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Abstract

Existence of a unique classical nonnegative solution is established and suffi-
cient conditions for the solution that exists locally or blows up in finite time are
obtained for the degenerate and singular parabolic systém — (2" uy), =

a

/ " (0, ) da, 2P0 — (270y), = / Fu(z,))dz in (0,a) x (0,T), where
0 0

T < o0, a > 0 are constantsf, g are given functions. Furthermore, under certain
conditions it is proved that the blow-up set of the solution is the entire interval
[0,a]. These extend a recent work of Zhou, Mu and Li, which considered the
particular systems with localized sources.
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1 Introduction

In this paper, we consider degenerate and singular nonlinear reaction-diffusion equa-
tions with nonlocal source of the form

(xplut — (2" Uy, = /Oa g(v(x,t))de, (x,t) € (0,a) x (0,7,

2P, — (2"0,), = Oa f(u(z,t))dx, (x,t) € (0,a) x (0,7T), (1.2)
u(0,t) = u(a,t) =v(0,t) =v(a,t) =0, te(0,7T),

Lu(z,0) = up(x), v(z,0) = vy(z), z €0, al,

whereug(z), vo(x) € C*t([0,a]) for somea € (0, 1) are nonnegative nontrivial func-
tions. u(0) = up(a) = vo(0) = vo(a) = 0, ug andv, satisfy compatibility conditions,
T>0,a>0,r1,m9 €[0,1), |p1]| + 71 # 0, |pa] + 12 # 0.
Let D = (0,a) andQ), = D x (0,t]. D and(, are their closures, respectively. Since
Ip1| + 71 # 0, |p2| + 72 # 0, the coefficients ofi, u,, u,, andvy, v,, v, may tend td)
or co asx tends ta), and thus we can regard the equations as degenerate and singular.
Floater [11] and Chan and Liu [6] investigated the blow-up properties of the problem

Uy — Uy = UP, (x,t) € (0,a) x (0,7,
u(0,t) = u(a,t) =0, te€(0,7T), (1.2)
u(z,0) = up(x), z € [0,a.

The motivation for studying problem (1.2) comes form Ockendon’s model (see [15]) for
the flow in a channel of a fluid whose viscosity depends on temperature

u
TUt = Ugy + €7,

wherewu represents the temperature of the fluid. Floater in [11] approximétég «”
and considered equation (1.2). In [4], Chan and Chan considered the problem

2y — Uge = f(u),  (x,t) € (0,a) x (0,7,
u(0,t) = u(a,t) =0, te(0,7), (1.3)
u(z,0) = up(x), z € [0, al.

Forq = 0, it is the heat equation; the problem (1.3) and (1.2) (cf. [18, p. 10]) may
be used to describe the temperatufe, t) of a homogeneous and isotropic rod hav-
ing a constant cross-sectional area with respect,tand a thermal conductivitys
independent of; inside the rod, there is a nonlinear source producing heat (due to an
exothermic reaction) ak f(u) per unit volume per unit time; the object has an initial
distribution of temperature,(x), and the temperature at each of its ends is kept at zero.
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Forq = 1, the problem (1.3) may be used to describe the temperataféhe channel
flow of a fluid with a temperature-dependent viscosity in the boundary layer (cf. [5,15]);
here,z andt denote the coordinates perpendicular and parallel to the channel wall, re-
spectively; hence, corresponds to the downstream position whebdows up at some
x. In a heat conduction problem with t denoting the time, the tetrorresponds to the
reciprocal of the diffusivity (cf. [2, p. 9]); thus far > 0, the amount of heat required to
raise the temperature of the object approaches to zerdeasls to zero; also for a fixed
x € D, x%is a decreasing function qf physically, decreasing or increasing; has the
effect of shifting the blow-up point towards= 0.

In [8], Chen and Xie discussed the degenerate and singular semilinear parabolic
equation

(U )4 / fu(z,t))dz, (x,t) € (0,a)x (0,T),
(0 t) = te(0,7),
u(z,0) = Uo( ), z €0, al.

(1.4)

They established the local existence and uniqueness of a classical solution. Under ap-
propriate hypotheses, they obtained some sufficient conditions for the global existence
and blow-up of a positive solution.

In [9], Chen et al. consider the following degenerate nonlinear reaction diffusion
equation with nonlocal source

2y — (2 uy), = /Oa uPdz, (x,t) € (0,a) x (0,7),
u(0,t) = u(a,t) =0, te (0,7),
u(z,0) = ug(x), x € [0,al.

They established the local existence and uniqueness of a classical solution. Under ap-
propriate hypotheses, they also got some sufficient conditions for the global existence
and blow-up of a positive solution. Furthermore, under certain conditions, it is proved
that the blow-up set of the solution is the whole domain.

Very recently, Jun Zhou et al. [18] generalized the results of [9] and investigated the
blow-up properties of the following parabolic system

;

Py — (2" uy), = /Oa(v(x,t))pldx, (x,t) € (0,a) x (0,7,

xq2vt - (xmvz)a: = /0 (u(x7t))p2dxa (:E,t) S (0,(1) X (07T)7 (1.5)
u(0,t) = u(a,t) =v(0,t) =v(a,t) =0, te(0,7T),

Lu(x,0) = up(x), v(x,0)=uvy(z), z € [0,al.

Under certain conditions, Jun Zhou et al. proved that the blow-up set of the solution of
(1.5) is the whole domain. The existence of a unique classical nonnegative solution is
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established and sufficient conditions for solution that exist globally or blows up in finite
time are obtained.

In [14], J. Li et al. considered the effect of the singularity, degeneracy and localized
reaction on the behavior of the solution of following problem

2Py — (2" uy), = 7 (20, 1), (x,t) € (0,a) x (0,7,
2P?uy — (2™0,), = u® (20, 1), (x,t) € (0,a) x (0,7,

(0,t) = u(a,t) =v(0,t) = v(a,t) =0, te(0,T), (1.6)
U(ZL‘,O) = uO( )v ( Z, ) = UU( )’ x € [O,CL],

and show that the blow-up set of the solution of (1.6) is the whole domain.

Motivated by the results of the papers [8, 9, 18], we slightly modify the method
developed by Jun Zhou et al. [18] and Y. Chen et al. [9] and extend the results of [9, 18]
to a degenerate and singular parabolic system (1.1). The difficulties are the construction
of the corresponding upper solution of (1.1). It is different from [6, 7,11, 18] that under
certain conditions the blow-up set of the solution of (1.1) is the whole domain. But this
is consistent with the conclusions in [1, 16, 17].

Before stating our main results, we make some assumptions on the initial data
uo(z),vo(x) and f(s), g(s) as follows:

(A1) fig € C*([0,00)), £(0) > Oc’z 9(0) = 0, f'(s) > 0, 4'(s) > 0, f"(s) =0,
" S S
g (s)20f0r5>0and/s0 m<c>o,/s0 @<ooforsomeso>0,

(A2) (up(),vo(x)) € C*FA([0,a]) x C*([0, a]) for somes € (0,1) and

(10(0),v0(0)) = (uo(a), vo(a)) = (0,0), (uo(x), vo(x)) # (0,0) if z € (0, a).

This paper is organized as follows. In the next section, we show the existence
of a unique classical solution. In Section 3, we give some criteria for the solution
(u(x,t),v(x,t)) to blow-up in finite time and discuss the blow-up set.

2 Local Existence

In this section, we start with the definition of an upper solution of system (1.1).

Definition 2.1. A pair of nonnegative functionsi(z,t), v(z,t)) is called an upper so-
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lution of (1.1) if (u(x,t),v(z,t)) € (C([0,a] x [0,T))?* is such that

2Py — (2" uy), > [ g(v(z,t))dx, (z,t) € (0,a) x (0,7,

P20, — (270,), > fla(z,t))dz, (z,t) € (0,a)x (0,7T),

0 (2.1)
u(0,t) > 0,a(a,t) >0, te(0,7)

v(0,t) > 0,9(a,t) >0, t e (0,7),

ﬂ(l’,O) > ﬂo(z)a 17(1’,0) > 770<:U)7 S [O a]

Similarly, (u(x,t),v(x,t)) € (C([0,a] x [0,T))* is called a lower solution if it satisfies
all the reversed inequalities in (2.1).

In order to prove the existence of a unique positive solution to (1.1), we must con-
struct the following comparison principle.

Lemma 2.2. Let b, (z,t) and by(z,t) be continuous nonnegative functions defined on
[0,a] x [0, 7] foranyr € (0,T), and let(u(z,t),v(x,t)) € (C(Q,) NC>'(£,))? satisfy

2Prug — (2™ uy), > / by(x, t)v(x,t)dx, (x,t) € (0,a) x (0,r],

2P?uy — (2"%y), > f bo(x, t)u(x,t)d, (x,t) € (0,a) x (0,r],
0

u(0,t) >0, u(a,t) >0, v(0,t) >0, v(a,t) >0, te(0,r],

u(z,0) >0, v(z,0) >0, z € 0,al.

Thenu(z,t) > 0andv(z,t) > 00on|0,a] x [0,7T).
Proof. Jun Zhou et al. proved this lemma in [18], so we omit it. O

Lemma 2.3. Let (u, v) be the nonnegative solution ¢f.1). Let us assume that a pair
of nonnegative functionSu(z,t), z(z,t)) € (C(Q,) N C*1(£2,))? is such that

(

Prwy — (2" wy,), > (L) /ag( (x,t))dz, (x,t) € (0,a) x (0,7],

Pz — / flw(z, 1)) (x,t) € (0,a) x (0,r],
(2.2)
w(0,t) > ( )0 w(a,t) > (=)0, t € (0,r],
2(0,1) = (=)0, z(a,t) = (2)0, t € (0,r],

w(z,0) = (Suo(x), 2(x,0) = (Svo(x), = €[0,a].

Then(w(z,t), z(z,t)) > (<) (u(z,t),v(z,t)) on[0,a] x [0,T).
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Proof. We only consider the case> ” (as for the other case< ” the proof is similar).
Letp(x,t) = w(x,t) —u(x,t) andpy(x,t) = z(z,t) — v(x,t). Subtracting (1.1) from
(2.2) and using the mean value theorem, we obtain

(

o=@ eu)s > [ g m)eale i, (@1) € (0.0) x (0.1]

2P o — ("% pay ) / f'(m)er(x, t)dz, (x,t) € (0,a) x (0,7],

©1(0, t)>0 ©1(a,t) >0, t e (0,r],
2(0,t>20, QDQ( )ZO te(O,'r’],

01(x,0) >0, ¢1(x,0) >0, z € [0,q],

wheren; andn, are some intermediate values betwedenw) and (z,v) satisfying
f'(m),d'(n2) > 0. Then Lemma 2.2 ensures th@t,(x,t), p2(z,t)) > (0,0), that
s, (w(z, 1), z(z.t)) > (u(z,t),0(z,t)) on[0,a] x [0,T). O

Obviously, (0,0) is a lower solution of (1.1), and we need to construct an upper
solution. We modify the proof of Jun Zhou et al. [18, Lemma 2.2] to show the following
result.

Lemma 2.4. There exists a positive constaptt, < T') such that the probler(lL.1)has
an upper solutior{h, (z,t), ho(z,t)) € (C(Q,) N CHH Q)2

Proof. Let

e MORUN
=) 0-2)+ )7 (-2

and letK, be a positive constant such that

Kop(x) + f(0) = fluo(x)),  Kop(x) +9(0) = g(vo(x)).

Introduce the positive constant$, = sup ¢ (z), My = sup ¢(x) and
z€[0,a] z€[0,a]

bzo—/<1” +S2(1—s)>ds,
bw_/(“ﬁ —|—82(1—s))ds,

Ny = af (7 (2Ko My + £(0))(2bioKo + 9(0)).
N = ag/ (g7} (2KoMs + 9(0))) (2620 Ko + £(0)).

N[

(S
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1-— 1-— ..
Let Ky € (0, : rl) and Ko € (O, : TQ) be positive constants such that
— T — T

2@2_T1N1 7ﬁ 2&2_r2N2 7ﬁ
Ko< [|——— Koy < | —— .
o (T (2

Let K4 (t), K»(t) be the positive solutions of the initial value problems

( F(fH2EoMy + f(0)))(bioKa(t) 4 g(0)) b1 >0
a1 = KT [Kig(1 — K o)1+ Ky (1 — Kig) 2] -
Ki(t) = ' (f (2K My + £(0)))(bioK2(t) + 9(0)) L <0
a1 (1 = Ko [Kip(1 — Kio) = + K2 (1 — Kyp) 2]
| K1(0) = Ko,
(2.3)
([ g'(g7 (2KoMs + g(0))) (bao K1 (t) + £(0)) >0
a2 KR (Koo (1 — Kag) " + K3 (1 — Kag) 7] B
KL(t) = 9' (g7 (2Ko My + g(0))) (bao K1 (t) + £(0)) Dy <0
aP2=H(1 — Kag)P2[Koo(1 — Kg9)' "2 + Kgy(1 — KQO)I?]
| K2(0) = Ko.
(2.4)

Since K (t) and K, (t) are increasing functions, we can choése- 0 such that
Ki(t) <2K,, Ky(t)<2K, forall te|0,t.
Set
iz, t) = fHEL()U(@) + £0),  hae,t) = g7 (Ka(t)p(2) + 9(0)).

Thenh, (z,t) > 0 andhy(x,t) > 0 onY,. We show thath,(x,t), ho(x,t)) is an upper
solution of (1.1) in€2,,. To do this, let us construct two functiods and./; by

J1 = f,(hl) |:xp1hlt - (xnhlx)z - /Oag(hz)diU] )

and

Jo = g'(h) {Imh% — (2" hay)s — /Oa f(hl)df] :
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Then

Jio= f(m) {Iplhlt — (2" h1g)s — /Oag(hﬁdﬂ?}
= 2P (f(h))e — ra"  (f(h))e — 2" (f(71)) e
7 [ aha)de " )i,
KL (E() — K (8)(ra" o + 27 )
~r) [ (Ralt)et@) + g(0))do

= KO + K () [2 = ((—1 R )

a2—7“1 4

1 0o ey e —a2) L
" 533( 10/2(g )2 Zx( D2 — ) 3/2) al—r1/2:|

—af'(f (KO (2) + £(0))) (bio Ko (t) + (0))

K
P (0(a) + 22— ) B

)"
—af'(f7H(KL(t) My + (0 )))(b10K2( ) +9(0)),
Jo = ¢'(ha) |2"hoy — (2™ hay)y — /fh1 d$}

v

v

K
P ERYt)p(a) + a0 — )2 2D

—ag' (g7 (Ka(t) M2 + (0))) (b2o K1 (t) + £(0)).
For (z,t) € (0,akK10) x (0,t0] U (a(l — Kip),a) x (0,to], we have

v

5> at02(g - )2 B e R 00+ £0) (broEa(t) + 9(0))

2a1—T1/2

Ko —af'(f71(2KoM; + £(0)))(2b10Ko + ¢(0))

== KO—leO

For (.17, t) € (0, CLKQ()) X (O, to] U (CL(l — Kgo), a) X (O, to], we have

By = a0y BE g a0, 4 6(0) (B (1) + 5(0)

ro—1
K,
[_} P

v

227’2
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For(x,t) € [aK19,a(1 — Kip)] x (0,t0) by (2.3), we have

Jio = aP K (0)P(x) — af (f (KM + £(0))) (b Ka(t) + (0))

1 1—rq
" K K () [F1o(1 — Kip)' ™ + Ky (1 — Ki) 2 ]

—af'(f7H(EL() My + £(0))) (bro Ko (t) + 9(0), P20,

a” (1 — Kyo)" K7 () [K10(1 — K10)' ™" + Kf(1 = Ki0) 2 |
—af' (f (K1 (t) My + £(0)))(bio K2 (t) + g(0)), p1 <0,

v

> 0.
For (z,t) € [aKs,a(l — Ky)] x (0,%o] by (2.4), we can gef, > 0 with the same

argument as that far,. Thus,J;(z,t) > 0, Jo(x,t) > 0in Q. Sincef’(s) > 0 and
g (s) > 0in Q,,, we have

:Uplhlt—(ac”hlx)m—/ g(hg)dx >0, $p2h2t—($r2h2x)x—/ f(hy)dz >0 in €,
0 0

and
h1(0,t) = hi(a,t) = fH(f(0)) =0, 0<t<ty,
ha(0,8) = ha(a,t) = g7'(9(0)) =0, 0 <t <ty,
hi(@,0) = (Ko (z) + £(0)) = £~ (f(uo(x))) = uo(2),
ha(z,0) = g~ (Kow(z) + 9(0)) = g~ (9(vo(@))) = vo().
So(hy(z,t), ha(z,t)) is an upper solution of (1.1). The proof is complete. O

To show the existence of the classical solutiaf, t), v(z,t)) of (1.1), let us in-
troduce a cutoff functiop(z). By Dunford and Schwartz [10, p. 1640], there exists a
nondecreasing(z) € C*(R) such thap(z) = 0if z < 0andp(z) = 1if z > 1. Let

. 1—7’1 1-7"2
0<od< ,
0, r <9,
ps(z) = p(%—l), 0 < x <20,
1 x > 20,

anduos(z) = ps(z)ug(x), vos(x) = ps(z)vo(x). We note that

, 0, r <9,
u(%aé(x) _ —%p' <% _ 1) ug(z), § <z <20,
07 T > 267
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Dons (@) 0, x <9,

Vos\x) ) T , (T

% 527 (5 1) vo(z), 0 <x <20,
0, x > 20.

5()

Sincep is nondecreasing, we ha»(?go— < 0and Dv05(2) < 0. From0 < p(z) < 1,
we haveug(x) > ugs(z), vo(z) > vos(x) and(lsir% ups () = ug(x), (lsir% vos () = vo(x).

Let D5 = (§,a), letws = Ds x (0,t,], let Ds; andws be their respective closures,
and letS; = {0,a} x (0,¢y]. We consider the following regularized problem

2Prugy — (2 Us ) = / g(vs(z,t))dx, (x,t) € ws,
Oa

CCp2U5t - (mmv&ﬁ)z - / f(u(;(x’t))dx? (Z‘,f}) € ws, (25)
0

us(0,t) = us(a,t) = vs(0,t) = vs(a,t) =0, te€(0,t),

L us(x,0) = ups(x), vs(x,0) = vos(x), x € Ds.

By using Schauder’s fixed point theorem,we have the following theorem.
Theorem 2.5. The problen(2.5) admits a unique nonnegative solution
(us, v5) € (CPHO1H2(w;))2.

Moreover,0 < us < hy(z,t), 0 < v5s < ho(z,t), (z,t) € ws, Whereh,(x,t) and
ho(z,t) are given by Lemma 2.4.

Proof. By using Lemma 2.3, there exists at most one nonnegative solutjon;). To
prove existence, we use the Schauder fixed point theorem. Let

= {vy € C**(Ws) : 0 < vy(x,t) < ho(x, 1), (z,t) € Ws},
= {uy € C**(Ws) : 0 < wy(z,t) < hy(z,t), (2,t) € Ws}.

We note thatX, and X, are closed convex subsets of the Banach st/ (w;).
In order to obtain the conclusion, we define another’et X; x X,. Obviously
(C/2(,))? is a Banach space with the norm

I (w1, w1) Nlaarz=Il v1 laasz + Il w llaaz, Torany (vi,u) € (C*2(w;))?

and.X is a closed convex subset of the Banach spate®/?(w;))2. For any(vy, u;) €
(X1 x X3), let us consider the following linearized uniformly parabolic problem

/ a

JIPIW& (Z‘ W&E)w = / )dl‘ (S(I,t) € ws,

IPZZ& - I‘ Z&v m / f U1 (I,t) € ws, (26)
W5(5, t) Wg(a t) Z(s (5 t) Z(;(a t) 0, te (O,to],
(Ws(2,0) = ups(x), Zs(z,0) = vos(x), x €[4, al.
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By construction(0,0) and(h(z, t), hz(x,t)) are lower and upper solutions of problem
(2.6). We also note that

l‘—pﬁ-m7 x_pl_l"ﬂ’l’ x—m’ x—p2+7’2’ x—p2—1+7’27x—p2 c Ca,a/Q (@5)
and
a a _
x P / g(vl)dx,x_pz/ fluy)dz € CU2(W5),  ups, vos € C*F(Dy).
é é

It follows from Ladde et al. [12, Theorem 4.2.2 on p. 143] that problem (2.6) has a
unique solution(W;(z, t; vy, uy). Zs(x, t; vy, uy)) € (C*F41/2(1,))? such that

0 < Ws(z,t;v1,u1) < hi(x,t), 0< Zs(x,t;v,u1) < ho(x,t).
Thus, we can define a mappifigfrom X into (C?**1+*/2(75,))? such that
T(vi(x,t),ur(z,t) = (Ws(z, t;01,w), Zs(x, t; 01, u1)),

where(Ws(x, t; vy, uy), Zs(x, t;v1,u1)) denotes the unique solution of (2.6) correspon-
ding to (vy(x,t),us(z,t)) € X. To use the Schauder fixed point theorem, we need to
verify thatT mapsX into itself and thaf" is continuous and compact. In fa€tX c X,
and the embedding operator from the Banach spacé®'**/2(w;))? to the Banach
spacg C**/%(w;))? is compact. Thereford, is compact. To show th4t is continuous,

let us consider sequeneg, (z,t) which converges te, (z, t) uniformly andu,(x,t)
which converges to, (z, t) uniformly in the norm(-||,,/2. We know that, (z,t) € X,
andu, (z,t) € X,. So we get a sequenéév,,(z,t), u1,(z,t))} € X, which converges
to (vi(x,t),ui(x,t)) uniformly in the norm||-, -[|q.a/2. Let (Wsy(2,t), Zs,(2,t)) and
(Ws(z,t), Zs(z,t)) be the solutions of (2.6) corresponding(tg,,(x, t), u1,(z,t)) and
(v1(x,t),ui(x,t)), respectively. Without loss of generality, let us assume that

V10 (2, ) [|aay2 < |lv1(2,t)||a,a/2 + 1, forany n > 1,
|w1n (2, t)||aa/2 < [|ur(@, t)]|aas2 + 1, forany n > 1.
Let W (z,t) = Wy, (z,t) — Ws(z,t), Z(z,t) = Zsp(x,t) — Zs(x, t). Then we have

(

oWy — (2™ W,), = /a(g(vln) —g(vy))dz, (z,t) € ws,

4
a2z — (2 Z,), = /5 (f(un) — f(wr))dz, (x,t) € ws,
W(,t) =W(a,t) = Z(5,t) = Z(a,t) =0, t€ (0,1,
(W (z,0) =0, Z(x,0)=0, z € Ds.

From Ladyenskaja et al. [13, Theorem 4.5.2 on p. 320], there exist positive constants
C1 (independent of;, v1,, andv;) andCs (independent of, u;,, andu;) such that

| o) = gton)

S C1Cl||9/("01 + T(Uln - Ul))”a,a/QHUln - Ul”a,a/Qa

Wlletaidare < C1

a,a/2
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and we note that

9" (v1 + T(vin = V1)) layarz < 119" (h2)l
+sup 19" (v1 4 7(V1n — V1)) (2, 1) — g'(v1 + T (V1 — v1))(T, 1)

5<x ‘:L’ - j;|04
z<a

19" (01 + 7(v1n — v1)) (2, 1) — g'(01 + 7(v1n — 01)) (2, )]

+ su =
et it — g2
t<to
< Nl + | _max 19" l(oaloro + [oralloso)

< g/ ()l _max (" (]2 o2 + 1),

wherer € (0, 1). Therefore,

Wll2ta14ar2 < Cra(llg'(he)le

" 2 .o 1 n - o,
o mex 19" ()2l llavarz + D)llvin — villasas2

S Ci””ln - UlHa,a/Q

and

1Z]l24a14a2 < Coa([lf/(P1)lloo
1" .
b s + D) = o
S Cé”“ln_ulna,a/?

It follows that

(W, Z) 241402 = W l24a,14a/2 + | Z|l21a14as2 < Cl|(Vin — v1, Uin — 1) a,a/2-

This shows that the mappirgis continuous. By the Schauder fixed point theorem, the
proof is complete. O

Now we can prove the following local existence result.

Theorem 2.6. There exists somig < 7" such that problenfl.1) has a unique nonneg-
ative solution(u(z,t),v(z,t)) € (C(Qy,) N C*1 () .

Proof. By Theorem 2.5, the problem (2.5) has a unique nonnegative solutjons) €
(CFrelta/2(55))2, It follows from Lemma 2.3 thatus;, vs1) < (uss, vsy) if 61 > 62.
Therefore%ir%(ug(x,t),v(;(x,t)) exists for all(x,t) € (0,a] x [0, to]. Let

(u(z,t),v(z,t)) = (lsiLI(l](U(g(x,t),U(;(ZE,t)), (x,t) € (0,a] x [0, %]
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and define(u(0,t),v(0,t)) = (0,0),t € [0,ty]. We show that(u(z,t),v(z,t)) is a
classical solution of (1.1) ife,,. For any(z, ;) € €, there exist three domains

Q/ - (allﬂ al2) X (t/27t{’i]7 Q” = (alllv CL/2/) X (t/2/7tg]v Qm - (a/1,/7 a/Z/,) X (tg,v tg/]
suchthaiz;,t1) € Q' C Q" € Q" C (0,a) x (0, o] with

n n

0<a<d{<a) <z <ady<ay<ay <a

and

0 <ty <ty <th<t; <ty <ty <ty <tp.
By the conditions off andg, we know thath, (z,t) andh(x,t) are finite onQ”. For
any constang > 1 and some positive constamts and K4, we have

lus|| Lacory < W1hallLaery < Ksy o ||vs||Lary < ||hell Loy < K,

||$—p1/5 g(Ué)dw”Lq(Q’”) S (GT)_pIH/ g(hQ)dxHLq(Q’”) S K4’
0

o [ us)delingn < @)1 [ fn)delingn < Ko,
0

wherea; = a' if ¢ >0, a; = ay if ¢ <0, anda; = af’ if g3 > 0,a; = al if g <
0. By the IocaILp estimate of Ladyenskaja et al. [13, pp. 341-342, 35@}s,v5) €
(W2(Q"))*. By the embedding theorem in [15, pp. 61, 801! (Q") — H**/*(Q")
if we choo_s_eq >2/(1 — ). @ < Ks and||vs| ge.as2gn < Ks, for
some positive constatit;, and we have

o [ gtons <@ || [ gtz
) Hos a/2(Q//) ) 00
vs)dx| - |[x7Pr — TP
PR B
(z,)eQ" |z — 2|
(z,t)eQ”
©sup 2] [5 g (vs(, £) + 7(vs(, 1) — vs(, 1)) (vs(, t) — vs(x, 1)) dx]
<:c near |t —t[e/2
Q//
< w/ (ha)d]
+ /0 (hg)d H.CL' P HHO‘(a” all) + (al) e / g(hg)dx . HU(S”HO"O‘/2(Q”)
00 0 0o
< K
and

< Kg

Ha,a/Z(Q//)

s /; f(us)dx
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for some positives, which is independent af, wherer € (0,1). By LadyZenskaja et
al. [16, pp. 351-352], we have

||u(5HH2+a,1+a/2(Q/) S K7, ||U§||H2+a,1+a/2(Q/) S K7

for some positive constarit; independent of. This implies thatus, us:, us., us.. and
Vs, Vst Usz, Vs @€ €quicontinuous iy’. By the Ascoli-Arzela theorem, we know that

Hu‘|H2+D‘/v1+a'/2(Ql) < K87 HUHH2+a’,1+a’/2(Q/) < Kg

for somea’ € (0,«) and some positive constaifs independent of, and that the
derivatives ofu andv are uniform limits of the corresponding partial derivatives:f
andujg, respectively. Hencgu(zx, t), v(z, t)) satisfy (1.1), and

lltg%(u(x,t),v(x,t)) = %E}no(lggﬂo(ltg(l’,t),U(g(I,t)) = y_I)I(l](Uog(ZE,t),UO(;(ZE,t))

= (uo(2), vo(z)).

It follows from 0 < w(z,t) < hy(z,t), 0 < v(z,t) < ho(x,t) and hy(x,t) —
0, ho(x,t) — 0asz — 0 orxz — a that

lim(u(x,t),v(z,t)) = lim(u(z,t),v(z,t)) = (0,0).

z—0 r—a

Thus (u,v) € C(Qy,) N C*'(£,) is the solution of (1.1) if2,,. This completes the
proof. O

Theorem 2.7.LetT be the supremum ovey for which there is a unique nonnegative
solution (u(z,t),v(x,t)) € (C(Q,) N C*'(Qy,))* of (1.1). Then(1.1) has a unique
nonnegative solutiofu(z, t),v(x,t)) € (C([0,a] x [0,T)) NC*'((0,a) x (0,T)))>. If

T < oo, thenlim sup m[ax](]u(x,tﬂ + |v(z, t)]) = oo.
t—T x€[0,a

Proof. The proof of this theorem is similar to the proof of [11, Theorem 2.5], so we
omit it. O

3 Blow-up of Solutions

In this section, we give some global blow-up result of the solution of (1.1). In order to
obtain the blow-up result, we assume that> r; — 1, p» > ro— 1 andf(s), g(s) satisfy

f(s)+g(t) >nmin{f(s+1t),g9(s+t)} =h(s+1), (3.1)

for some positive constant
Remark3.1 Since(s + t)? < 2P7'(s? + t7), power functions satisfy the property (3.1).
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Now, we consider the eigenvalue problem
—(@" ¢ (@) = Mt oi(z), x€(0,a), ¢1(0)=¢i(a) =0. (3.2)
Using the argument by Jun Zhou et al. [18], we can make) satisfy

max " pq(z) = 1. (3.3)
z€[0,a]

Analogously, we consider the eigenvalue problem
—(@gy(x))" = MaxPps(x), € (0,a), 2(0) = pa(a) =0. (3.4)
As above, we can obtain

max P2 py(z) = 1. (3.5)
z€[0,a]

a a

LetC, = / o1(z)dz, Cy = / po(x)dx and X = max{A;, A2}, C' = min{C}, Cs}.
Then we hgve the following reosult.

Theorem 3.2. Let (u(x,t),v(x,t)) be the solution of problerfl.1). Then the solution
of (1.1) blows up in finite time.

Proof, We set
U(t) = /0 "oy ()ule, Oz, V(1) = /0 P o (2)0(, 1)
By (1.1), (3.2) and (3.4), we have
U() = /0 "o (@), ) de = /0 ' <(ﬂ1uz)z+ /0 ' g(v)dx) o1 (2)da
_ —AIU(t)+cl/0 g(v)dz > —)\U(t)+0/0 o(v)da

and .
VI(t) > =AV(t) + C’/ f(u)dz.

Using Jensen’s inequality and (3.3), (3.5), we get
Ult) > =X\U®) + C’/ g(w)dr > —\U(t) + Cag <%/ vdm)
0 0
> =AU(t) + Cag (1/ a:p2<p2(x)v(x,t)d1:>
aJo

> —AU(t) + Cag (@) (3.6)
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and

V() > —AV(8) + Caf <@) | (3.7)
Since : % < 00, /: % < oo, andh(s +t) = h(y), we have/sooo % < 0.

Then we can obtain )
lim —(y) =
Yy—00 y

In fact, we havelim h(y) = oo for/ s < oo. By h'(y) > 0 (by f"(s) >
Yy—00

s M)
0,4"(s) > 0), we have that/(y) is nonc(l)ecreasing ij > 0. Using L'Hospital’s princi-
. h -
ple, we obtainlim % = lim A'(y). Assume by contradiction thdtm A'(y) = N <
Yy—oo Yy—00 Yy—00

. 3
oo. Then there existg, > sy such thati(y) < §Ny, and we have

/”ﬂ>i/m@:m
s Py) 3N Jy oy

. h . h
Since\ > 0, by lim M = 00, we know that there existg > s; such thatM >

Yy—00 y y
% if y > s1. Let (ug(x), vo(x)) be sufficiently larger such that

| uw@e@ =%t [ e = S
0 0

Now, by (3.6), (3.7), we have

u't) +v'(t) = Ca (g (@) +f (@)) —MNU@®) + V(1))
> Cah (M) o (M) |

a a

and integrating this inequality overfrom 0 to 7', we have

T Ut)+Vv(t) U®)+V(t)
T < / =, / : dy
a =
B 0 C’ah(w) — )\a(w) UO+V©) Cah(y) — Aay
U@®+v(e) o
. dy < 2 dy

C Juwvo hy)—22 = CJ, hy)

< 00.

This completes the proof. O

Now, we discuss the global blow-up under the following hypothesis.
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Caselip; >0,rp;=00rpy, > 0,7, =0.

Chan et al. [3,7] showed that Green’s funct@fr, £, t — ) associated with the operator
L = 27(9/0t) — 9* /0%x with the first boundary condition exists. For ease of reference,
we state their results in the following lemma.

Lemma3.3. (i) Fort > 7, G(z,§,t — 1) is continuous for(z,,&,7) € ([0,a] X
(0,77) x ((0,a] x [0,T)).

(i) For each fixed¢, ) € (0,a] x [0,T), Gy(x,&,t — 7) € C([0,a] x (7,T]).

(iii) In{(z,t,&,7):x and & are in (0,a), T >t>7 >0}, G(z,& t—7)isS posi-
tive.

Lemma 3.4. For fixedz, € (0, a], given any: € (0, a) and any finite timg’, there exist
positive constant§’; (depending orr and7’) and C, (depending or") such that

/ac;(x,g,t)dg >, /aG(xo,f,t)df <Gy
0 0

Now we give the global blow-up result.

Theorem 3.5. Under the assumption of Case 1, if the solutior(bfl) blows up at the
pointz, € (0,a), then the blow-up set of the solution @f.1)is [0, a].

Proof. Obviously, the system (1.1) is completely coupled. Therefor@dv blow up
simultaneously if the solutiofw, v) blows up in finite time. Without loss of generality,
we assume; > 0, r; = 0, andu(x,t) blows up in finite timel. By Green’s second
identity we have

ua, ) = /0 £7 G, €, EYuo (€)dE + /0 /0 Gl €, t—7) /0 g(u(y, 7))dydédr (3.8)

forany(z,t) € (0,a)x(0,7T). Sinceu(z,t) blows up atc = x(, we havetlianl u(zo,t) =
oo. By (3.8) and Lemma 3.4, we have

want) = [ MG, £, )uol€)de + / t / Gl €,7) / ooy, t — 7))dydédr

< (Chya™ max uo(x —|—C’2/ / v(y,t — 7))dydr,

zea

and thus

lim/O /Oag(v(y,t — 7))dydT = 0. (3.9)
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On the other hand, for any € (0, ), we have

u(z,t) > /§p1 (x,&, t)uo(& d§+C’1// v(y,t — 71))dydr
> Cl// v(y,t —71))dydr, te€(0,T).

It follows from the above inequality and (3.9) tt}at%u(x,t) = 0. Foranyz € {0, a},

we can always find a sequen¢er,, t,)} such that(z,,t,) — (z,7)(n — oo) and
lim u(z,,t,) = co. Thus, the blow-up set i, a], and this completes the proof. [

t—

Case2:p1=0,0<ri<lorp,=0,0<ry <1.

We assert that the blow-up set is the whole domain under certain assumptions.

Theorem 3.6. Under the assumption of Case 2 and if there exigts (0, +00) such
that
(" upp(z))e < M or  (2™v9.(x)) <M in (0,a),

if the solution of (1.1) blows up at the point, € (0,a), then the blow-up set of the
solution of (1.1)is [0, a.

Proof. The proof is similar to the proof presented in [8, 18], so we omit it. O
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