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Abstract

We study the existence of positive solutions to phieaplacian dynamic equa-
tions (g(u®(t)))Y +a(t) f(t,u(t)) = 0fort € [0, T|r satisfying either the bound-
ary conditionu(0) — Bo(u®(0)) = 0, u®(T) = 0 or u®(0) = 0, u®(T) +
B (u(T)) = 0, whereg(v) = |v|P? v with p > 1. By using a new five function-
als fixed-point theorem due to Avery, we prove that the boundary value problems
has at least three positive solutions. As an application, an example is given to
illustrate our result.

AMS Subject Classifications:34B15, 39A10.
Keywords: Time scales, boundary value problems, positive solutiprisaplacian,
fixed point theorem.

1 Introduction

The theory of dynamic equations on time scales has appeared in the Ph.D. thesis of
Hilger [12]. Theoretically, this new theory cannot only unify continuous and discrete
equations [13], but have also exhibited much more complicated dynamics on time scales
[7]. Practically, dynamic equations on time scales have led to several important appli-
cations, e.g., in the study of insect population models, and epidemic models [1, 7].
Many of the works are concerned with the existence of positive solution for bound-
ary value problems on time scales [6-8, 16,17, 21]. Additionally, there is much current
attention being paid to the existence of positive solution for boundary value problems
with p-Laplacian differential or difference equations, see [3, 15, 18-20, 22] and the ref-
erences therein. However, very few work has been done to the existence of positive
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solutions for the two-point boundary value problems pelcaplacian dynamic equa-
tions on time scales, see [10]. In 2005, He [10] considered the two-point boundary
value problem

(g(u®()))Y +a(t)f(u(t)) =0, t € [0, T (1.2)
with the boundary conditions
u(0) — Bo(u™(0)) = 0, u™(T) = 0, (1.2)
or
u(0) = 0, u®(T) + By (u™(T)) = 0, (1.3)

whereB, and B, satisfy
Bz < Bi(z) < Az, z € RT, i =0,1;

here B and A are nonnegative numberg,7" are points inT, T (the time scale) is a
nonempty closed subset Bf Under some assumptions granda(t), he proved that
the boundary value problem (1.1) and (1.2) or (1.3) has at teaspositive solutions
by applying the double fixed point theorem due to Avery and Henderson [5].

In this paper, motivated by [10], we consider the existence of triple positive solutions
to the boundary value problem

(9(u™(®)))" +a(t)f(t,u(t)) =0, t € 0, T (1.4)

satisfying the boundary conditions (1.2) or (1.3). We establish the existence of at least
threepositive solutions of boundary value problem (1.4) and (1.2) or (1.3) by using the
five functionals fixed point theorem in a cone [4]. Our results are new for the special
cases of difference equations and differential equations as well as in the general time
scale setting. As an application, an example is given to illustrate our result.

Throughout this paper, it is assumed that

(Hy) f(t,u(t)) : [0,T]r x R — RT is a continuous functionX* denotes the set of
nonnegative real numbers);

(H2) a(t) : [0, T]r — [0,00) is left-dense continuous (i.ea, € Ci4(T, [0, o0))) and
does not vanish identically on any closed subintervaloof |t (Ci4(T, [0, 00))
denotes the set of all left-dense continuous functions fioim [0, c0)).

2 Preliminaries
In this section, we begin by presenting some basic definitions which can be found in

Atici and Guseinov [2], and Bohner and Peterson [7]. Another excellent source on
dynamic systems on measure chains is the book [14].
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A time scal€T is a nonempty closed subset®f It follows that the jump operators
o,p:T—T

o(t)=inf{reT: 7>t} andp(t) =sup{reT:7 <t}

(supplemented bynf () := supT andsup® := inf T) are well defined. The point
t € T is called left-dense, left-scattered, right-dense, right-scatteygd)it= ¢, p(t) <
t, o(t) = t, o(t) > t, respectively. IfT has a right-scattered minimum, define
T, = T — {m}; otherwise, sefl,, = T. If T has a left-scattered maximuid, define
T = T — {M}; otherwise, seT™™ = T. The forward graininess ig(t) := o(t) — t.
Similarly, the backward graininessist) := ¢t — p(t).

We make the blanket assumption thal” are points irfill. By an interval(0, 7")r we
always mear0, 7") N T. Other types of intervals are defined similarly. For T — R
andt € T*, the delta derivative [7] of att, denoted byf*(t), is the number (provided
it exists) with the property that given ary> 0, there is a neighborhoaod C T of ¢
such that

[f(o(t)) = f(s) = fADo(t) = s]| < elo(t) - s

foralls € U. Forf : T — R andt € T,, the nabla derivative [2] of att, denoted by
fY(t), is the number (provided it exists) with the property that given@amyo, there is
a neighborhood’ of ¢ such that

[F(p(t) = f(s) = fY(O)]p(t) — s]| < €lp(t) — ]

forall s € U. Inthe casel = R, f2(t) = f'(t) = fY(t). WhenT = Z, f2(t) =
flt+1) = f(t)and fY(t) = f(t) - f(t - 1).

A function f : T — R is called ld-continuous provided it is continuous at left-dense
points inT and its right sided limit exists (finite) at right-dense pointinif T = R,
then f is Id-continuous if and only iff is continuous. IfT = Z, then any function is
Id-continuous. It is known from [2] that if is |d-continuous, then there is a functiéh
such thatFV (t) = f(t). In this case, we define

/ f(r)VT =F(b) — F(a).

Now, we provide some background materials on the theory of cones in Banach
spaces [9], which will be used in the rest of the paper.

Definition 2.1. Let E be a real Banach space. A nonempty, closed, conveR setF
is said to be a cone provided the following conditions are satisfied:

@) If z € PandX > 0, then\z € P;

(i) if x € Pand—x € P, thenz = 0.
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Every coneP C F induces an ordering i given by
x<yifandonlyify —xz € P.

Definition 2.2. Given a coneP in a real Banach spadg, a functionak) : P — R is
said to be increasing oR, providedy (z) < i (y), forall z,y € P with z < y.

Definition 2.3. A map « is said to be a nonnegative continuous concave functional on
a coneP of a real Banach spadéif o : P — [0, o0) is continuous and

alte + (1 —t)y) > ta(z) + (1 —t)a(y)

for all z,y € P andt € [0, 1]. Similarly we say the mag is a nonnegative continuous
convex functional on a con of a real Banach spadeif 5 : P — [0, o) is continuous
and

Blte + (1 —t)y) <tB(x) + (1 —1)B(y)
forall x,y € P andt € [0, 1].
Let~, 3, 8 be nonnegative continuous convex functionalsoandq, ¢ be nonneg-

ative continuous concave functionals BnFor nonnegative real numbéisa, b, d and
c we define the following convex sets:

P(y,c) ={x € P:~(z) <c}
P(v,a,a,¢c) ={x € P:a < a(z),v(z)
ot

Q(v,B,d,c) ={z € P: p(z) <d,
P(v,0,a,a,b,c) ={z € P:a < a(x),0(x) <b~y(x) <c},

and

Q(v, B, 0,h,d,c) ={x € P:h <px),Bx) <d~yx)<ch.

To prove our main results, we need the following theorem, which is the five functionals
fixed point theorem [4].

Theorem 2.4.Let P be a cone in a real Banach spade Suppose that there exist
positive numbers and M, nonnegative continuous concave functionabndy on P,
and nonnegative continuous convex functionals andéd on P, with

a(z) < B(z) and ||z|| < M~(x) forall x € P(v,c).

Supposeb : P(v,c) — P(v,c) is completely continuous and there exist nonnegative
numbersh, a, k, b, with0 < a < b such that

(i) forx € P(~,0,a,b,k,c),
{x € P(,0,a,b,k,c):a(x) >b} #0 and «o(P(x)) > b;
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(i) forx € Q(v, B, ¢, h,a,c),
{x € Q(,B,¢,h,a,¢): B(x) <a} #0 and [(P(x)) < a;
(iii) a(P(z)) > bforx € P(v,a,b,c) with (P(z)) >

k;
(iv) B(®(z)) < aforz e Q(v, S, a,c) with p(P(z)) < h.

Then® has at least three fixed points, x2, 23 € P(7, ¢) such that

B(x1) < a, b < a(zy) anda < B(x3) with a(z3) < b.

3 Existence Results

In this section, by using the five functionals fixed point theorem, we shall establish the
existence of at leaghree positive solutions of the boundary value problem (1.4) and
(2.2) or (1.3).

We note that, from the nonnegativity @ft) andf (¢, «(t)), a solution of the problem
(1.4) and (1.2) or (1.3) is nonnegative and concavéoh|r, see [11].

Assume that) € (0,7)r is a constant and let = Cy4([0,T]r,R). ThenFE is a

Banach space with norfju|| = sup |u(t)|. Define the coné® C E by
tel0, T

P={uekE \uA(T) = 0, u is concave, nonnegative df, o(T)]; } .
Fix [ € T such that < n <[ < T. Then we have the following.

Lemma 3.1.If u € P, then
. t
(l) U(t) 2 T HUH fort - [O,T]T,

(i) nu(l) < lu(n).

Proof. From [10] we obtain that (i) is true. In view of the concavity«ft) € P, by
lettingt = ? x =l andy = 0 in Definition 2.3, (ii) is satisfied. [

First we define the nonnegative continuous concave functienalsd ¢ and non-
negative continuous convex functionalss andéd on P respectively by

a(u) == ten[fll}%T u(t) = u(l),
Bu) = tg[‘%“(t) = u(l),
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and

p(u) = téﬁ?%qr“(t) = u(n).

It is clear thatn(u) = B(u) for all w € P. For notational convenience, we denote

M = AG (/OTa(r)Vr)+nG (/OTa(r)W),
m = (B+Z)G</ZTG(7”)VT>,
No= (A+D)G (/OTa(rWr),

whereG(w) = |w|ﬁsgn(w) is the inverse of.
Now we state and prove our main result.

Theorem 3.2. Assume thafH;) and (H,) hold and that there exist nonnegative real
numbersa, b, c With 0 < a < Ib/T < Inc/T?, Mb < me, and f(t,u(t)) such that the
following conditions hold:

(F) f(t,z) <g (%) forall (t,z) € [0, T]r x {0, T—C];

(Fo) f(t,x) >g (%) forall (t,z) € [[,T]r x {b, Tn_Zb}

(F) f(t.z) < g (%) for all (¢, z) € [0, T]x x [0, ?}

Then the boundary value problefh.4) and (1.2) or (1.3) has at least three positive
solutionsu;, u, andus such that

t) <a, b< mi t)anda < t) with mi t) <b.
i 0 = e 0= i, vl ande < g w0 W iy esl0)

Proof. Define a completely continuous integral operabor P — E by

(@u)(t) = By (G ( /0 ' a(r) f(r,u(r))Vr)) + /0 e < / ' alr) f(r,u(r))Vr) As,

t € [0, T]r. We first note that fon € P we havedu(t) > 0, du”(T) = 0, and, applying
the fundamental theorem of calculus, we deduce ¢h4t) is concave. Consequently,
du(t) € P. Since

(@(u™(1)Y = —a(t)f(t, u(t)) < 0fort € (0,T)r,
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all fixed points ofP are solutions of the boundary value problem (1.4) and (1.2). Assume

thatu € P(v,c). Theny(u) = trr[})&u]( u(t) = u(n) < c. Consequently) < u(t) < ¢
€0l

. T T o
for ¢ € [0, n]r. It follows from Lemma3.1 (i) that ||u|| < Tuln) < =5 This implies
n n

T
0<u(t) < “Ctorte [0, T']r. Furthermore
Ui

7 (2(u)) = (Pu)(n)

~ B, (G (/OT a(r)f(r,u(r))Vr)) + /OnG (/T a(r)f(r,u(r))Vr) As

< AG (/OTa(T)f(r, u(r))VT) + G (/OT a(r) f(r, u(r))VT)
[AG (/OTa(r))Vr) + G (/OT a(T)VT)}

Therefore®(u) € P(v,c). From Lemma 3.1 (i), we have(u) = u(n) > %Huu.

<

T Ele

T T
Hencel|u|| < —u(n) = —v(u) forallu € P.
n n
N - Tb
Now, we show that (i)—(iv) of Theorem 2.4 are satisfied. If wedet= — and

Tb 7
k = —, then

a(u) =u(l) = T > b, O(u) = u(n) = %b = kandy(u) = % <,

which imply that
{u € P(v,0,a,b,k,c) : a(u) > b} # 0.

T
Foru e P (%0,@, b, —b,c) , we have
n

Th
O(u) = t) = < —.
(u) = max u(t) = u(n) < p
Consequently,
Th
0 <u(t) < —forallt e [0,7]r.
n
By Lemma 3.1 (i), we have
Tu(n T%b
Juf < ) _ T8,

n n?
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This means
T?b
b S U(t) S 7 fOI’ a" t e [l,T]’]I‘

and

a(®(u)) = (Pu)(l)

_ B, (G (/OT a(r)f(r,u(’r))Vr)) + /Ol G (/T a(r)f(r,u(r))Vr) As

> BG (/lTa(r)f(r,u(r))Vr) e (/lTa(r)f(r,u(r))Vr>
> (B4+1)G <[Ta(r)vr> by

m

Therefore, condition (i) of Theorem 2.4 is true. Next, if we take- % andh = ?a,
then

) = uln) = 1= < e plu) =uln) = 7= = h, Bw) =u() = L <a,

which means

{ueQ(v,5,¢,h,a,c): B(u) <a} #0.

For
ueq (%@%%ﬂ&) )
we have
B(u) := max u(t) = u(l) < a.
te[0,l]
Consequently

0 <u(t) <aforte|0,]r.

In view of Lemma 3.1 (i)

Tul(l) < ? fort € [0, Tr,

lull <

and thus

T
0<ut) < T“ for ¢ € [0, Tz
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Therefore,

B(®(u) = (Pu)(l)

~ B, (G (/OT a(r)f(r,u(r))VT)) + /OZG (/T a(r)f(r,u(r))Vr) As

< AG (/OTa(r)f(r,u(T))Vr) e (/OTa(r)f(r,u(T))Vr)

< (A+))G (/OT a(r)Vr) %

= a.

This implies that condition (ii) of Theorem 2.4 holds. NextiE P(~, a, b, c) and

B(0(u)) = B(u(n)) > k = %b
then
0(@(u)) = (@u)(1) > 70(u(D) > £@(u(n)) > 7 % %” - % >0

Therefore, condition (iii) of Theorem 2.4 is satisfied. Finally, i€ Q(~, 3, a, c) and

P(®(u)) = B(u(n) < h ==,

then by Lemma 3.1 (ii) we obtain

T T T an
l =

B(@(u) = (Pu)(l) < —(Pu(l)) < —P(u(n)) < — X

U n T
which shows that the condition (iv) of Theorem 2.4 is fulfilled. Thus, all the conditions

in Theorem 2.4 are met, so the boundary value problem (1.4) and (1.2) has at least three
positive solutions:y, us, usz such that

a,

max ui(t) < a, b < min uy(t) anda < max uz(t) with min wus(t) < b.
tel0,l] te[l, T te[0,l]r te[l, T

The proof is complete. O]
Now, we consider the boundary value problem (1.4) and (1.3) argdsisch that
0<é<n<T.
Define a cone’; C F by
P, = {u € E |u®(0) = 0, u is concave nonnegative d, o(7T)], } .

Similar to Lemma 3.1, we have the following.
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Lemma 3.3.If u € P, then

() u(t) >

(i) (T = n)u(&) < (T = u(n).

Now define the nonnegative continuous concave functiomaéndy; and nonneg-
ative continuous convex functionajs, 5; andéd, on P, respectively by

||u|| for t € [0, T]r;

() =6y (u) = max u(t) = uls),

te[n,Tr
oy (u) = éﬂ%ﬁﬂ(” = u(§),
Bi(u) = tén[é%lt(t) = u(§),

and

p1(u) := min u(t) = u(n).
te[oﬂﬂr

Itis clear thatw; (u) = f;(u) forallu € P;. Let

M, = AG (/OT a(r)Vr) + (T =G (/UTa(r)Vr> ,

my = (B+T—£)G(/O€a(r)Vr>,
e = (A+T—§)G(/0Ta(r)Vr).

We have the following result.

Theorem 3.4. Assume thafH;) and (H,) hold and that there exist nonnegative real
T—8&)b T—-&(T —
(T=b T=OT=me yrp e f(t u(t)

2

numbersa, b, cwith0 < a <
such that the following conditions are satisfied:

(G) f(t,x)<g (J\/%) forall (t,x) € [0,T]r x {0, TT—_CH}

(Go) f(t,x) >g¢ (mil) forall (¢,z) € [, T]r x {b, %}

Ta
72

a

)\g) forall (t,z) € [0,T]r x {0

@9f@@<g(
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Then the boundary value problefh.4) and (1.3) has at least three positive solutions
Uy, Ua, usz Such that

max u(t) < a, b < min us(t) anda < max wug(t) with min wus(t) < b.
tE[ﬁ,T]T te[o E]T te[ng]T tG[O’g]T

Proof. Define a completely continuous integral operabor P — E by

(Du)(t) = By <G (/OTa(T)f(r,u(r))Vr>) + /tTG </Osa(r)f(r,u(r))VT) As,

t € [0,T]r. The rest of the proof is similar to that of Theorem 3.2, so we omit it
here. O

4 An Example

In this section, we present a simple example to explain our result. Let

T _D {1 — (%)Z} U {1} andT=1.

Consider the following boundary value problem wjthk- 3.

v
(9 (u(®)) " +a(t)f(tult)) =0, t €0, 1] (4.1)
satisfying the boundary conditions
u(0) = 2(u(0)) = 0, ut(1) =0, (4.2)
where
a(t) =t + p(t) fort € [0,1]r,
and
((1x107F, € [0,0.048],
0.1963z — 9.214 x 1072, € [0.048,0.051],
B ) 5.9x%x1074, € [0.051,0.816],
Pt ul) = F(W) = 83333 « 1010 — 8.997 x 10°°, u € [0.816, 0.84],
6.1 x 1074, c [0.84, 1]
[ s(w), € [1,00),
s(u) satisfiess(1) = 6.1 x 107* ands(u) : R — R" is continuous. If we choose
A=B=2/1l= % i then a direct calculation shows that

M = G (/01 a(r)VT) 4G </01a(7“)Vr)
9_



84 T. Li and X. Yuan

Using a similar way, we have
m ~ 2.1083, A\, = 2.125.
Furthermore, if we take
a=0.006, b=0.051, ¢=0.21,

thenMb = 0.11475 < 0.44274 ~ mc and0 < a < b < Inc.

flt,u) =1x107°< 79723 x 10 % =¢ 3) for (t,u) € [0, 1]r x [0,0.048],

l

§|@ N
>

1
Fltu) >59x107 > 58516107 = ¢ ( ) for (t,u) € lg, 1} % [0.051, 0.816],
T

and

Fltou) <61x1074 <8711 x 102 = ¢ (é) for (,u) € [0, 1]rx € [0,0.84].
By Theorem 3.2, we see that the boundary value problem (4.1) and (4.2) has at least
threepositive solutions., us anduz such that

max ui(t) < 0.006 < max wug(t) and min wug(t) < 0.051 < min wus(t).

refod), refo.d] et relia),

T T
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