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Abstract

Existence of a unique classical nonnegative solution is established and suffi-
cient conditions for the solution that exists locally or blows up in finite time are
obtained for the degenerate and singular parabolic systemxp1ut − (xr1ux)x =∫ a

0
g(v(x, t))dx, xp2vt − (xr2vx)x =

∫ a

0
f(u(x, t))dx in (0, a) × (0, T ), where

T ≤ ∞, a ≥ 0 are constants,f , g are given functions. Furthermore, under certain
conditions it is proved that the blow-up set of the solution is the entire interval
[0, a]. These extend a recent work of Zhou, Mu and Li, which considered the
particular systems with localized sources.
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1 Introduction

In this paper, we consider degenerate and singular nonlinear reaction-diffusion equa-
tions with nonlocal source of the form

xp1ut − (xr1ux)x =

∫ a

0

g(v(x, t))dx, (x, t) ∈ (0, a)× (0, T ),

xp2vt − (xr2vx)x =

∫ a

0

f(u(x, t))dx, (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = v(0, t) = v(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, a],

(1.1)

whereu0(x), v0(x) ∈ C2+α([0, a]) for someα ∈ (0, 1) are nonnegative nontrivial func-
tions. u0(0) = u0(a) = v0(0) = v0(a) = 0, u0 andv0 satisfy compatibility conditions,
T > 0, a > 0, r1, r2 ∈ [0, 1), |p1|+ r1 6= 0, |p2|+ r2 6= 0.

LetD = (0, a) andΩt = D× (0, t]. D andΩt are their closures, respectively. Since
|p1| + r1 6= 0, |p2| + r2 6= 0, the coefficients ofut, ux, uxx andvt, vx, vxx may tend to0
or∞ asx tends to0, and thus we can regard the equations as degenerate and singular.

Floater [11] and Chan and Liu [6] investigated the blow-up properties of the problem
xqut − uxx = up, (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, a].

(1.2)

The motivation for studying problem (1.2) comes form Ockendon’s model (see [15]) for
the flow in a channel of a fluid whose viscosity depends on temperature

xut = uxx + eu,

whereu represents the temperature of the fluid. Floater in [11] approximatedeu by up

and considered equation (1.2). In [4], Chan and Chan considered the problem
xqut − uxx = f(u), (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, a].

(1.3)

For q = 0, it is the heat equation; the problem (1.3) and (1.2) (cf. [18, p. 10]) may
be used to describe the temperatureu(x, t) of a homogeneous and isotropic rod hav-
ing a constant cross-sectional area with respect tox, and a thermal conductivityK
independent ofx; inside the rod, there is a nonlinear source producing heat (due to an
exothermic reaction) atKf(u) per unit volume per unit time; the object has an initial
distribution of temperatureu0(x), and the temperature at each of its ends is kept at zero.



Blow-up for Nonlinear Parabolic Systems 89

For q = 1, the problem (1.3) may be used to describe the temperatureu of the channel
flow of a fluid with a temperature-dependent viscosity in the boundary layer (cf. [5,15]);
here,x andt denote the coordinates perpendicular and parallel to the channel wall, re-
spectively; hence,tb corresponds to the downstream position whereu blows up at some
x. In a heat conduction problem with t denoting the time, the termxq corresponds to the
reciprocal of the diffusivity (cf. [2, p. 9]); thus forq > 0, the amount of heat required to
raise the temperature of the object approaches to zero asx tends to zero; also for a fixed
x ∈ D, xq is a decreasing function ofq; physically, decreasingx or increasingq has the
effect of shifting the blow-up point towardsx = 0.

In [8], Chen and Xie discussed the degenerate and singular semilinear parabolic
equation 

ut − (xαux)x =

∫ a

0

f(u(x, t))dx, (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, a].

(1.4)

They established the local existence and uniqueness of a classical solution. Under ap-
propriate hypotheses, they obtained some sufficient conditions for the global existence
and blow-up of a positive solution.

In [9], Chen et al. consider the following degenerate nonlinear reaction diffusion
equation with nonlocal source

xqut − (xγux)x =

∫ a

0

updx, (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, a].

They established the local existence and uniqueness of a classical solution. Under ap-
propriate hypotheses, they also got some sufficient conditions for the global existence
and blow-up of a positive solution. Furthermore, under certain conditions, it is proved
that the blow-up set of the solution is the whole domain.

Very recently, Jun Zhou et al. [18] generalized the results of [9] and investigated the
blow-up properties of the following parabolic system

xq1ut − (xr1ux)x =

∫ a

0

(v(x, t))p1dx, (x, t) ∈ (0, a)× (0, T ),

xq2vt − (xr2vx)x =

∫ a

0

(u(x, t))p2dx, (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = v(0, t) = v(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, a].

(1.5)

Under certain conditions, Jun Zhou et al. proved that the blow-up set of the solution of
(1.5) is the whole domain. The existence of a unique classical nonnegative solution is
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established and sufficient conditions for solution that exist globally or blows up in finite
time are obtained.

In [14], J. Li et al. considered the effect of the singularity, degeneracy and localized
reaction on the behavior of the solution of following problem


xp1ut − (xr1ux)x = vq1(x0, t), (x, t) ∈ (0, a)× (0, T ),

xp2vt − (xr2vx)x = uq2(x0, t), (x, t) ∈ (0, a)× (0, T ),

u(0, t) = u(a, t) = v(0, t) = v(a, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, a],

(1.6)

and show that the blow-up set of the solution of (1.6) is the whole domain.
Motivated by the results of the papers [8, 9, 18], we slightly modify the method

developed by Jun Zhou et al. [18] and Y. Chen et al. [9] and extend the results of [9,18]
to a degenerate and singular parabolic system (1.1). The difficulties are the construction
of the corresponding upper solution of (1.1). It is different from [6,7,11,18] that under
certain conditions the blow-up set of the solution of (1.1) is the whole domain. But this
is consistent with the conclusions in [1,16,17].

Before stating our main results, we make some assumptions on the initial data
u0(x), v0(x) andf(s), g(s) as follows:

(A1) f, g ∈ C2([0,∞)), f(0) ≥ 0, g(0) ≥ 0, f ′(s) > 0, g′(s) > 0, f ′′(s) ≥ 0,

g′′(s) ≥ 0 for s > 0 and
∫ ∞

s0

ds

f(s)
<∞,

∫ ∞

s0

ds

g(s)
<∞ for somes0 > 0,

(A2) (u0(x), v0(x)) ∈ C2+β([0, a])× C2+β([0, a]) for someβ ∈ (0, 1) and

(u0(0), v0(0)) = (u0(a), v0(a)) = (0, 0), (u0(x), v0(x)) 6= (0, 0) if x ∈ (0, a).

This paper is organized as follows. In the next section, we show the existence
of a unique classical solution. In Section 3, we give some criteria for the solution
(u(x, t), v(x, t)) to blow-up in finite time and discuss the blow-up set.

2 Local Existence

In this section, we start with the definition of an upper solution of system (1.1).

Definition 2.1. A pair of nonnegative functions (ū(x, t), v̄(x, t)) is called an upper so-
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lution of (1.1) if (u(x, t), v(x, t)) ∈ (C([0, a]× [0, T ))2 is such that

xp1ūt − (xr1ūx)x ≥
∫ a

0

g(v̄(x, t))dx, (x, t) ∈ (0, a)× (0, T ),

xp2 v̄t − (xr2 v̄x)x ≥
∫ a

0

f(ū(x, t))dx, (x, t) ∈ (0, a)× (0, T ),

ū(0, t) ≥ 0, ū(a, t) ≥ 0, t ∈ (0, T )

v̄(0, t) ≥ 0, v̄(a, t) ≥ 0, t ∈ (0, T ),

ū(x, 0) ≥ ū0(x), v̄(x, 0) ≥ v̄0(x), x ∈ [0, a].

(2.1)

Similarly, (u(x, t), v(x, t)) ∈ (C([0, a]× [0, T ))2 is called a lower solution if it satisfies
all the reversed inequalities in (2.1).

In order to prove the existence of a unique positive solution to (1.1), we must con-
struct the following comparison principle.

Lemma 2.2. Let b1(x, t) and b2(x, t) be continuous nonnegative functions defined on
[0, a]× [0, r] for anyr ∈ (0, T ), and let(u(x, t), v(x, t)) ∈ (C(Ωr)∩C2,1(Ωr))

2 satisfy

xp1ut − (xr1ux)x ≥
∫ a

0

b1(x, t)v(x, t)dx, (x, t) ∈ (0, a)× (0, r],

xp2vt − (xr2vx)x ≥
∫ a

0

b2(x, t)u(x, t)dx, (x, t) ∈ (0, a)× (0, r],

u(0, t) ≥ 0, u(a, t) ≥ 0, v(0, t) ≥ 0, v(a, t) ≥ 0, t ∈ (0, r],

u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ [0, a].

Thenu(x, t) ≥ 0 andv(x, t) ≥ 0 on [0, a]× [0, T ).

Proof. Jun Zhou et al. proved this lemma in [18], so we omit it.

Lemma 2.3. Let (u, v) be the nonnegative solution of(1.1). Let us assume that a pair
of nonnegative functions(w(x, t), z(x, t)) ∈ (C(Ωr) ∩ C2,1(Ωr))

2 is such that

xp1wt − (xr1wx)x ≥ (≤)

∫ a

0

g(z(x, t))dx, (x, t) ∈ (0, a)× (0, r],

xp2zt − (xr2zx)x ≥ (≤)

∫ a

0

f(w(x, t))dx, (x, t) ∈ (0, a)× (0, r],

w(0, t) ≥ (=)0, w(a, t) ≥ (=)0, t ∈ (0, r],

z(0, t) ≥ (=)0, z(a, t) ≥ (=)0, t ∈ (0, r],

w(x, 0) ≥ (≤)u0(x), z(x, 0) ≥ (≤)v0(x), x ∈ [0, a].

(2.2)

Then(w(x, t), z(x, t)) ≥ (≤)(u(x, t), v(x, t)) on [0, a]× [0, T ).
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Proof. We only consider the case“ ≥ ” (as for the other case“ ≤ ” the proof is similar).
Letϕ1(x, t) = w(x, t)−u(x, t) andϕ2(x, t) = z(x, t)− v(x, t). Subtracting (1.1) from
(2.2) and using the mean value theorem, we obtain

xp1ϕ1t − (xr1ϕ1x)x ≥
∫ a

0

g′(η2)ϕ2(x, t)dx, (x, t) ∈ (0, a)× (0, r],

xp2ϕ2t − (xr2ϕ2x)x ≥
∫ a

0

f ′(η1)ϕ1(x, t)dx, (x, t) ∈ (0, a)× (0, r],

ϕ1(0, t) ≥ 0, ϕ1(a, t) ≥ 0, t ∈ (0, r],

ϕ2(0, t) ≥ 0, ϕ2(a, t) ≥ 0, t ∈ (0, r],

ϕ1(x, 0) ≥ 0, ϕ1(x, 0) ≥ 0, x ∈ [0, a],

whereη1 and η2 are some intermediate values between(w, u) and (z, v) satisfying
f ′(η1), g

′(η2) ≥ 0. Then Lemma 2.2 ensures that(ϕ1(x, t), ϕ2(x, t)) ≥ (0, 0), that
is, (w(x, t), z(x, t)) ≥ (u(x, t), v(x, t)) on [0, a]× [0, T ).

Obviously, (0, 0) is a lower solution of (1.1), and we need to construct an upper
solution. We modify the proof of Jun Zhou et al. [18, Lemma 2.2] to show the following
result.

Lemma 2.4. There exists a positive constantt0(t0 < T ) such that the problem(1.1)has
an upper solution(h1(x, t), h2(x, t)) ∈ (C(Ωt0) ∩ C2,1(Ωt0))

2.

Proof. Let

ψ(x) =
(x
a

)1−r1
(
1− x

a

)
+

(x
a

) 1−r1
2

(
1− x

a

) 1
2
,

ϕ(x) =
(x
a

)1−r2
(
1− x

a

)
+

(x
a

) 1−r2
2

(
1− x

a

) 1
2
,

and letK0 be a positive constant such that

K0ψ(x) + f(0) ≥ f(u0(x)), K0ϕ(x) + g(0) ≥ g(v0(x)).

Introduce the positive constantsM1 = sup
x∈[0,a]

ψ(x),M2 = sup
x∈[0,a]

ϕ(x) and

b20 =

∫ 1

0

(
s1−r1(1− s) + s

1−r1
2 (1− s)

1
2

)
ds,

b10 =

∫ 1

0

(
s1−r2(1− s) + s

1−r2
2 (1− s)

1
2

)
ds,

N1 = af ′(f−1(2K0M1 + f(0)))(2b10K0 + g(0)),

N2 = ag′(g−1(2K0M2 + g(0)))(2b20K0 + f(0)).
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LetK10 ∈
(

0,
1− r1
2− r1

)
andK20 ∈

(
0,

1− r2
2− r2

)
be positive constants such that

K10 ≤
(

2a2−r1N1

K0

)− 2
1−r1

, K20 ≤
(

2a2−r2N2

K0

)− 2
1−r2

.

LetK1(t), K2(t) be the positive solutions of the initial value problems

K ′
1(t) =



f ′(f−1(2K0M1 + f(0)))(b10K2(t) + g(0))

ap1−1Kp1

10 [K10(1−K10)1−r1 +K
1
2
10(1−K10)

1−r1
2 ]

, p1 ≥ 0,

f ′(f−1(2K0M1 + f(0)))(b10K2(t) + g(0))

ap1−1(1−K10)p1 [K10(1−K10)1−r1 +K
1
2
10(1−K10)

1−r1
2 ]

, p1 < 0,

K1(0) = K0,

(2.3)

K ′
2(t) =



g′(g−1(2K0M2 + g(0)))(b20K1(t) + f(0))

ap2−1Kp2

20 [K20(1−K20)1−r2 +K
1
2
2 (1−K20)

1−r2
2 ]

, p2 ≥ 0,

g′(g−1(2K0M2 + g(0)))(b20K1(t) + f(0))

ap2−1(1−K20)p2 [K20(1−K20)1−r2 +K
1
2
20(1−K20)

1−r2
2 ]

, p2 < 0,

K2(0) = K0.

(2.4)
SinceK1(t) andK2(t) are increasing functions, we can chooset0 > 0 such that

K1(t) ≤ 2K0, K2(t) ≤ 2K0 for all t ∈ [0, t0].

Set

h1(x, t) = f−1(K1(t)ψ(x) + f(0)), h2(x, t) = g−1(K2(t)ϕ(x) + g(0)).

Thenh1(x, t) ≥ 0 andh2(x, t) ≥ 0 onΩt0. We show that(h1(x, t), h2(x, t)) is an upper
solution of (1.1) inΩt0. To do this, let us construct two functionsJ1 andJ2 by

J1 = f ′(h1)

[
xp1h1t − (xr1h1x)x −

∫ a

0

g(h2)dx

]
,

and

J2 = g′(h2)

[
xp2h2t − (xr2h2x)x −

∫ a

0

f(h1)dx

]
.
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Then

J1 = f ′(h1)

[
xp1h1t − (xr1h1x)x −

∫ a

0

g(h2)dx

]
= xp1(f(h1))t − r1x

r1−1(f(h1))x − xr1(f(h1))xx

−f ′(h1)

∫ a

0

g(h2)dx+ xr1f ′′(h1)h
2
1x

≥ xp1K ′
1(t)ψ(x)−K1(t)(r1x

r1−1ψx + xr1ψxx)

−f ′(h1)

∫ a

0

(K2(t)ϕ(x) + g(0))dx

= xp1K ′
1(t)ψ(x) +K1(t)

[
2− r1
a2−r1

+

(
(1− r1)

2

4
x(r1−3)/2(a− x)1/2

+
1

2
x(r1−1)/2(a− x)−1/2 +

1

4
x(r1+1)/2(a− x)−3/2

)
1

a1−r1/2

]
−af ′(f−1(K1(t)ψ(x) + f(0)))(b10K2(t) + g(0))

≥ xp1K ′
1(t)ψ(x) + x(r1−1)/2(a− x)−1/2 K1(t)

2a1−r1/2

−af ′(f−1(K1(t)M1 + f(0)))(b10K2(t) + g(0)),

J2 = g′(h2)

[
xp2h2t − (xr2h2x)x −

∫ a

0

f(h1)dx

]
≥ xp2K ′

2(t)ϕ(x) + x(r2−1)/2(a− x)−1/2 K2(t)

2a1−r2/2

−ag′(g−1(K2(t)M2 + g(0)))(b20K1(t) + f(0)).

For (x, t) ∈ (0, aK10)× (0, t0] ∪ (a(1−K10), a)× (0, t0], we have

J1 ≥ x(r1−1)/2(a− x)−1/2 K1(t)

2a1−r1/2
− af ′(f−1(K1(t)M1 + f(0)))(b10K2(t) + g(0))

≥

K r1−1
2

10

2a2−r1

K0 − af ′(f−1(2K0M1 + f(0)))(2b10K0 + g(0))

=

K r1−1
2

10

2a2−r1

K0 −N1 ≥ 0.

For (x, t) ∈ (0, aK20)× (0, t0] ∪ (a(1−K20), a)× (0, t0], we have

J2 ≥ x(r2−1)/2(a− x)−1/2 K2(t)

2a1−r2/2
− ag′(g−1(K2(t)M2 + g(0)))(b20K1(t) + f(0))

≥

K r2−1
2

20

2a2−r2

K0 −N2 ≥ 0.
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For (x, t) ∈ [aK10, a(1−K10)]× (0, t0] by (2.3), we have

J1 ≥ xp1K ′
1(t)ψ(x)− af ′(f−1(K1(t)M1 + f(0)))(b10K2(t) + g(0))

≥


ap1Kp1

10K
′
1(t)[K10(1−K10)

1−r1 +K
1
2
10(1−K10)

1−r1
2 ]

−af ′(f−1(K1(t)M1 + f(0)))(b10K2(t) + g(0)), p1 ≥ 0,

ap1(1−K10)
p1K ′

1(t)[K10(1−K10)
1−r1 +K

1
2
10(1−K10)

1−r1
2 ]

−af ′(f−1(K1(t)M1 + f(0)))(b10K2(t) + g(0)), p1 < 0,

≥ 0.

For (x, t) ∈ [aK20, a(1 − K20)] × (0, t0] by (2.4), we can getJ2 ≥ 0 with the same
argument as that forJ1. Thus,J1(x, t) ≥ 0, J2(x, t) ≥ 0 in Ωt0. Sincef ′(s) > 0 and
g′(s) > 0 in Ωt0, we have

xp1h1t−(xr1h1x)x−
∫ a

0

g(h2)dx ≥ 0, xp2h2t−(xr2h2x)x−
∫ a

0

f(h1)dx ≥ 0 in Ωt0 ,

and

h1(0, t) = h1(a, t) = f−1(f(0)) = 0, 0 < t < t0,

h2(0, t) = h2(a, t) = g−1(g(0)) = 0, 0 < t < t0,

h1(x, 0) = f−1(K0ψ(x) + f(0)) ≥ f−1(f(u0(x))) = u0(x),

h2(x, 0) = g−1(K0ϕ(x) + g(0)) ≥ g−1(g(v0(x))) = v0(x).

So(h1(x, t), h2(x, t)) is an upper solution of (1.1). The proof is complete.

To show the existence of the classical solution(u(x, t), v(x, t)) of (1.1), let us in-
troduce a cutoff functionρ(x). By Dunford and Schwartz [10, p. 1640], there exists a
nondecreasingρ(x) ∈ C3(R) such thatρ(x) = 0 if x ≤ 0 andρ(x) = 1 if x ≥ 1. Let

0 < δ < min

{
1− r1
2− r1

a,
1− r2
2− r2

a

}
,

ρδ(x) =


0, x ≤ δ,

ρ
(x
δ
− 1

)
, δ < x < 2δ,

1, x ≥ 2δ,

andu0δ(x) = ρδ(x)u0(x), v0δ(x) = ρδ(x)v0(x). We note that

∂u0δ(x)

∂δ
=


0, x ≤ δ,

− x

δ2
ρ′

(x
δ
− 1

)
u0(x), δ < x < 2δ,

0, x ≥ 2δ,
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∂v0δ(x)

∂δ
=


0, x ≤ δ,

− x

δ2
ρ′

(x
δ
− 1

)
v0(x), δ < x < 2δ,

0, x ≥ 2δ.

Sinceρ is nondecreasing, we have
∂u0δ(x)

∂δ
≤ 0 and

∂v0δ(x)

∂δ
≤ 0. From0 ≤ ρ(x) ≤ 1,

we haveu0(x) ≥ u0δ(x), v0(x) ≥ v0δ(x) andlim
δ→0

u0δ(x) = u0(x), lim
δ→0

v0δ(x) = v0(x).

Let Dδ = (δ, a), let wδ = Dδ × (0, t0], letDδ andwδ be their respective closures,
and letSδ = {0, a} × (0, t0]. We consider the following regularized problem

xp1uδt − (xr1uδx)x =

∫ a

0

g(vδ(x, t))dx, (x, t) ∈ wδ,

xp2vδt − (xr2vδx)x =

∫ a

0

f(uδ(x, t))dx, (x, t) ∈ wδ,

uδ(0, t) = uδ(a, t) = vδ(0, t) = vδ(a, t) = 0, t ∈ (0, t0),

uδ(x, 0) = u0δ(x), vδ(x, 0) = v0δ(x), x ∈ Dδ.

(2.5)

By using Schauder’s fixed point theorem,we have the following theorem.

Theorem 2.5.The problem(2.5)admits a unique nonnegative solution

(uδ, vδ) ∈ (C2+α,1+α/2(wδ))
2.

Moreover,0 ≤ uδ ≤ h1(x, t), 0 ≤ vδ ≤ h2(x, t), (x, t) ∈ wδ, whereh1(x, t) and
h2(x, t) are given by Lemma 2.4.

Proof. By using Lemma 2.3, there exists at most one nonnegative solution(uδ, vδ). To
prove existence, we use the Schauder fixed point theorem. Let

X1 = {v1 ∈ Cα,α/2(wδ) : 0 ≤ v1(x, t) ≤ h2(x, t), (x, t) ∈ wδ},
X2 = {u1 ∈ Cα,α/2(wδ) : 0 ≤ u1(x, t) ≤ h1(x, t), (x, t) ∈ wδ}.

We note thatX1 andX2 are closed convex subsets of the Banach spaceCα,α/2(wδ).
In order to obtain the conclusion, we define another setX = X1 × X2. Obviously
(Cα,α/2(wδ))

2 is a Banach space with the norm

‖ (v1, u1) ‖α,α/2=‖ v1 ‖α,α/2 + ‖ u1 ‖α,α/2, for any (v1, u1) ∈ (Cα,α/2(wδ))
2

andX is a closed convex subset of the Banach space(Cα,α/2(wδ))
2. For any(v1, u1) ∈

(X1 ×X2), let us consider the following linearized uniformly parabolic problem

xp1Wδt − (xr1Wδx)x =

∫ a

δ

g(v1)dx, (x, t) ∈ wδ,

xp2Zδt − (xr2Zδx)x =

∫ a

δ

f(u1)dx, (x, t) ∈ wδ,

Wδ(δ, t) = Wδ(a, t) = Zδ(δ, t) = Zδ(a, t) = 0, t ∈ (0, t0],

Wδ(x, 0) = u0δ(x), Zδ(x, 0) = v0δ(x), x ∈ [δ, a].

(2.6)
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By construction,(0, 0) and(h1(x, t), h2(x, t)) are lower and upper solutions of problem
(2.6). We also note that

x−p1+r1 , x−p1−1+r1 , x−p1 , x−p2+r2 , x−p2−1+r2 , x−p2 ∈ Cα,α/2(wδ)

and

x−p1

∫ a

δ

g(v1)dx, x
−p2

∫ a

δ

f(u1)dx ∈ Cα,α/2(wδ), u0δ, v0δ ∈ C2+α(Dδ).

It follows from Ladde et al. [12, Theorem 4.2.2 on p. 143] that problem (2.6) has a
unique solution(Wδ(x, t; v1, u1).Zδ(x, t; v1, u1)) ∈ (C2+α,1+α/2(wδ))

2 such that

0 ≤ Wδ(x, t; v1, u1) ≤ h1(x, t), 0 ≤ Zδ(x, t; v1, u1) ≤ h2(x, t).

Thus, we can define a mappingT fromX into (C2+α,1+α/2(wδ))
2 such that

T (v1(x, t), u1(x, t)) = (Wδ(x, t; v1, u1), Zδ(x, t; v1, u1)),

where(Wδ(x, t; v1, u1), Zδ(x, t; v1, u1)) denotes the unique solution of (2.6) correspon-
ding to (v1(x, t), u1(x, t)) ∈ X. To use the Schauder fixed point theorem, we need to
verify thatT mapsX into itself and thatT is continuous and compact. In fact,TX ⊂ X,
and the embedding operator from the Banach space(C2+α,1+α/2(wδ))

2 to the Banach
space(Cα,α/2(wδ))

2 is compact. Therefore,T is compact. To show thatT is continuous,
let us consider sequencev1n(x, t) which converges tov1(x, t) uniformly andu1n(x, t)
which converges tou1(x, t) uniformly in the norm‖·‖α,α/2. We know thatv1(x, t) ∈ X1

andu1(x, t) ∈ X2. So we get a sequence{(v1n(x, t), u1n(x, t))} ∈ X, which converges
to (v1(x, t), u1(x, t)) uniformly in the norm‖·, ·‖α,α/2. Let (Wδn(x, t), Zδn(x, t)) and
(Wδ(x, t), Zδ(x, t)) be the solutions of (2.6) corresponding to(v1n(x, t), u1n(x, t)) and
(v1(x, t), u1(x, t)), respectively. Without loss of generality, let us assume that

‖v1n(x, t)‖α,α/2 ≤ ‖v1(x, t)‖α,α/2 + 1, for any n ≥ 1,

‖u1n(x, t)‖α,α/2 ≤ ‖u1(x, t)‖α,α/2 + 1, for any n ≥ 1.

LetW (x, t) = Wδn(x, t)−Wδ(x, t), Z(x, t) = Zδn(x, t)− Zδ(x, t). Then we have

xp1Wt − (xr1Wx)x =

∫ a

δ

(g(v1n)− g(v1))dx, (x, t) ∈ wδ,

xp2Zt − (xr2Zx)x =

∫ a

δ

(f(u1n)− f(u1))dx, (x, t) ∈ wδ,

W (δ, t) = W (a, t) = Z(δ, t) = Z(a, t) = 0, t ∈ (0, t0],

W (x, 0) = 0, Z(x, 0) = 0, x ∈ Dδ.

From Lady̌zenskaja et al. [13, Theorem 4.5.2 on p. 320], there exist positive constants
C1 (independent ofg, v1n andv1) andC2 (independent off , u1n andu1) such that

‖W‖2+α,1+α/2 ≤ C1

∥∥∥∥∫ a

δ

(g(v1n)− g(v1))

∥∥∥∥
α,α/2

≤ C1a‖g′(v1 + τ(v1n − v1))‖α,α/2‖v1n − v1‖α,α/2,



98 Congming Peng and Zuodong Yang

and we note that

‖g′(v1 + τ(v1n − v1))‖α,α/2 ≤ ‖g′(h2)‖∞

+ sup
δ≤x
x̃≤a

|g′(v1 + τ(v1n − v1))(x, t)− g′(v1 + τ(v1n − v1))(x̃, t)|
|x− x̃|α

+ sup
0≤t

t̃≤t0

|g′(v1 + τ(v1n − v1))(x, t)− g′(v1 + τ(v1n − v1))(x, t̃)|
|t− t̃|α/2

≤ ‖g′(h2)‖∞ + max
0≤s≤h2(x,t)

|g′′(s)|(‖v1‖α,α/2 + ‖v1n‖α,α/2)

≤ ‖g′(h2)‖∞ + max
0≤s≤h2(x,t)

|g′′(s)|(2‖v1‖α,α/2 + 1),

whereτ ∈ (0, 1). Therefore,

‖W‖2+α,1+α/2 ≤ C1a(‖g′(h2)‖∞
+ max

0≤s≤h2(x,t)
|g′′(s)|(2‖v1‖α,α/2 + 1))‖v1n − v1‖α,α/2

≤ C ′1‖v1n − v1‖α,α/2

and

‖Z‖2+α,1+α/2 ≤ C2a(‖f ′(h1)‖∞
+ max

0≤s≤h1(x,t)
|f ′′(s)|(2‖u1‖α,α/2 + 1))‖u1n − u1‖α,α/2

≤ C ′2‖u1n − u1‖α,α/2.

It follows that

‖(W,Z)‖2+α,1+α/2 = ‖W‖2+α,1+α/2 + ‖Z‖2+α,1+α/2 ≤ C‖(v1n − v1, u1n − u1)‖α,α/2.

This shows that the mappingT is continuous. By the Schauder fixed point theorem, the
proof is complete.

Now we can prove the following local existence result.

Theorem 2.6. There exists somet0 < T such that problem(1.1)has a unique nonneg-
ative solution(u(x, t), v(x, t)) ∈ (C(Ωt0) ∩ C2,1(Ωt0))

2 .

Proof. By Theorem 2.5, the problem (2.5) has a unique nonnegative solution(uδ, vδ) ∈
(C2+α,1+α/2(w̄δ))

2. It follows from Lemma 2.3 that(uδ1, vδ1) ≤ (uδ2, vδ2) if δ1 > δ2.
Therefore,lim

δ→0
(uδ(x, t), vδ(x, t)) exists for all(x, t) ∈ (0, a]× [0, t0]. Let

(u(x, t), v(x, t)) = lim
δ→0

(uδ(x, t), vδ(x, t)), (x, t) ∈ (0, a]× [0, t0]
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and define(u(0, t), v(0, t)) = (0, 0), t ∈ [0, t0]. We show that(u(x, t), v(x, t)) is a
classical solution of (1.1) inΩt0. For any(x1, t1) ∈ Ωt0, there exist three domains

Q′ = (a′1, a
′
2)× (t′2, t

′
3], Q

′′ = (a′′1, a
′′
2)× (t′′2, t

′′
3], Q

′′′ = (a′′′1 , a
′′′
2 )× (t′′′2 , t

′′′
3 ]

such that(x1, t1) ∈ Q′ ⊂ Q′′ ⊂ Q′′′ ⊂ (0, a)× (0, t0] with

0 < a′′′1 < a′′1 < a′1 < x1 < a′2 < a′′2 < a′′′2 < a

and
0 < t′′′2 < t′′2 < t′2 < t1 < t′3 < t′′3 < t′′′3 < t0.

By the conditions off andg, we know thath1(x, t) andh2(x, t) are finite onQ̄′′′. For
any constantq > 1 and some positive constantsK3 andK4, we have

‖uδ‖Lq(Q′′′) ≤ ‖h1‖Lq(Q′′′) ≤ K3, ‖vδ‖Lq(Q′′′) ≤ ‖h2‖Lq(Q′′′) ≤ K3,

‖x−p1

∫ a

δ

g(vδ)dx‖Lq(Q′′′) ≤ (a∗1)
−p1‖

∫ a

0

g(h2)dx‖Lq(Q′′′) ≤ K4,

‖x−p2

∫ a

δ

f(uδ)dx‖Lq(Q′′′) ≤ (a∗2)
−p2‖

∫ a

0

f(h1)dx‖Lq(Q′′′) ≤ K4,

wherea∗1 = a′′′1 if q1 ≥ 0, a∗1 = a′′′2 if q1 < 0, anda∗2 = a′′′1 if q2 ≥ 0, a∗2 = a′′′2 if q2 <
0. By the localLp-estimate of Lady̌zenskaja et al. [13, pp. 341–342, 352],(uδ, vδ) ∈
(W 2,1

q (Q′′))2. By the embedding theorem in [15, pp. 61, 80],W 2,1
q (Q′′) ↪→ Hα,α/2(Q′′)

if we chooseq > 2/(1− α). Then,‖uδ‖Hα,α/2(Q′′) ≤ K5 and‖vδ‖Hα,α/2(Q′′) ≤ K5, for
some positive constantK5, and we have∥∥∥∥x−p1

∫ a

δ

g(vδ)dx

∥∥∥∥
Hα,α/2(Q′′)

≤ (a∗1)
−p1

∥∥∥∥∫ a

δ

g(h2)dx

∥∥∥∥
∞

+ sup
(x,t)∈Q′′
(x̃,t)∈Q′′

|
∫ a

δ
g(vδ)dx| · |x−p1 − x̃−p1|

|x− x̃|α

+ sup
(x,t)∈Q′′

(x,t̃)∈Q′′

|x−p1||
∫ a

δ
g′(vδ(x, t̃) + τ(vδ(x, t)− vδ(x, t̃)))(vδ(x, t)− vδ(x, t̃))dx|

|t− t̃|α/2

≤ (a∗1)
−p1‖

∫ a

0

g(h2)dx‖∞

+

∥∥∥∥∫ a

0

g(h2)dx

∥∥∥∥
∞
· ‖x−p1‖Hα(a′′1 ,a′′2 ) + (a∗1)

−p1

∥∥∥∥∫ a

0

g(h2)dx

∥∥∥∥
∞
· ‖vδ‖Hα,α/2(Q′′)

≤ K6

and ∥∥∥∥x−p2

∫ a

δ

f(uδ)dx

∥∥∥∥
Hα,α/2(Q′′)

≤ K6
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for some positiveK6, which is independent ofδ, whereτ ∈ (0, 1). By Lady̌zenskaja et
al. [16, pp. 351–352], we have

‖uδ‖H2+α,1+α/2(Q′) ≤ K7, ‖vδ‖H2+α,1+α/2(Q′) ≤ K7

for some positive constantK7 independent ofδ. This implies thatuδ, uδt, uδx, uδxx and
vδ, vδt, vδx, vδxx are equicontinuous inQ′. By the Ascoli–Arzela theorem, we know that

‖u‖H2+α′,1+α′/2(Q′) ≤ K8, ‖v‖H2+α′,1+α′/2(Q′) ≤ K8

for someα′ ∈ (0, α) and some positive constantK8 independent ofδ, and that the
derivatives ofu andv are uniform limits of the corresponding partial derivatives ofuδ

andvδ, respectively. Hence(u(x, t), v(x, t)) satisfy (1.1), and

lim
t→0

(u(x, t), v(x, t)) = lim
t→0

lim
δ→0

(uδ(x, t), vδ(x, t)) = lim
δ→0

(u0δ(x, t), v0δ(x, t))

= (u0(x), v0(x)).

It follows from 0 ≤ u(x, t) ≤ h1(x, t), 0 ≤ v(x, t) ≤ h2(x, t) and h1(x, t) →
0, h2(x, t) → 0 asx→ 0 or x→ a that

lim
x→0

(u(x, t), v(x, t)) = lim
x→a

(u(x, t), v(x, t)) = (0, 0).

Thus(u, v) ∈ C(Ωt0) ∩ C2,1(Ωt0) is the solution of (1.1) inΩt0. This completes the
proof.

Theorem 2.7. LetT be the supremum overt0 for which there is a unique nonnegative
solution(u(x, t), v(x, t)) ∈ (C(Ωt0) ∩ C2,1(Ωt0))

2 of (1.1). Then(1.1) has a unique
nonnegative solution(u(x, t), v(x, t)) ∈ (C([0, a]× [0, T ))∩C2,1((0, a)× (0, T )))2. If
T <∞, thenlim sup

t→T
max
x∈[0,a]

(|u(x, t)|+ |v(x, t)|) = ∞.

Proof. The proof of this theorem is similar to the proof of [11, Theorem 2.5], so we
omit it.

3 Blow-up of Solutions

In this section, we give some global blow-up result of the solution of (1.1). In order to
obtain the blow-up result, we assume thatp1 ≥ r1−1, p2 ≥ r2−1 andf(s), g(s) satisfy

f(s) + g(t) ≥ ηmin{f(s+ t), g(s+ t)} ≡ h(s+ t), (3.1)

for some positive constantη.

Remark3.1. Since(s+ t)p ≤ 2p−1(sp + tp), power functions satisfy the property (3.1).



Blow-up for Nonlinear Parabolic Systems 101

Now, we consider the eigenvalue problem

−(xr1ϕ′1(x))
′ = λ1x

p1ϕ1(x), x ∈ (0, a), ϕ1(0) = ϕ1(a) = 0. (3.2)

Using the argument by Jun Zhou et al. [18], we can makeϕ1(x) satisfy

max
x∈[0,a]

xp1ϕ1(x) = 1. (3.3)

Analogously, we consider the eigenvalue problem

−(xr2ϕ′2(x))
′ = λ2x

p2ϕ2(x), x ∈ (0, a), ϕ2(0) = ϕ2(a) = 0. (3.4)

As above, we can obtain
max
x∈[0,a]

xp2ϕ2(x) = 1. (3.5)

Let C1 =

∫ a

0

ϕ1(x)dx, C2 =

∫ a

0

ϕ2(x)dx andλ = max{λ1, λ2}, C = min{C1, C2}.
Then we have the following result.

Theorem 3.2. Let (u(x, t), v(x, t)) be the solution of problem(1.1). Then the solution
of (1.1)blows up in finite time.

Proof. We set

U(t) =

∫ a

0

xp1ϕ1(x)u(x, t)dx, V (t) =

∫ a

0

xp2ϕ2(x)v(x, t)dx.

By (1.1), (3.2) and (3.4), we have

U ′(t) =

∫ a

0

xp1ϕ1(x)ut(x, t)dx =

∫ a

0

(
(xr1ux)x +

∫ a

0

g(v)dx

)
ϕ1(x)dx

= −λ1U(t) + C1

∫ a

0

g(v)dx ≥ −λU(t) + C

∫ a

0

g(v)dx

and

V ′(t) ≥ −λV (t) + C

∫ a

0

f(u)dx.

Using Jensen’s inequality and (3.3), (3.5), we get

U ′(t) ≥ −λU(t) + C

∫ a

0

g(v)dx ≥ −λU(t) + Cag

(
1

a

∫ a

0

vdx

)
≥ −λU(t) + Cag

(
1

a

∫ a

0

xp2ϕ2(x)v(x, t)dx

)
≥ −λU(t) + Cag

(
V (t)

a

)
(3.6)
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and

V ′(t) ≥ −λV (t) + Caf

(
U(t)

a

)
. (3.7)

Since
∫ ∞

s0

ds

f(s)
<∞,

∫ ∞

s0

ds

g(s)
<∞, andh(s + t) = h(y), we have

∫ ∞

s0

dy

h(y)
<∞.

Then we can obtain

lim
y→∞

h(y)

y
= ∞.

In fact, we havelim
y→∞

h(y) = ∞ for
∫ ∞

s0

ds

h(y)
< ∞. By h′′(y) ≥ 0 (by f ′′(s) ≥

0, g′′(s) ≥ 0), we have thath′(y) is nondecreasing ify > 0. Using L’Hospital’s princi-

ple, we obtainlim
y→∞

h(y)

y
= lim

y→∞
h′(y). Assume by contradiction thatlim

y→∞
h′(y) = N <

∞. Then there existsy0 ≥ s0 such thath(y) ≤ 3

2
Ny, and we have∫ ∞

s0

dy

h(y)
≥ 2

3N

∫ ∞

s0

dy

y
= ∞.

Sinceλ > 0, by lim
y→∞

h(y)

y
= ∞, we know that there existss1 ≥ s0 such that

h(y)

y
≥

2λ

C
if y ≥ s1. Let (u0(x), v0(x)) be sufficiently larger such that∫ a

0

xp1u0(x)ϕ1(x) ≥
as1

2
,

∫ a

0

xp2v0(x)ϕ2(x) ≥
as1

2
.

Now, by (3.6), (3.7), we have

U ′(t) + V ′(t) = Ca

(
g

(
V (t)

a

)
+ f

(
U(t)

a

))
− λ(U(t) + V (t))

≥ Cah

(
U(t) + V (t)

a

)
− λa

(
U(t) + V (t)

a

)
,

and integrating this inequality overt from 0 to T , we have

T ≤ a

∫ T

0

dU(t)+V (t)
a

Cah(U(t)+V (t)
a

)− λa(U(t)+V (t)
a

)
= a

∫ U(t)+V (t)
a

U(0)+V (0)
a

dy

Cah(y)− λay

=
1

C

∫ U(t)+V (t)
a

U(0)+V (0)
a

dy

h(y)− λy
C

≤ 2

C

∫ ∞

s0

dy

h(y)
<∞.

This completes the proof.

Now, we discuss the global blow-up under the following hypothesis.
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Case 1:p1 > 0, r1 = 0 or p2 > 0, r2 = 0.

Chan et al. [3,7] showed that Green’s functionG(x, ξ, t−τ) associated with the operator
L = xp(∂/∂t)− ∂2/∂2x with the first boundary condition exists. For ease of reference,
we state their results in the following lemma.

Lemma 3.3. (i) For t > τ , G(x, ξ, t − τ) is continuous for(x, t, ξ, τ) ∈ ([0, a] ×
(0, T ])× ((0, a]× [0, T )).

(ii ) For each fixed(ξ, τ) ∈ (0, a]× [0, T ),Gt(x, ξ, t− τ) ∈ C([0, a]× (τ, T ]).

(iii ) In {(x, t, ξ, τ) : x and ξ are in (0, a), T ≥ t > τ ≥ 0},G(x, ξ, t− τ) is posi-
tive.

Lemma 3.4. For fixedx0 ∈ (0, a], given anyx ∈ (0, a) and any finite timeT , there exist
positive constantsC1 (depending onx andT ) andC2 (depending onT ) such that∫ a

0

G(x, ξ, t)dξ > C1,

∫ a

0

G(x0, ξ, t)dξ < C2.

Now we give the global blow-up result.

Theorem 3.5. Under the assumption of Case 1, if the solution of(1.1)blows up at the
pointx0 ∈ (0, a), then the blow-up set of the solution of(1.1) is [0, a].

Proof. Obviously, the system (1.1) is completely coupled. Therefore,u andv blow up
simultaneously if the solution(u, v) blows up in finite time. Without loss of generality,
we assumep1 > 0, r1 = 0, andu(x, t) blows up in finite timeT . By Green’s second
identity we have

u(x, t) =

∫ a

0

ξp1G(x, ξ, t)u0(ξ)dξ+

∫ t

0

∫ a

0

G(x, ξ, t−τ)
∫ a

0

g(v(y, τ))dydξdτ (3.8)

for any(x, t) ∈ (0, a)×(0, T ). Sinceu(x, t) blows up atx = x0, we havelim
t→T

u(x0, t) =

∞. By (3.8) and Lemma 3.4, we have

u(x0, t) =

∫ a

0

ξp1G(x0, ξ, t)u0(ξ)dξ +

∫ t

0

∫ a

0

G(x0, ξ, τ)

∫ a

0

g(v(y, t− τ))dydξdτ

≤ C2a
p1 max

x∈[0,a]
u0(x) + C2

∫ t

0

∫ a

0

g(v(y, t− τ))dydτ,

and thus

lim
t→T

∫ t

0

∫ a

0

g(v(y, t− τ))dydτ = ∞. (3.9)
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On the other hand, for anyx ∈ (0, a), we have

u(x, t) ≥
∫ a

0

ξp1G(x, ξ, t)u0(ξ)dξ + C1

∫ t

0

∫ a

0

g(v(y, t− τ))dydτ

≥ C1

∫ t

0

∫ a

0

g(v(y, t− τ))dydτ, t ∈ (0, T ).

It follows from the above inequality and (3.9) thatlim
t→T

u(x, t) = ∞. For anyx̃ ∈ {0, a},
we can always find a sequence{(xn, tn)} such that(xn, tn) → (x̃, T )(n → ∞) and
lim
t→T

u(xn, tn) = ∞. Thus, the blow-up set is[0, a], and this completes the proof.

Case 2:p1 = 0, 0 ≤ r1 < 1 or p2 = 0, 0 ≤ r2 < 1.

We assert that the blow-up set is the whole domain under certain assumptions.

Theorem 3.6. Under the assumption of Case 2 and if there existsM ∈ (0,+∞) such
that

(xr1u0x(x))x ≤M or (xr2v0x(x))x ≤M in (0, a),

if the solution of(1.1) blows up at the pointx0 ∈ (0, a), then the blow-up set of the
solution of (1.1) is [0, a].

Proof. The proof is similar to the proof presented in [8,18], so we omit it.
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