equation, for which the nonlinearity is involved with integration and first-order
derivative, is a special case of an integro-differential equation. It is known that integro-
differential equations arise from many fields of science, for example in applied areas
which include engineering, mechanics, financial mathematics, etc. [1, 2, 11].

For the equation (1.1), with the generalized Sturm-Liouville boundary conditions,
nothing is known regarding the solvability of this class of boundary value problems. So,
in this paper, using coincidence degree theory of Mawhin type [12], we establish some
solvability criteria for boundary value problem at resonance (1.1)/(1.5), (1.1)/(1.6) and
(1.1)/(1.7), respectively. The problem (1.1)/(1.5) happens to be at resonance in the sense
that the associated linear homogeneous boundary value problem

(p()u'(t)) =0, te(0,1),
au(0) = bp(0)u'(0) = 0, cu(1) + dp(1)u'(1) = pu(§)

| - . ,
hasu(t) = a/ ﬂdT + b as a nontrivial solution, while we assume that
o P\T

‘1 !
,ul(a/o md7+b):ad+bc+ac/o ZTT)dT, €€ (0,1).

This result implies thag(t)u(t) + f (t, /tu(s)ds,u’(t)) € L'[0,1] and
0

c/ol]%T)/OTZ(SMSCZT—Ml/{f}%/OTz(s)dsdT+d/Olz(s)ds:o.

| L

If 11q (a/ p—( )dT + b) # ad+bc+ac/ p—( )dT, then this problem has(t) = 0 as
o P\T 0 T

its only solution. So we say that the boundary value problem (1.1)/(1.5) is at resonance

when
¢ |
1] (a/ —d7'+b> —ad+bc+ac/ —drT.
o p(7) o p(7)

The cases such that the linear mapping = (p(¢)u/(t))" is noninvertible are called
resonance cases. Otherwise, they are called nonresonance cases.
Similarly, we can obtain that the problem (1.1)/(1.6) is at resonance when

S| | o
ug(—c/ —dT+C/ —dT+d):ad+bc+ac/ ——dr,
o p(7) o p(7) o p(7)
and the problem (1.1)/(1.7) is at resonance when
| | 1
u1<c/ —dT—C/ —dT—i—d)—i—,ug(a/ —d7'+b)
o p(7) o p(T) o p(7)

1
1
:ad—l—bc—l—ac/ ——dr.
0 p(T)
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Throughout this paper, we use the following hypotheses:
(Hy) a,b,c,d € R\ {0}, u; # 0 (i = 1,2), and¢ € (0,1) are given constants;
(H2) p € C'([0,1],(0,00)), ¢ € L([0, 1], R), f € C([0, 1] x R*, R);

(Hs) 1—(2C+[b/al)llglly > 0,1 = (2¢+ [b/al) llqll, — (2¢ + [b/al) [lafl; > 0, where

1
¢ tiﬁ% p(t) € (0,c0).

The rest of the paper is organized as follows: Section 2 gathers together the defini-
tions of Fredholm mapping of index zero ahecompletely continuity, which will be
useful in proving the main results. Using coincidence degree theory of Mawhin type,
solvability criteria for the generalized Sturm—Liouville boundary value problems at res-
onance (1.1)/(1.5), (1.1)/(1.6) and (1.1)/(1.7) are established in Section 3 and Section 4,
respectively.

2 Preliminaries

Definition 2.1. Let X andZ be normed spaces. A linear mappibhg DomL ¢ X — Z
is called a Fredholm mapping if the following two conditions hold:

(i) ker L has a finite dimension,
(i) ImL is closed and has a finite codimension.

If Lis a Fredholm mapping, its Fredholm index is the integdll, = dim ker L —
codimImZ. In this paper, we are interested in a Fredholm mapping of index zero, that
is, dim ker L = codimImZ. From Definition 2.1, it follows that there exist continuous
projectionsP : X — X and(@ : Z — Z such thatimP = ker L, ker Q = ImL,

X =ker L @ ker P, Z = ImL & Im@), and that the mapping

LDomLﬂkerP : DomL Nker P — ImL

is invertible. We denote the inverse bf|pomraker p DY Kp : ImL — DomZL N ker P.
The generalized inverse df denoted byKp : Z — DomlL N ker P is defined by

KP,Q : Kp([— Q)

Definition 2.2. Let L : DomL C X — Z be a Fredholm mapping, Iéf be a metric
space, andV : £ — Z be a mapping.V is calledL-compact on¥ if QN : E — Z
andKpoN : E — X are compact o. In addition, we say thaV is L-completely
continuous if it isL-compact on every bounddd C X.

Theorem 2.3 (see [12])Let(2 C X be open and bounded, be a Fredholm mapping
of index zero, and leV be L-compact orf2. Assume that the following conditions are
satisfied:
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(i) Lu # ANu for every(u, \) € ((DomL \ ker L) N 0£2) x (0, 1);
(i) Nu ¢ ImL for everyu € ker L N 09Y;

(iii) deg(QN |xerLron, 2 Nker L,0) # 0 with Q : Z — Z a continuous projection
such thatker Q = ImL.

Then the equatiofiu = Nu has at least one solution DomZ N €.

3 Existence Results for(1.1)Y(1.5)
Let X = C'[0, 1] with the norm

[ull = max {{lullo, 4]}, where |IUI|oo=tSI[éri] u(®)],
€|0,

1
andZ = L'[0,1] with the norm||u||, = / |u(t)| dt. We use the Sobolev space
0
W0, 1)
={u:[0,1] - R : u,u are absolutely continuous ¢0 1], v” € L'[0,1]} .
Define L to be the linear mapping frofdom L C X to Z with

DomL = {ue W?>(0,1): au(0) — bp(0)u'(0) =0,
cu(l) + dp(1)u'(1) = pu(§) € €(0,1)

by
Lu(t) = (p(t)u'(t))’, w € DomlL,

and define the mappiny : X — Z by

Nu(t) = f (t, /Otu(s)ds,u’(t)) +q(t)u(t), telo,1].

For convenience, we set

Lo ¢ o7
Alzc/ —dr—ul/ ——dr +d # 0.
o p(7) o p(7)

Lemma 3.1. The mappind. : DomL C X — Z is a Fredholm mapping of index zero

when
| |
18] (a/ —d7'+b> :ad+bc+ac/ —dT.
o p(7) o p(7)
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Furthermore, the linear continuous projectioh: Z — Z can be defined by

Qs = Ail (C/OII%ATZ(S)deT—m /ng%/oTz(s)dsdT—i—d/olz(s)ds),

the mappingKp : ImL — DomZ N ker P can be written as

Kpz(t) = /Ot Z% /OT z(s)dsdr,

1Kpz|. < Cllzll, for z € ImL.

and

Proof. It is clear thatker L = R. Letu € DomL, andz € Z and consider the linear
equation
(p(t)u'(t))" = 2(t), te€(0,1),
Taking the Cauchy integral fromnto ¢, we obtain
0)u'(0) 1 [
u'(t) = il + / z(T)dr
D=0 ek

Again taking the Cauchy integral fromto ¢, we get

u(t) = u(0) + p(0)u (0) /0 Ly /O ]% /0 C(r)drds, (3.1)

p(T)
which satisfies (1.5) if and only if

0/012%/072(5)@617—#1 /OEZ%T)/OTZ(S)dsde/Olz(S)dS:o. (3.2)

On the other hand, if (3.2) holds for some= 7, then we take: € DomL as given by
(3.1), (p(t)u'(t))" = 2(t) for t € (0,1), and (1.5) is satisfied. So

ImL = {zeLl[o,u: 0/01]%/072(5)@(%—Ml/jz%[z(s)dsdr

1
+d/ z(s)ds = 0} .
0
Further, we define the mapping: 7 — Z by

Qz = Ail (c/ol I%T) /OT z(s)dsdT — /05 ]% /OT z(s)dsdr + d/ol z(s)ds)

for z € Z, and it is easy to check th& : Z — Z is a linear continuous projection.
Furthermore]lmL = ker Q. Letz = (z — Qz) + Qz. Thenz — Qz € ker Q) = ImL



Generalized Sturm—Liouville BVP at Resonance 139

and@z € Im@, soZ = ImL + Im@Q. If z € ImL N Im@, thenz(t) = 0. Hence
Z = ImL & Im(. Fromker L = R, we obtain that

IndL = dimker L. — codimImZ = dim ker L. — dim Im@ = 0.
ThusL is a Fredholm mapping of index zero. TaRe X — X as
1

(Pu)(t) = u(0) + p(0)u'(0) / e

<T>d7', t € (0,1)

and letu € X be in the form

u(t) = (u(O) + p(0)/(0) /0 t LdT) + (u(t) — u(0) — p(0)u(0) /0 t Lw) |

p(7) p(7)

Obviously,ImP = ker L and X = ker L ¢ ker P. Then the generalized inversés :
ImL — DomlL Nker P is given by

Kpz(t) = /O t Z% /0 " 2(s)dsdr

(Kp=(t)) = L) /0 ~(r)dr.

p(t

It follows that

We have
t 1 T t 1 T
|Kpz|l, = sup /—/ z(s)dsdr| < sup/— / z(s)ds|dr
tef0,1] |Jo p(7) Jo te[0,1] Jo p(7) /o
t
1
< ||z sup/—dTgC z
I ||1t€[0’1] o0 2]
and
{ L1 [ aryar| < ¢ el
Kpz :Sup—/ZTT_ zll, .
H( )OO e, P() |Jo !
Thus
[ Kpz]| < Cll=]l; - (3.3)

In fact, forz € ImL, we know

(LKp) 2(t) = (pu) (/ t o [ toyasar) ) _— (3.9)

and foru € DomZL N ker P, we also know

ol ' '(s)) = ti (1) — o T
weryu(t) = [~ [ asie = [ o) - poyuo)d

—u(t) — u(0) — p(0)e (0) /0 Z%dr.

t
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1
Then, in view ofu € DomL Nker P, Pu = u(0) + p(0)u'(0) /0 mdr =0, and thus
(KpL)u(t) = u(t). (3.5)
By (3.4) and (3.5), we obtain
Kp = (L |pomprkerp) -
The proof is complete. O

Note that

o = 4 ]
f

and

(KrVyutt) = [~ [ (s)(Vuts) — QNute)y dsar
Theorem 3.2. AssuméH;)—(Hs). Suppose that

(A;) There exists a constadt > 0 such that foru € DomL, if |«'(¢)| > M/p(t) for

all t € 0, 1], then
0 + c/(]l@f (f (s,/osu(n)dn,u’(s>> +q(s)u(s)) dsdr

i /0 % /O ' (f (s, /0 su(n)dn,u’(s)) +q(s)u(s)) dsdr
+d /0 1 ( f (3, /0 su(n)dn,u’(s)) +q(s)u(s)> ds.

(A;) There exist functions, 3,7,0 € L'[0,1] and a constant < [0, 1) such that for
all (z,y) € R* andt € [0, 1] either

|f(t 2,y < alt) =]+ B() [yl +(E) [y|" + 0(t) (3.6)

or
[f (&2, y)| < alt) |2+ B(E) [yl + () || + 6(t). (3.7)
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(As) There exists a constant > 0 such that for anw € R, if |w| > M, then either

050 (e [ [[rGsis.0) +alo)sin

p(7)
€ 1 T
—Ml/o m/o (f(s,ws,0) +wq(s))dsdr

v [ (1505.0) +a(o)ds) @9

or

0<w <c/01 L /OT(f(s,ws,O) + wq(s))dsdr

p(7)

[ L | (rs.05.0) + ntopasar

p(7)
—l—d/o (f(s,ws,0) —i—wq(s))ds). (3.9)

Then for eacly € L'[0, 1], the boundary value problefd.1)y (1.5)when

| |
1 (a/ —dT+b> :ad+bc+ac/ ——dt
o p(7) o p(7)
has at least one solution i" [0, 1] provided that

1— (2¢ + |b/al) [lall,

||a||1+||ﬂ||1< 2C—i—]b/a\

Proof. Let
Q = {u € DomL \ ker L : Lu = ANu for some\ € (0,1)}.

Foru € Qy,u ¢ ker L, andNu € ImL = ker (). Thus

0 = o[ S [N (5[ wtmana)) + atopucs) asar
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sinceQNu = 0. It follows from (A;) that there existg, € [0, 1] with |p(to)u'(to)] < M.
to
From/ (p(s)u'(s))'ds = p(to)u'(to) — p(0)u'(0), we get
0

p(0)u(0) sm%W%W+A%wW@ms
< Mt ||pY], = M+ |Lull, < M+ ||Null, . (3.10)

Also, foru € 4, observe that/ — P)u € ImKp = DomL N ker P. Then using (3.3),
we obtain

(I = Pull = [|KpL(I = P)ul| < C||L{I = P)ull; = ¢[[Lull, < C[[Nul,. (3.11)
By (3.10) and (3.11)

1Pull + |(I = P)ull < [u(0)] + C[p(0)u'(0)] + C[[Nul),

(€ + 1b/al) [p(0)u’(0)] + C [ Null,
(2C + [b/al) [|Nuly +M(C+ [b/al)

(2 + b/al) QfG, ) o )WHMMMM)+M@+MMD
@C+MMD(V(& ) N

since|jull, < [lufl,, < lull. Hence

[l

IA 1A

IN

IA

+MMMQ+M@+ww

2 + |b/al ( T (Nl >’ M (¢ + [b/al)
bl < TG o/an T, |f s. | wtoan ' T+ ojal [l
If (3.6) holds, then
" 2 + b/
S T=@c+ lb/a T,
X@Wléu@%%WMMWMﬁWﬂJM@+WM)
M (¢ + [b/al)
3.12
= (% + b/a]) [, (3.12)
that is
2+ fa) lall, | [ ¢+ b/a) 181,
R e T A A e
Wbl e bl

1—(2¢+b/al) llally 1—(2¢ + |b/al) [lqll,
M (¢ + |b/al)

1—(2¢+ [b/al) llqll,”
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t
It is easy to check th%’% u(s)ds|, [|v']| ., < |lu|. So, we have
0

/0 ' u(s)ds

IN

[l

(2€ + [b/al) [lal,
1= (2¢+ [b/al) llqlly
(2¢ + [b/al) [l

IA

f @+ ba) 18,
/ ““)ds‘ T @c+ plal) qT, 1

2¢ + |b/al

/1€ 9
T @+ ojal) lall, 1 T T2 T /e i, 1P
M (C + [b/al)
T+ ojaD Tl
that is,
t (2¢ + 1b/al) 151 ,
[ v0s| < gy Tl — 2+ oanal, |l
=@+ o/al) Tal, — (2C + ojal) o],
2 + b/l
0 3.13
T @t oja) T, — & a1 G13)
. M (C + [b/al) |
T+ [o/al) lall, — (¢ + 67a]) o
Also, by (3.12) and (3.13), we obtain
, (2 + b/al) I, .
Il < T T To7al Nally — (¢ + o/al) (T, < AT 1l
N 2¢ + |b/al 101
T @+ ol Tall, — ¢ + [o7al) (all, + 131 7l
. M (¢ + [b/al) |
T @C + ojal) Tal, — @C + o/al) (Tl 131,
Sincee € [0,1) and||a|l, + |I8]l; < L %ii'ﬁ%’ﬁ Hqul, there exists\/; > 0 such

1
that||u|| < M, for all u € Q4, and so there exists/, > 0 such that/ lu(s)|ds <

0]
M, for all uw € Q. Thereforef2; is bounded. If (3.7) holds, then similar to the above
arguments, we can derive the same conclusion. Now let

Q={uckerL: NuelImL}.
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If u € Qy, thenu(t) =e € R, t € [0,1], Nu € ImL = ker @, that is,

0= & ( / 1 = (f(s,e5,0) + eq(s)dsdr

o /ngi)/oT(f(s,es,O)+eq(s))dsdr —l—d/ol(f(s,es,O)—f-eq(s))ds)

(T
sinceQNu = 0. From (A;), we know|u|| = |e| < M. Thus(), is bounded. Define
Qy={ueckerL: —AJu+ (1 —-NQNu=0, X €[0,1]},

whereJ : ker L — ImQ is a linear isomorphism given by(k) = k for all k£ € R. If
u(t) = k, then

Ak = (1 — \)QNE

= (1 —A)Ail (c/OII%AT(f(s,ks,O) + kq(s))dsdr

— i1 /0£ ]% /OT(f(S, ks,0) + kq(s))dsdr + d/ol(f(s, ks,0) + kq(s))ds) :

If A =1, thenk = 0 and in the casa < [0, 1), if |k| > M, in view of (3.8), we have

M2 = k(1 — A)Ail <c/0 ]% /OT(f(s, ks, 0) + kq(s))dsdr

S| T 1
_M1/0 m/o (f(s,ks,0) + kq(s))dsdr + d/o (f(s,ks,0)+ kq(s))ds> <0,

which is a contradiction. If (3.9) holds, then we take
Qs={uckerL: NJu+ (1—-—NQNu=0, A €[0,1]},
where/J is as above, similar to the above argument. Thus, in either case
lul| = |k| < M forall wu € Qs,

that is,(25 is bounded.

Let Q2 be a bounded open subset¥fsuch thaty;_,Q; c Q. By using the Ascoli—
Arzela theorem, we can prove that-(I — Q)N : Q — X is compact. ThusV is
L-compact o). Finally, it only remains to verify that the condition (iii) of Theorem
2.3 is fulfilled. We define a homotopy

H(u,A) =t Ju+ (1 = N)QNu.
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According to the above argument, we have
H(u,\) #0 forue 0QNker L.
Thus, by the degree property of homotopy invariance, we obtain

deg(QNyer, 2 Nker L,0) = deg(H(-,0),2NkerL,0)
= deg(H(-,1),Q2NkerL,0)
= deg(+J,QNker L,0) # 0.

Then by Theorem 2.3,u = Nu has at least one solution bom L N Q. Therefore, the
boundary value problem (1.1)/(1.5) has a solutio®r0, 1]. O

4 Existence Results for(1.1Y(1.6), (1.1)(1.7)

In this section, we discuss existence of nontrivial solutions for (1.1)/(1.6) and (1.1)/(1.7),
respectively. By using the same arguments as in Section 3, we easily show the following
lemmas and theorems, and thus we omit their proofs. For the sake of convenience, we
set

¢ T ! T
AQ = C,ug/o de—FC(CL—Mg)/O dede(a—,ug) % 0,

& - 1
Agz(cul—aug)/o %dT—l—c(a—ul)/o de—i—d(a—ul);&O.

Problem (1.1)(1.6)

The mappingd. and NV are the same as in Section 3, and we set

DomL = {u€ W' (0,1):au(0) — bp(0)u'(0) = pou(§),
cu(1) +dp()u'(o(1)) =0, £ € (0,1)},
3

ImL = {zeLl[o,l} c,uz/o o) /T (s)dsdr
+c(a—u2)/01p(1)/OT ()dsd7+d(a—u2)/01z(s)ds—0}.

Lemma 4.1. The mappind. : DomL C X — Z is a Fredholm mapping of index zero
when

(
)

€1 L |
ug(—c/ —dT+C/ —dT+d):ad+bc+ac/ ——drT.
o p(7) o p(7) o p(7)
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Furthermore, the continuous linear projection mappig Z — Z can be defined by

Qr — Ai2 (c,ug /051%/OTZ(S)deT—i-c(a—ug)/olz%/oTz(s)dsdT
td(a — ) /0 1 z(s)ds) |

The mappingyp is the same as in Section 3.

Theorem 4.2. AssumgH;)—(H3). Suppose that the conditigi,) of Theorem 3.2 is
satisfied and also assume

(A,) There exists a constadt > 0 such that foru € DomL, if |u/(t)] > M /p(t) for
all t € [0, 1], then

0 # e [ f o (s wtnana ) + atoyuts) ) dss
rela—pa) [ 1 = (f ( / Su(n)dmu'(s)) ¥ q<s>u<s>) dsdr
vata=—p) [ (7 (s [ utminat(s) +atsputs)) ds

(As) There exists a constadtf > 0 such that for anw € R, if |w| > M, then we have
either

0 > w (cm /ng%/oT(f(s,ws,O)+wq(s))dsd7

1o g
—I—c(a—ug)/o m/ﬂ (f(s,ws,0) + wq(s))dsdr

rlla =) [ (1(s.05.0) + ()i

or else

0 < oo [ [0+ onts)isar

p(7)

+c(a — p2) /01 L /OT(f(s,ws, 0) + wq(s))dsdr

p(7)

=) [ ((6.0.0) + (5D ).
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Then for eacly € L'[0, 1], the boundary value problefd.1)y (1.6)when
| o |
1} <—c/ —d7'+c/ —dT+d) :ad+bc+ac/ ——dT
o p(7) o p(7) o p(7)
has at least one solution ifi*[0, 1] provided that

1— (2¢ + |b/al) [lall,
2¢ + [b/al

leefly + 1151, <

Problem (1.1)Y(1.7)

The mappingd. and N are the same as in Section 3, and we also set

DomL = {ueW?>(0,1): au(0) — bp(0)u'(0) = pu(é),
cu(l) +dp(1)u'(1) = ppu(§), & € (0,1)},

Iml — {z € 1Y0.1] : (epn —aug)/gl%/;z(s)dsm

0

oo ) [ = [ a)dsdr + d(a— ) [ 2(s)ds =0
| [ =i =o}

p(7)

Lemma 4.3. The mapping. : DomL C X — Z is a Fredholm mapping of index zero
when

n <c/01]%d7_c/0§2%d7+d)+u2 <a/052%d7+b)

1
1
= ad+bc+ac/ —dT.
o P(7)

Furthermore, the continuous linear projection mappig Z — Z can be defined by

Q: — Aig ((cul —aug)/j]%/OTz(s)dsdHc(a—m)/ol1%[2(3)613617
+d(a — m) /01 z(s)ds) |

The mappingyp is the same as in Section 3.

Theorem 4.4. AssumgH;)—(H3). Suppose that the conditiqi,) of Theorem 3.2 is
satisfied and also assume
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(As) There exists a constadtl > 0 such that foru € DomLZ, if |«'(¢)| > M/p(t) for
all t € [0, 1], then

0 # Gm—ana) [ [1( (s [ atmanat)) + atonucs) dsir
tea— ) /0 1 Z%T) /O ' ( f (s, /0 Su(n)dn,u'(s)) + q(s)u(s)) dsdr
vata—p) [ (7 (s [ utminat9) +atsiuts)) ds

(A;) There exists a constant > 0 such that for anw € R, if |w| > M, then we have

either
0 > (e - o) | 5 = [ w0+ a)asar
wea—m) | 1 = [ .0+ alodsar
rla— ) [ (§6.05.0)+ wa(5)ds)
or else

0 < w ((cul ~a) [ ,5 =/ (F(5,w,0) + wy(s))dsdr

p(T

1 1 T
+C(G—H1)/0 Zﬁ/o (f(s,ws,0) +wq(s))dsdr

rla— ) [ (6.5.0) + (6D ).

Then for eacly € L'[0, 1], the boundary value problefd.1y (1.7)when

i <c/01]%d7_c/j]%d7+d)+m (a/;%dwb)

1]
:ad+bc+ac/ —_
0

dr
p(7)
has at least a solution 6! [0, 1] provided that

1 — (2¢+[b/a]) llally
2¢ + |b/al

leelly + 1181 <
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