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Abstract

We study the existence of positive solutions to thep-Laplacian dynamic equa-
tions(g(u∆(t)))∇+a(t)f(t, u(t)) = 0 for t ∈ [0, T ]T satisfying either the bound-
ary conditionu(0) − B0(u∆(0)) = 0, u∆(T ) = 0 or u∆(0) = 0, u∆(T ) +
B1(u(T )) = 0, whereg(ν) = |ν|p−2 ν with p > 1. By using a new five function-
als fixed-point theorem due to Avery, we prove that the boundary value problems
has at least three positive solutions. As an application, an example is given to
illustrate our result.

AMS Subject Classifications:34B15, 39A10.
Keywords: Time scales, boundary value problems, positive solutions,p-Laplacian,
fixed point theorem.

1 Introduction

The theory of dynamic equations on time scales has appeared in the Ph.D. thesis of
Hilger [12]. Theoretically, this new theory cannot only unify continuous and discrete
equations [13], but have also exhibited much more complicated dynamics on time scales
[7]. Practically, dynamic equations on time scales have led to several important appli-
cations, e.g., in the study of insect population models, and epidemic models [1,7].

Many of the works are concerned with the existence of positive solution for bound-
ary value problems on time scales [6–8, 16, 17, 21]. Additionally, there is much current
attention being paid to the existence of positive solution for boundary value problems
with p-Laplacian differential or difference equations, see [3, 15, 18–20, 22] and the ref-
erences therein. However, very few work has been done to the existence of positive
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solutions for the two-point boundary value problems forp-Laplacian dynamic equa-
tions on time scales, see [10]. In 2005, He [10] considered the two-point boundary
value problem

(g(u∆(t)))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ]T (1.1)

with the boundary conditions

u(0)−B0(u
∆(0)) = 0, u∆(T ) = 0, (1.2)

or
u∆(0) = 0, u∆(T ) +B1(u

∆(T )) = 0, (1.3)

whereB0 andB1 satisfy

Bx ≤ Bi(x) ≤ Ax, x ∈ R+, i = 0, 1;

hereB andA are nonnegative numbers,0, T are points inT, T (the time scale) is a
nonempty closed subset ofR. Under some assumptions onf anda(t), he proved that
the boundary value problem (1.1) and (1.2) or (1.3) has at leasttwo positive solutions
by applying the double fixed point theorem due to Avery and Henderson [5].

In this paper, motivated by [10], we consider the existence of triple positive solutions
to the boundary value problem

(g(u∆(t)))∇ + a(t)f(t, u(t)) = 0, t ∈ [0, T ]T (1.4)

satisfying the boundary conditions (1.2) or (1.3). We establish the existence of at least
threepositive solutions of boundary value problem (1.4) and (1.2) or (1.3) by using the
five functionals fixed point theorem in a cone [4]. Our results are new for the special
cases of difference equations and differential equations as well as in the general time
scale setting. As an application, an example is given to illustrate our result.

Throughout this paper, it is assumed that

(H1) f(t, u(t)) : [0, T ]T × R → R+ is a continuous function (R+ denotes the set of
nonnegative real numbers);

(H2) a(t) : [0, T ]T → [0,∞) is left-dense continuous (i.e.,a ∈ Cld(T, [0,∞))) and
does not vanish identically on any closed subinterval of[0, T ]T (Cld(T, [0,∞))
denotes the set of all left-dense continuous functions fromT to [0,∞)).

2 Preliminaries

In this section, we begin by presenting some basic definitions which can be found in
Atici and Guseinov [2], and Bohner and Peterson [7]. Another excellent source on
dynamic systems on measure chains is the book [14].
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A time scaleT is a nonempty closed subset ofR. It follows that the jump operators
σ, ρ : T → T

σ(t) = inf {τ ∈ T : τ > t} andρ(t) = sup {τ ∈ T : τ < t}

(supplemented byinf ∅ := sup T and sup ∅ := inf T) are well defined. The point
t ∈ T is called left-dense, left-scattered, right-dense, right-scattered ifρ(t) = t, ρ(t) <
t, σ(t) = t, σ(t) > t, respectively. IfT has a right-scattered minimumm, define
Tκ = T − {m}; otherwise, setTκ = T. If T has a left-scattered maximumM , define
Tκ = T − {M}; otherwise, setTκ = T. The forward graininess isµ(t) := σ(t) − t.
Similarly, the backward graininess isυ(t) := t− ρ(t).

We make the blanket assumption that0, T are points inT. By an interval(0, T )T we
always mean(0, T ) ∩ T. Other types of intervals are defined similarly. Forf : T → R
andt ∈ Tκ, the delta derivative [7] off at t, denoted byf∆(t), is the number (provided
it exists) with the property that given anyε > 0, there is a neighborhoodU ⊂ T of t
such that ∣∣f(σ(t))− f(s)− f∆(t)[σ(t)− s]

∣∣ ≤ ε |σ(t)− s|

for all s ∈ U . Forf : T → R andt ∈ Tκ, the nabla derivative [2] off at t, denoted by
f∇(t), is the number (provided it exists) with the property that given anyε > 0, there is
a neighborhoodU of t such that∣∣f(ρ(t))− f(s)− f∇(t)[ρ(t)− s]

∣∣ ≤ ε |ρ(t)− s|

for all s ∈ U . In the caseT = R, f∆(t) = f ′(t) = f∇(t). WhenT = Z, f∆(t) =
f(t+ 1)− f(t) andf∇(t) = f(t)− f(t− 1).

A functionf : T → R is called ld-continuous provided it is continuous at left-dense
points inT and its right sided limit exists (finite) at right-dense points inT. If T = R,
thenf is ld-continuous if and only iff is continuous. IfT = Z, then any function is
ld-continuous. It is known from [2] that iff is ld-continuous, then there is a functionF
such thatF∇(t) = f(t). In this case, we define∫ b

a

f(τ)∇τ = F (b)− F (a).

Now, we provide some background materials on the theory of cones in Banach
spaces [9], which will be used in the rest of the paper.

Definition 2.1. LetE be a real Banach space. A nonempty, closed, convex setP ⊂ E
is said to be a cone provided the following conditions are satisfied:

(i) If x ∈ P andλ ≥ 0, thenλx ∈ P ;

(ii) if x ∈ P and−x ∈ P , thenx = 0.
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Every coneP ⊂ E induces an ordering inE given by

x ≤ y if and only if y − x ∈ P.

Definition 2.2. Given a coneP in a real Banach spaceE, a functionalψ : P → R is
said to be increasing onP , providedψ(x) ≤ ψ(y), for all x, y ∈ P with x ≤ y.

Definition 2.3. A mapα is said to be a nonnegative continuous concave functional on
a coneP of a real Banach spaceE if α : P → [0,∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P andt ∈ [0, 1]. Similarly we say the mapβ is a nonnegative continuous
convex functional on a coneP of a real Banach spaceE if β : P → [0,∞) is continuous
and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P andt ∈ [0, 1].

Let γ, β, θ be nonnegative continuous convex functionals onP andα, ϕ be nonneg-
ative continuous concave functionals onP . For nonnegative real numbersh, a, b, d and
c we define the following convex sets:

P (γ, c) = {x ∈ P : γ(x) < c} ,
P (γ, α, a, c) = {x ∈ P : a ≤ α(x), γ(x) ≤ c} ,
Q(γ, β, d, c) = {x ∈ P : β(x) ≤ d, γ(x) ≤ c} ,

P (γ, θ, α, a, b, c) = {x ∈ P : a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c} ,

and

Q(γ, β, ϕ, h, d, c) = {x ∈ P : h ≤ ϕ(x), β(x) ≤ d, γ(x) ≤ c} .

To prove our main results, we need the following theorem, which is the five functionals
fixed point theorem [4].

Theorem 2.4. Let P be a cone in a real Banach spaceE. Suppose that there exist
positive numbersc andM , nonnegative continuous concave functionalsα andϕ onP ,
and nonnegative continuous convex functionalsγ, β andθ onP , with

α(x) ≤ β(x) and ‖x‖ ≤Mγ(x) for all x ∈ P (γ, c).

SupposeΦ : P (γ, c) → P (γ, c) is completely continuous and there exist nonnegative
numbersh, a, k, b, with 0 < a < b such that

(i) for x ∈ P (γ, θ, α, b, k, c),

{x ∈ P (γ, θ, α, b, k, c) : α(x) > b} 6= ∅ and α(Φ(x)) > b;
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(ii ) for x ∈ Q(γ, β, ϕ, h, a, c),

{x ∈ Q(γ, β, ϕ, h, a, c) : β(x) < a} 6= ∅ and β(Φ(x)) < a;

(iii ) α(Φ(x)) > b for x ∈ P (γ, α, b, c) with θ(Φ(x)) > k;

(iv) β(Φ(x)) < a for x ∈ Q(γ, β, a, c) with ϕ(Φ(x)) < h.

ThenΦ has at least three fixed pointsx1, x2, x3 ∈ P (γ, c) such that

β(x1) < a, b < α(x2) anda < β(x3) with α(x3) < b.

3 Existence Results

In this section, by using the five functionals fixed point theorem, we shall establish the
existence of at leastthreepositive solutions of the boundary value problem (1.4) and
(1.2) or (1.3).

We note that, from the nonnegativity ofa(t) andf(t, u(t)), a solution of the problem
(1.4) and (1.2) or (1.3) is nonnegative and concave on[0, T ]T, see [11].

Assume thatη ∈ (0, T )T is a constant and letE = Cld([0, T ]T,R). ThenE is a
Banach space with norm‖u‖ = sup

t∈[0,T ]T

|u(t)|. Define the coneP ⊂ E by

P =
{
u ∈ E

∣∣u∆(T ) = 0, u is concave, nonnegative on[0, σ(T )]T
}
.

Fix l ∈ T such that0 < η < l < T . Then we have the following.

Lemma 3.1. If u ∈ P , then

(i) u(t) ≥ t

T
‖u‖ for t ∈ [0, T ]T;

(ii ) ηu(l) ≤ lu(η).

Proof. From [10] we obtain that (i) is true. In view of the concavity ofu(t) ∈ P , by

letting t =
η

l
, x = l andy = 0 in Definition 2.3, (ii) is satisfied.

First we define the nonnegative continuous concave functionalsα andϕ and non-
negative continuous convex functionalsγ, β andθ onP respectively by

γ(u) := θ(u) := max
t∈[0,η]T

u(t) = u(η),

α(u) := min
t∈[l,T ]T

u(t) = u(l),

β(u) := max
t∈[0,l]T

u(t) = u(l),
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and

ϕ(u) := min
t∈[η,T ]T

u(t) = u(η).

It is clear thatα(u) = β(u) for all u ∈ P . For notational convenience, we denote

M = AG

(∫ T

0

a(r)∇r
)

+ ηG

(∫ T

0

a(r)∇r
)
,

m = (B + l)G

(∫ T

l

a(r)∇r
)
,

λl = (A+ l)G

(∫ T

0

a(r)∇r
)
,

whereG(w) = |w|
1

p−1 sgn(w) is the inverse ofg.
Now we state and prove our main result.

Theorem 3.2. Assume that(H1) and (H2) hold and that there exist nonnegative real
numbersa, b, c with 0 < a < lb/T < lηc/T 2, Mb < mc, andf(t, u(t)) such that the
following conditions hold:

(F1) f(t, x) < g
( c

M

)
for all (t, x) ∈ [0, T ]T ×

[
0,
T c

η

]
;

(F2) f(t, x) > g

(
b

m

)
for all (t, x) ∈ [l, T ]T ×

[
b,
T 2b

η2

]
;

(F3) f(t, x) < g

(
a

λl

)
for all (t, x) ∈ [0, T ]T ×

[
0,
Ta

l

]
.

Then the boundary value problem(1.4) and (1.2) or (1.3) has at least three positive
solutionsu1, u2 andu3 such that

max
t∈[0,l]T

u1(t) < a, b < min
t∈[l,T ]T

u2(t) anda < max
t∈[0,l]T

u3(t) with min
t∈[l,T ]T

u3(t) < b.

Proof. Define a completely continuous integral operatorΦ : P → E by

(Φu)(t) = B0

(
G

(∫ T

0

a(r)f(r, u(r))∇r
))

+

∫ t

0

G

(∫ T

s

a(r)f(r, u(r))∇r
)

∆s,

t ∈ [0, T ]T. We first note that foru ∈ P we haveΦu(t) ≥ 0, Φu∆(T ) = 0, and, applying
the fundamental theorem of calculus, we deduce thatΦu(t) is concave. Consequently,
Φu(t) ∈ P . Since

(Φ(u∆(t)))∇ = −a(t)f(t, u(t)) ≤ 0 for t ∈ (0, T )T,
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all fixed points ofΦ are solutions of the boundary value problem (1.4) and (1.2). Assume
thatu ∈ P (γ, c). Thenγ(u) = max

t∈[0,η]T
u(t) = u(η) ≤ c. Consequently,0 ≤ u(t) ≤ c

for t ∈ [0, η]T. It follows from Lemma3.1 (i) that ‖u‖ ≤ Tu(η)

η
≤ Tc

η
. This implies

0 ≤ u(t) ≤ Tc

η
for t ∈ [0, T ]T. Furthermore

γ (Φ(u)) = (Φu)(η)

= B0

(
G

(∫ T

0

a(r)f(r, u(r))∇r
))

+

∫ η

0

G

(∫ T

s

a(r)f(r, u(r))∇r
)

∆s

≤ AG

(∫ T

0

a(r)f(r, u(r))∇r
)

+ ηG

(∫ T

0

a(r)f(r, u(r))∇r
)

≤ c

M

[
AG

(∫ T

0

a(r))∇r
)

+ ηG

(∫ T

0

a(r)∇r
)]

= c.

ThereforeΦ(u) ∈ P (γ, c). From Lemma 3.1 (i), we haveγ(u) = u(η) ≥ η

T
‖u‖.

Hence‖u‖ ≤ T

η
u(η) =

T

η
γ(u) for all u ∈ P .

Now, we show that (i)–(iv) of Theorem 2.4 are satisfied. If we letu ≡ Tb

η
and

k =
Tb

η
, then

α(u) = u(l) =
Tb

η
> b, θ(u) = u(η) =

Tb

η
= k andγ(u) =

Tb

η
< c,

which imply that
{u ∈ P (γ, θ, α, b, k, c) : α(u) > b} 6= ∅.

Foru ∈ P
(
γ, θ, α, b,

T b

η
, c

)
, we have

θ(u) = max
t∈[0,η]T

u(t) = u(η) ≤ Tb

η
.

Consequently,

0 ≤ u(t) ≤ Tb

η
for all t ∈ [0, η]T.

By Lemma 3.1 (i), we have

‖u‖ ≤ Tu(η)

η
=
T 2b

η2
.
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This means

b ≤ u(t) ≤ T 2b

η2
for all t ∈ [l, T ]T

and

α(Φ(u)) = (Φu)(l)

= B0

(
G

(∫ T

0

a(r)f(r, u(r))∇r
))

+

∫ l

0

G

(∫ T

s

a(r)f(r, u(r))∇r
)

∆s

≥ BG

(∫ T

l

a(r)f(r, u(r))∇r
)

+ lG

(∫ T

l

a(r)f(r, u(r))∇r
)

≥ (B + l)G

(∫ T

l

a(r)∇r
)
b

m
= b.

Therefore, condition (i) of Theorem 2.4 is true. Next, if we takeu =
ηa

T
andh =

ηa

T
,

then

γ(u) = u(η) =
ηa

T
< c, ϕ(u) = u(η) =

ηa

T
= h, β(u) = u(l) =

ηa

T
< a,

which means

{u ∈ Q (γ, β, ϕ, h, a, c) : β(u) < a} 6= ∅.

For

u ∈ Q
(
γ, β, ϕ,

ηa

T
, a, c

)
,

we have

β(u) := max
t∈[0,l]T

u(t) = u(l) ≤ a.

Consequently

0 ≤ u(t) ≤ a for t ∈ [0, l]T.

In view of Lemma 3.1 (i)

‖u‖ ≤ Tu(l)

l
≤ Ta

l
for t ∈ [0, T ]T,

and thus

0 ≤ u(t) ≤ Ta

l
for t ∈ [0, T ]T.
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Therefore,

β(Φ(u)) = (Φu)(l)

= B0

(
G

(∫ T

0

a(r)f(r, u(r))∇r
))

+

∫ l

0

G

(∫ T

s

a(r)f(r, u(r))∇r
)

∆s

≤ AG

(∫ T

0

a(r)f(r, u(r))∇r
)

+ lG

(∫ T

0

a(r)f(r, u(r))∇r
)

≤ (A+ l)G

(∫ T

0

a(r)∇r
)
a

λl

= a.

This implies that condition (ii) of Theorem 2.4 holds. Next, ifu ∈ P (γ, α, b, c) and

θ(Φ(u)) = Φ(u(η)) > k =
Tb

η
,

then

α(Φ(u)) = (Φu)(l) ≥ l

T
Φ(u(l)) ≥ l

T
Φ(u(η)) >

l

T
× Tb

η
=
lb

η
> b.

Therefore, condition (iii) of Theorem 2.4 is satisfied. Finally, ifu ∈ Q(γ, β, a, c) and

ϕ(Φ(u)) = Φ(u(η)) < h =
aη

T
,

then by Lemma 3.1 (ii) we obtain

β(Φ(u)) = (Φu)(l) ≤ T

l
(Φu(l)) ≤ T

η
Φ(u(η)) <

T

η
× aη

T
= a,

which shows that the condition (iv) of Theorem 2.4 is fulfilled. Thus, all the conditions
in Theorem 2.4 are met, so the boundary value problem (1.4) and (1.2) has at least three
positive solutionsu1, u2, u3 such that

max
t∈[0,l]T

u1(t) < a, b < min
t∈[l,T ]T

u2(t) anda < max
t∈[0,l]T

u3(t) with min
t∈[l,T ]T

u3(t) < b.

The proof is complete.

Now, we consider the boundary value problem (1.4) and (1.3) and fixξ such that

0 < ξ < η < T.

Define a coneP1 ⊂ E by

P1 =
{
u ∈ E

∣∣u∆(0) = 0, u is concave nonnegative on[0, σ(T )]T
}
.

Similar to Lemma 3.1, we have the following.
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Lemma 3.3. If u ∈ P1, then

(i) u(t) ≥ T − t

T
‖u‖ for t ∈ [0, T ]T;

(ii ) (T − η)u(ξ) ≤ (T − ξ)u(η).

Now define the nonnegative continuous concave functionalsα1 andϕ1 and nonneg-
ative continuous convex functionalsγ1, β1 andθ1 onP1 respectively by

γ1(u) := θ1(u) := max
t∈[η,T ]T

u(t) = u(η),

α1(u) := min
t∈[0,ξ]T

u(t) = u(ξ),

β1(u) := max
t∈[ξ,T ]T

u(t) = u(ξ),

and

ϕ1(u) := min
t∈[0,η]T

u(t) = u(η).

It is clear thatα1(u) = β1(u) for all u ∈ P1. Let

M1 = AG

(∫ T

0

a(r)∇r
)

+ (T − η)G

(∫ T

0

a(r)∇r
)
,

m1 = (B + T − ξ)G

(∫ ξ

0

a(r)∇r
)
,

λξ = (A+ T − ξ)G

(∫ T

0

a(r)∇r
)
.

We have the following result.

Theorem 3.4. Assume that(H1) and (H2) hold and that there exist nonnegative real

numbersa, b, c with 0 < a <
(T − ξ)b

T
<

(T − ξ)(T − η)c

T 2
, M1b < m1c, f(t, u(t))

such that the following conditions are satisfied:

(G1) f(t, x) < g

(
c

M1

)
for all (t, x) ∈ [0, T ]T ×

[
0,

T c

T − η

]
;

(G2) f(t, x) > g

(
b

m1

)
for all (t, x) ∈ [ξ, T ]T ×

[
b,

T 2b

(T − η)η

]
;

(G3) f(t, x) < g

(
a

λξ

)
for all (t, x) ∈ [0, T ]T ×

[
0,

Ta

T − ξ

]
.
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Then the boundary value problem(1.4) and (1.3) has at least three positive solutions
u1, u2, u3 such that

max
t∈[ξ,T ]T

u1(t) < a, b < min
t∈[0,ξ]T

u2(t) anda < max
t∈[ξ,T ]T

u3(t) with min
t∈[0,ξ]T

u3(t) < b.

Proof. Define a completely continuous integral operatorΦ : P → E by

(Φu)(t) = B1

(
G

(∫ T

0

a(r)f(r, u(r))∇r
))

+

∫ T

t

G

(∫ s

0

a(r)f(r, u(r))∇r
)

∆s,

t ∈ [0, T ]T. The rest of the proof is similar to that of Theorem 3.2, so we omit it
here.

4 An Example

In this section, we present a simple example to explain our result. Let

T =
∞⋃
i=1

{
1−

(
1

2

)i
}
∪ {1} andT=1.

Consider the following boundary value problem withp = 3.(
g

(
u∆(t)

))∇
+ a(t)f(t, u(t)) = 0, t ∈ [0, 1]T (4.1)

satisfying the boundary conditions

u(0)− 2(u∆(0)) = 0, u∆(1) = 0, (4.2)

where
a(t) = t+ ρ(t) for t ∈ [0, 1]T,

and

f(t, u(t)) =: f(u) =



1× 10−6, u ∈ [0, 0.048],
0.1963x− 9.214× 10−3, u ∈ [0.048, 0.051],
5.9× 10−4, u ∈ [0.051, 0.816],
8.3333× 10−4x− 8.997× 10−5, u ∈ [0.816, 0.84],
6.1× 10−4, u ∈ [0.84, 1],
s(u), u ∈ [1,∞),

s(u) satisfiess(1) = 6.1 × 10−4 ands(u) : R → R+ is continuous. If we choose

A = B = 2, l =
1

8
, η =

1

4
, then a direct calculation shows that

M = 2G

(∫ 1

0

a(r)∇r
)

+ ηG

(∫ 1

0

a(r)∇r
)

=

(
2 +

1

4

)
G

(∫ 1

0

(r + ρ(r))∇r
)

=
9

4
= 2.25.
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Using a similar way, we have

m ≈ 2.1083, λl = 2.125.

Furthermore, if we take

a = 0.006, b = 0.051, c = 0.21,

thenMb = 0.11475 < 0.44274 ≈ mc and0 < a < lb < lηc.

f(t, u) = 1× 10−6 < 7.9723× 10−6 = g

(
a

λl

)
for (t, u) ∈ [0, 1]T × [0, 0.048],

f(t, u) ≥ 5.9×10−4 > 5.8516×10−4 = g

(
b

m

)
for (t, u) ∈

[
1

8
, 1

]
T
× [0.051, 0.816],

and

f(t, u) ≤ 6.1× 10−4 < 8.7111× 10−3 = g
( c

M

)
for (t, u) ∈ [0, 1]T× ∈ [0, 0.84].

By Theorem 3.2, we see that the boundary value problem (4.1) and (4.2) has at least
threepositive solutionsu1, u2 andu3 such that

max
t∈[0, 1

8 ]T

u1(t) < 0.006 < max
t∈[0, 1

8 ]T

u3(t) and min
t∈[ 1

8
,1]T

u3(t) < 0.051 < min
t∈[ 1

8
,1]T

u2(t).
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