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Abstract

In this paper, by introducing a nonnegative kernel functionH(t, s), some os-
cillation criteria for a forced second-order dynamic equation on time scales are
given.
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1 Introduction

This paper concerns the oscillation of solutions to the forced second order dynamic
equations

x∆∆(t) + p(t)f(xσ) = e(t), t ≥ t0 (1.1)
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and
x∆∆(t)− p(t)f(xσ) = e(t), t ≥ t0, (1.2)

wheref(xσ) = f(x(σ(t))), p ande are real-valued rd-continuous functions defined on
a time scales interval[a, b], andp(t) > 0, e(t) 6≡ 0, (throughouta, b ∈ T with a < b).
Our attention is restricted to those solutions of Eq. (1.1) which exist on some half line
[t0,∞) and satisfysup{|x(t)| : t ≥ t1} > 0 for any t1 > t0. A solution x of Eq.
(1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative;
otherwise it is nonoscillatory. Eq. (1.1) is said to be oscillatory if all its solutions are
oscillatory.

In 1988, Hilger [7] introduced the theory of time scales in order to unify continuous
and discrete analysis. Bohner and Peterson [4] summarizes and organizes much of
time scales calculus. From then on, there has been much research activity concerning
the oscillation and nonoscillation of solutions of different dynamic equations on time
scales; we refer the reader to the papers [2, 3, 5, 6, 8]. We note that in spite of the great
number of investigations of dynamic equations, for forced equations, oscillation theory
has not yet been elaborated unlike that for differential equations. Motivated by the ideas
in [1,9], by employing the Riccati technique and the integral averaging method, we shall
establish criteria for oscillation of Eq. (1.1) and Eq. (1.2).

Whene(t) = 0, Eq. (1.1) reduces to second order dynamic equation

x∆∆(t) + p(t)f(x(σ(t)) = 0, t ∈ [a, b],

which has been discussed in many papers.

2 Some Preliminaries

In this section, we present some basic definitions and elementary results concerning the
calculus on time scales.

A time scaleT is an arbitrary nonempty closed subset of the real numbersR. Since
we are interested in oscillatory behavior, we suppose that the time scale under consider-
ation is not bounded above, i.e., it is a time scale interval of the form[a,∞). We define
the forward and backward jump operatorsσ, ρ : T → T by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}.

In this definition, we putinf ∅ = sup T (i.e., σ(t) = t if T has a maximumt) and
sup ∅ = inf T (i.e., ρ(t) = t if T has a minimumt), where∅ denotes the empty set.
If σ(t) > t, we say thatt is right-scattered, while ifρ(t) < t we say thatt is left-
scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. Also, ift < sup T andσ(t) = t, thent is called right-dense, and ift > inf T
andρ(t) = t, thent is called left-dense. Points that are right-dense and left-dense at
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the same time are called dense. Finally, the graininess functionµ(t) : T → [0,∞) is
defined by

µ(t) := σ(t)− t.

Throughout this paper we make the blanket assumption thata ≤ b are points inT.
A function f : T → R is said to be rd-continuous if it is continuous at each right-

dense point and if there exist a finite left limit in all left-dense points. The derivative
(delta)f∆ of f is defined by

f∆(t) =
f(σ(t))− f(t)

σ(t)− t

if f is continuous att andt is right-scattered. Ift is not right-scattered then the derivative
is defined by

f∆(t) = lim
s→t

f(t)− f(s)

t− s
,

provided this limit exists. The derivative and the forward jump operator are related by
the useful formula

fσ = f + µf∆, where fσ = f ◦ σ.

We will also make use of the following product and quotient rules for the derivative of
the productfg and the quotientf/g (whereggσ 6= 0) of two differentiable functionsf
andg:

(fg)∆ = f∆g + fσg∆ and

(
f

g

)∆

=
f∆g − fg∆

ggσ
.

Fora, b ∈ T and a differentiable functionf , the Cauchy integral off∆ is defined by∫ b

a

f∆(t)∆t = f(b)− f(a).

The integration by parts formula reads∫ b

a

f∆(s)g(σ(t))∆s = [f(t)g(t)]ba −
∫ b

a

f(s)g∆(s)∆s,

and infinite integrals are defined as∫ ∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s.

If T = R, thenσ(t) = 0, µ(t) = 0, f∆ = f ′(t) and Eq. (1.1) becomes the second order
differential equation

x′′(t) + p(t)f(x(t)) = e(t), t ∈ [t0,∞).

If T = Z, thenσ(t) = t + 1, µ(t) = 1, y∆(t) = ∆y(t) = y(t + 1)− y(t), and Eq. (1.1)
becomes the second order difference equation

∆(∆x(t)) + p(t)f(σ(x(t))) = e(t).



126 Peiguang Wang, Nan Tang, and Chunxia Gao

3 Main Results

In this section, we establish oscillation criteria for Eq. (1.1) and Eq. (1.2). Our approach
is based largely on the application ofH(t, s) and the following lemma.

Lemma 3.1 (see [6]).If A andB are positive constants, then

Aλ + (λ− 1)Bλ − λABλ−1 ≥ 0, λ > 1.

Let D = {(t, s) ∈ T× T : t ≥ s ≥ t0}, H(t, s) ∈ C1(D, R+), R+ = (0,∞),
f ∈ C(R× R, R), xf(x) > 0 for all x 6= 0.

Theorem 3.2.Assume that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, (t, s) ∈ D, (3.1)

hi(t, s) = −[H(t, s)]∆s
i ≥ 0 ∈ D, hi(t, t) = 0, t ≥ t0, i = 1, 2, (3.2)

0 ≤ lim inf
t→∞

hi(t, t0)

H(t, t0)
< ∞. (3.3)

lim sup
t→∞

1

H(t, t0)

∫ t

t0

Hσe(s)∆s = ∞, (3.4)

lim inf
t→∞

1

H(t, t0)

∫ t

t0

Hσe(s)∆s = −∞. (3.5)

Then every solution of Eq.(1.1)oscillates.

Proof. Let x be a nonoscillatory solution of Eq. (1.1). Suppose thatx(t) > 0 for t ≥ t0.
Multiplying Eq. (1.1) byHσ = H(t, σ(s)) for t ≥ t0 and integrating fromt0 to t, we
have ∫ t

t0

Hσx∆∆(s)∆s +

∫ t

t0

Hσq(s)f(xσ)∆s =

∫ t

t0

Hσe(s)∆s.

Since ∫ t

t0

Hσx∆∆(s)∆s = −H(t, t0)x
∆(t0) +

∫ t

t0

h1(t, s)x
∆(s)∆s

and ∫ t

t0

h1(t, s)x
∆(s)∆s = −h1(t, t0)x(t0) +

∫ t

t0

h2(t, s)x(σ(s))∆s,

we have∫ t

t0

Hσe(s)∆s = −H(t, t0)x
∆(t0)− h1(t, t0)x(t0) +

∫ t

t0

h2(t, s)x
σ∆s

+

∫ t

t0

Hσq(s)f(xσ)∆s.
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Dividing by H(t, t0), we arrive at

1

H(t, t0)

∫ t

t0

Hσe(s)∆s =
−H(t, t0)x

∆(t0)− h1(t, t0)x(t0)

H(t, t0)

+
1

H(t, t0)

∫ t

t0

h2(t, s)x
σ∆s

+
1

H(t, t0)

∫ t

t0

Hσq(s)f(xσ)∆s.

In view of (3.3), there exists a finite numberM1 such that fort ≥ t0

−x∆(t0)−
h1(t, t0)

H(t, t0)
x(t0) ≥ M1.

So we have

1

H(t, t0)

∫ t

t0

Hσe(s)∆s ≥ M1 +
1

H(t, t0)

∫ t

t0

h2(t, s)x
σ∆s

+
1

H(t, t0)

∫ t

t0

Hσq(s)f(xσ)∆s.

Taking the liminf ast → ∞, we obtain a desired contradiction to (3.5). The case
x(t) < 0 can be handled similarly by using (3.4).

LetH(t, s) = (t−s)β with β > 1. It is easy to see thatH(t, s) satisfies all conditions
of (3.1)–(3.3).

Corollary 3.3. If

lim sup
t→∞

1

(t− t0)β

∫ t

t0

(t− σ(s))βe(s)∆s = ∞

and

lim inf
t→∞

1

(t− t0)β

∫ t

t0

(t− σ(s))βe(s)∆s = −∞,

then every solution of Eq.(1.1) is oscillatory.

Next, we consider oscillation criteria for Eq. (1.2).

Theorem 3.4. Let the functionH be as in Theorem 3.2 such that(3.1)–(3.3)hold, and
suppose there exist two positive constantsλ andc such that for allx either

|f(x)| ≥ c|x|λ > 0, for λ > 1, (3.6)

or
|f(x)| ≤ c|x|λ > 0, for 0 < λ < 1. (3.7)
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If

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
Hσe(s)− (λ− 1)λ

λ
1−λ

(
hλ

2(t, s)

cq(s)Hσ

) 1
λ−1

]
∆s = ∞ (3.8)

and

lim inf
t→∞

1

H(t, t0)

∫ t

t0

[
Hσe(s)− (λ− 1)λ

λ
1−λ

(
hλ

2(t, s)

cq(s)Hσ

) 1
λ−1

]
∆s = −∞, (3.9)

then every solution of Eq.(1.2)oscillates.

Proof. Proceeding as in the proof of Theorem 3.2, we assume that Eq. (1.2) has a
nonoscillatory solution, sayx(t) > 0 for t ≥ t0. Multiplying Eq. (1.2) byHσ =
H(t, σ(s)) for t ≥ t0 and integrating fromt0 to t, we have∫ t

t0

Hσe(s)∆s = −H(t, t0)x
∆(t0)− h1(t, t0)x(t0) +

∫ t

t0

h2(t, s)x
σ∆s

−
∫ t

t0

Hσq(s)f(xσ)∆s

= M(t, t0) +

∫ t

t0

h2(t, s)x
σ∆s−

∫ t

t0

Hσq(s)f(xσ)∆s.

Case I:For |f(x)| ≥ c|x|λ, λ > 1, we have∫ t

t0

Hσe(s)∆s = M(t, t0) +

∫ t

t0

h2(t, s)x
σ∆s−

∫ t

t0

Hσq(s)f(xσ)∆s

≤ M(t, t0) +

∫ t

t0

h2(t, s)x
σ∆s−

∫ t

t0

cHσq(s)xλ(σ(s))∆s

= M(t, t0)−
∫ t

t0

[cHσq(s)xλ(σ(s))− h2(t, s)x
σ]∆s.

Set

A = [cHσq(s)]
1
λ xσ, B =

(
1

λ
h2(t, s)[cH

σq(s)]−
1
λ

) 1
λ−1

and apply Lemma 3.1 to obtain

1

H(t, t0)

∫ t

t0

[
Hσe(s)− (λ− 1)λ

λ
1−λ

(
hλ

2(t, s)

cq(s)Hσ

) 1
λ−1

]
∆s

≤ −x∆(t0)−
h1(t, t0)

H(t, t0)
x(t0).
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Taking limsup ast →∞ in the above inequality, we obtain a contradiction to (3.8). The
casex(t) < 0 can be handled similarly.
Case II: For |f(x)| ≤ c|x|λ > 0, 0 < λ < 1, we have∫ t

t0

Hσe(s)∆s = M(t, t0) +

∫ t

t0

h2(t, s)x
σ∆s−

∫ t

t0

Hσq(s)f(xσ)∆s

≥ M(t, t0) +

∫ t

t0

h2(t, s)x
σ∆s−

∫ t

t0

cHσq(s)xλ(σ(s))∆s.

For givent ands,

F (x) = h2(t, s)x
σ − cHσq(s)xλ(σ(s)), x > 0, 0 < λ < 1

attains its minimum atxσ =

(
h2(t, s)

cλHσq(s)

) 1
λ−1

, and

Fmin = (λ− 1)λ
λ

1−λ

(
hλ

2(t, s)

cq(s)Hσ

) 1
λ−1

.

Thus, we obtain

1

H(t, t0)

∫ t

t0

[
Hσe(s)− (λ− 1)λ

λ
1−λ

(
hλ

2(t, s)

cq(s)Hσ

) 1
λ−1

]
∆s

≥ −x∆(t0)−
h1(t, t0)

H(t, t0)
x(t0).

Taking liminf ast → ∞, we obtain a desired contradiction to (3.9). The casex(t) < 0
can be handled similarly.

Corollary 3.5. Let the functionH be as in Theorem 3.2 such that(3.1)–(3.5)hold, and
suppose there exist two positive constantsλ andc such that(3.6)and (3.7)hold. If

lim
t→∞

1

H(t, t0)

∫ t

t0

(
hλ

2(t, s)

cq(s)Hσ

) 1
λ−1

∆s < ∞,

then every solution of Eq.(1.2) is oscillatory.

If λ = 1,
|f(x)| ≥ |x| or |f(x)| ≤ |x|,

then the inequality in the proof of Case I reduces to∫ t

t0

Hσe(s)∆s ≤ M(t, t0)−
∫ t

t0

[cHσq(s)− h2(t, s)]x
σ∆s.

We then have the following result.
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Theorem 3.6. Let the functionH be as in Theorem 3.2 such that(3.1)–(3.5)hold, and
|f(x)| ≥ |x| holds with

h2(t, s)− cHσq(s) ≤ 0, t ≥ s ≥ t0

or |f(x)| ≤ |x| holds with

h2(t, s)− cHσq(s) ≥ 0, t ≥ s ≥ t0.

Then Eq.(1.2)with λ = 1 is oscillatory.

Example 3.7.Consider the differential equation (T = R)

x∆∆(t) + xσ(t) = et(2 cos t + sin t), (3.10)

whereq(t) = 1, e(t) = et(2 cos t+sin t). Let t0 = 1 andH(t, s) = (t−s)3. Obviously,

lim sup
t→∞

1

(t− 1)3

∫ t

1

(t− σ(s))3es∆s = ∞

and

lim inf
t→∞

1

(t− 1)3

∫ t

1

(t− σ(s))3es∆s = −∞.

By Corollary 3.3, we can see that every solution of Eq. (3.10) is oscillatory. In fact,
x(t) = et sin t is a such solution for Eq. (3.10).

Acknowledgement

This project is supported by the Key Project of Chinese Ministry of Education (207014)
and the Natural Science Foundation of Hebei Province of China (A2009000151). The
authors would like to thank the reviewers for their valuable suggestions and comments.

References

[1] R. P. Agarwal and S. R. Grace. Forced oscillation ofnth-order nonlinear differential
equations.Appl. Math. Lett., 13(7):53–57, 2000.

[2] R. P. Agarwal, Shiow-Ling Shieh, and Cheh-Chih Yeh. Oscillation criteria for
second-order retarded differential equations.Math. Comput. Modelling, 26(4):1–
11, 1997.

[3] Elvan Akin, Lynn Erbe, Allan Peterson, and Billur Kaymakçalan. Oscillation results
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Boston Inc., Boston, MA, 2001. An introduction with applications.

[5] Lynn Erbe and Allan Peterson. Oscillation criteria for second-order matrix dynamic
equations on a time scale.J. Comput. Appl. Math., 141(1-2):169–185, 2002. Dy-
namic equations on time scales.

[6] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge, at the Uni-
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