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Abstract

In this study, we investigate the eigenvalues and eigenvectors of a quadratic
pencil of ¢g-difference equations. The results obtained are then used to solve the
corresponding system of differential equations with boundary and initial conditions
and zero conditions at infinity.

AMS Subject Classifications:39A10.
Keywords: Quadratic pencilg-difference equation, eigenvalue, eigenvector.

1 Introduction

We consider the system of linear second order differential equations

dZUn t dun t
dtQ( ) = Tn dt( ) + an_lun—1<t) =+ bnun<t> t qanlni1 (t)7 (11)

n e {0,1,...,N—1}, t>0

Cn

with the “boundary” conditions
u_1(t) =0, un(t)+huy_1(t)=0, t>0 (1.2)
and the conditions (initial conditions at= 0 and zero “end” conditions dt= co)

un(0) = fy, tlggo un(t) =0, ne{0,1,...,N—1}, (1.3)
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where N > 2 is a positive integerg > 0 is a fixed real number{u,(t)}"__, is a

desired solutionf,, (n = 0,1, ..., N — 1) are given complex numbers, the coefficients
Cn, Tn, an, b, Of equation (1.1) and the numbegrin the boundary conditions (1.2) are
real, and
an, # 0, ¢, >0, (1.4)
bo — qlag| >0, by_1—hgan_1 — |an_2| >0,
by — |an—1| — qla,| >0, ne{l,2,...,N—2}

with strict inequality in at least one relation of (1.5). {&,,(t)}"__, is a solution of

problem (1.1)—(1.3), then taking boundary conditions (1.2) into account, we have

(1.5)

d?u(t dug(t
o d;)z( ) = To c(i)t( ) + bouo(t) + qaous (1),
d2un t dun t
Cn dtQ( ) = r, dt( ) + a1ty 1(t) + by (t) + qanun1(t), (1.6)
n = 1,2,...,N -2,
Puy_1(t dun_1(t
CN—1—gt21< ) — TN—1—th1< ) + CLN—QUN_Q(t) + (bN_1 — han—l)UN—1(t).

Consequently, finding a solutic{mn(t)}nN}1 of problem (1.1)—(1.3) is equivalent to the

problem of finding a solutior{un(t)}fl\’:‘o1 of system (1.6) that satisfies the conditions
(1.3). Setting

uo(t) fo
uy(t) fi
u<t) - . s f = . s
un—1(t) fn—1
¢ 0 0 | [ 0 0 0 |
0 g 0 --- 0 O v 0 --- 0
Cc=10 0 ¢ - 01, R=1{0 0 rp -~ 0 |,
(0 0 0 -+ oy 0 0 0 -+ ry_]
[ by qag 0 0 0 0 ]
Qo b1 qaq 0 0 0
0 a; by 0 0 0
J=1: : A : : : ; (1.7)
0 0 0 bN_g qan—_3 0
0 0 0 an—3 by_2 qan—2
L 0 0 0 0 anN—2 bN_1 — han_1 ]
we can write problem (1.6), (1.3) in the form
d*u(t du(t
et pdul®) ), 0 <t < oo (1.8)

dt? dt
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u(0) = f, tli)m u(t) = 0. (1.9)

o0

Thus problem (1.1)—(1.3) is equivalent to problem (1.8), (1.9), i.e{u,ilf(t)}i:f}1 is
a solution of problem (1.1)—(1.3), then the vector-functign) = {un(lt)}f:‘o1 forms
a solution of problem (1.8), (1.9), and converselyy(t) = {un(t)}fj;Ol is a solution

of (1.8), (1.9) then{u,, (t)}"__,, whereu_,(t) = 0, anduy(t) = —huy_(t), forms a
solution of problem (1.1)—(1.3).

Our principal aim in this paper is to prove that problem (1.1)—(1.3) (or, equivalently,
problem (1.8), (1.9)) has a unique solution and to investigate the structure of the solu-
tion, that is, to give an effective formula for it. To do so, we seek a nontrivial solution

of equation (1.8), which has the form
u(t) = eMy, (1.10)

where) is a complex constant angdis a constant vector (an element of the spacg
which depends upoi and which we desire to be nontrivial, that is, not equd,tthe
null vector. Substituting (1.10) into (1.8), we obtain

(NC — AR~ J)y =0. (1.11)

Definition 1.1. A complex number, is said to be an eigenvalue of equation (1.11) (or
of the quadratic penci’>C — AR — .J) if there exists a nonzero vectgre CV satisfying
equation (1.11) fon = \,. The vectory is called an eigenvector of equation (1.11),
corresponding to the eigenvalig.

Thus the vector-function (1.10) is a nontrivial solution of equation (1.8) if and only
if \is an eigenvalue anglis a corresponding eigenvector of equation (1.11). Note that
(1.11) is equivalent to the discrete boundary value problem

(/\QCn — Ay = b0)Yn — An-1Yn-1 — qanyni1 =0, n=0,1,....N—1, (1.12)

Yo =0, yy+hyn =0, (1.13)
thatis, if {y,}.__, is a solution of problem (1.12), (1.13), then the vegter {y,}

n=-—1
forms a solution of equation (1.11), and conversely i {yn}ffgol is a solution of
(1.112), then{yn}f:_l, wherey_; = 0 andyy = —hyy_1, forms a solution of problem
(1.12), (1.13).
Let us denote by, . .., )\, all eigenvalues of equation (1.11), andsy, ..., y™
the corresponding eigenvectors. Then by linearity of equation (1.8) the vector-function

u(t) = Zozje”\jty(j) (1.14)
j=1
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will be a solution of equation (1.8), wherg, ..., «,, are arbitrary constants indepen-
dent oft. Now we must try to choose the constantsso that (1.14) will also satisfy the
conditions in (1.9):

Z ozjy(j) = 7, tlirgozajekjty(j) —0. (1.15)
j=1 j=1

In this paper we show that under the conditions (1.4), (1.5), such a choice of constants
«; Is possible if we pick out suitable eigenvalues We also find formulas for the
constantsy;. To this end we have to examine the eigenvalue problem (1.11) in detail.

The paper is organized as follows. In Section 2 we present some needed facts about
second order self-adjointdifference equations because (1.12) is such an equation. In
Section 3 reality of the eigenvalues and “orthogonality” of the eigenvectors are estab-
lished. Section 4 contains further properties of the eigenvalues and eigenvectors. In
Section 5 we find the form of a general solution of equation (1.8). Section 6 determines
the number of the negative eigenvalues. Section 7 is devoted to the proof of the basis-
ness of “half” of the eigenvectors. Finally, in Section 8, using the results obtained for
the eigenvalue problem, we prove existence and uniqueness of solution to the problem
(1.1)—(1.3) and present an effective formula for the solution.

Note that a comprehensive treatment of general matrix polynomials to which our
quadratic pencih>C’ — AR — J belongs is given in [4]. However, due to the special
structure (1.7) of the matriceS, R and.J, and the conditions (1.4), (1.5), we have
succeeded in obtaining, in this paper, more specific results. Similar problems involving
usual difference equationg & 1) were investigated earlier in [5, 6].

2 Auxiliary Facts on Linear ¢-difference Equations

For a treatment of-calculus, we refer the reader to [7]. The theorems given below in
this section and related to second order self-adjpiifference equations are similar to
those for usual second order difference equations [9] and are not difficult to verify.

Definition 2.1. Let g be a fixed real number such tha#: 0 andq # 1. Let us set
¢={¢"nezy={.,¢%¢" ¢ ¢, ¢ .}

Let y(x) be a complex-valued function defined foe ¢“. The “g-difference” operator

D, is defined by

Dy(x) = %, z € ¢ (2.1)

The expression in (2.1) is called thalerivative of the functiony at x.
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Higher orderg-derivatives are defined by repeated application of the opefajor
For example, the second ordgderivative is

y(¢°x) — (g + Dylgz) + qy(z)
q(q — 1)%a? '

Fundamental properties &1, are given in the following theorem.

Dgy(w) = Dy(Dyy(z)) =

Theorem 2.2. Assumef, g : ¢* — C are functions. Then
(i) Dy(y(x) + 2(x)) = Dyy(x) + Dyz(x),
(it) Dy(cy(z)) = cDyy(z) if cis a constant,
(iii) Dy(y(z)z(x)) = (Day(x))z(x) +y(qr) Doz(x) = y(x) Dgz () + (Dgy(x)) (),
) D, <w> _ (Dyy(@)=(x) — y(x)Dy=(x)

() (2)2(q7) if z(x)z(qz) # 0.

Example 2.3. We have the following:
(i) D,c=0if cis a constant,
(i) D,z =1,
(i) Dyz* = (q+ 1)z,
(iv) Dy’ = (¢" +q+1)a?,

Inq
(g — D’

Theorem 2.4.1f D,y(z) is identically zero on”, theny(x) is constant on”.

(V) Dylnz =

Let p(z) andr(z) be given functions defined gyt with p(x) # 0 for all 2 € ¢*.
The second order self-adjoint linear homogenepdsgference equation is defined to be

D, [p <§) D,y (g)} +r(z)y(z) =0, z¢€q” (2.2)
wherey(x) is a desired solution. We can also write equation (2.2) in the form
x x 7
olg)vlg)t b(x)y(z) + qa(x)y(qz) =0, = €q", (2.3)

where

a(r) = —PE ey ) — galz) — a <f> .

(q — 1)2¢%x?’ q
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Note that any equation written in the form of equation (2.3), wheg # 0 on¢”, can
be written in the self-adjoint form of equation (2.2) by taking

p(a) = (¢ — 1P @%a(x), (x) = b(a) + qale) + a (—) |

q
Settingz = ¢" (n € Z) in equation (2.3), we get
a(g"y(q"™") +b(g")y(d") + qalg")y(¢"™) =0, n € Z.
Finally, denoting
an =a(q"), b, ="0(q"), yn=y(¢") for neZ,
we can write the last equation in the form
n-1Yn—1 + bpYn + qapYns1 =0, n € Z. (2.4)

Further we will deal with equations of the form (2.4) assuming ghatany fixed positive
real number. Note that equation (1.12) has the form of equation (2.4). Take a fixed
integern, € Z and consider the initial conditions

Ynog = €05 Yno+1 = C1, (25)
wherec, andc, are given numbers.

Theorem 2.5 (Existence and Uniqueness TheoremThe initial value problem (IVP)
(2.4), (2.5) has exactly one solution= (y,).

Corollary 2.6. Let(y,) be a solution of equatio(2.4). If y,, is zero for two successive
integer values of,, theny,, = 0 forall n € Z.

Definition 2.7. Lety = (y,) andz = (z,) be solutions of equation (2.4). The Wron-
skian of these solutions is defined to be

Yn Zn

= YnZnt1 — Yni12n, N E 7.
Yn+1 Rn+1

Wn(yv Z) =

Theorem 2.8.1f y = (y,) andz = (z,,) are solutions of equatio(2.4), then

WTL(?J?Z) - ‘ ) TLGZ,
qn

n

wherec is a constant.

Corollary 2.9. If y = (y,) andz = (z,) are solutions of equatiof2.4), then either
Wy, z) =0foralln € ZorW,(y,z) # 0forall n € Z.

Theorem 2.10.Any two solutions of equatiq.4)are linearly independent if and only
if their Wronskian is different from zero.

Theorem 2.11.Equation(2.4) has two linearly independent solutions and every solu-
tion of equation2.4)is a linear combination of these solutions.
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3 Properties of the Eigenvalues and Eigenvectors

In this section we establish the reality of the eigenvalues and get several “orthogonality”
relations for the eigenvectors of problem (1.11) assuming that there exist the eigenval-
ues and eigenvectors. Existence of the eigenvalues and eigenvectors and their further
properties will be established in the next section. Note that there are only a few works
concerning spectral analysis @¢tifference equations, see [1-3].

Consider the eigenvalue problem (1.11), where the matriteR, and.J have the
form (1.7), and we assume throughout that the conditions (1.4), (1.5) are satisfied. We
will investigate the equation (1.11) in the linear space

¥ ={y=w )¢ y.e€C, n=0,1,...,N -1}
with the inner product

N—-1
(yv z)q = Z qnynzna (31)
n=0

whereC denotes the set of complex numbers and the bar over a number denotes complex
conjugation.
The following two lemmas are not difficult to prove.

Lemma 3.1. The matrice€’, R, and.J are self-adjoint with respect to the inner product
(3.1), that is, each of them satisfies the relation

(Ty,2), = (y,Tz),, Vy,z€C.
Lemma 3.2. The matrices and J are positive, that is,
(Cy,y)g >0, (Jy,y)g>0, VyeC¥, y#£0.

Note that the positiveness of follows from the condition (1.5) by virtue of the
following equality: For any real vectar = {y,}" | € R,

n=0
(Jy.y)g = (bo—qlao])ys + ¢ "(bn—1 — hgan—1 — lan—2])yX_1
N—-2 N—-1
+ )¢ (bn — lan-a] = qlan)yi + D ¢" lan-1] (Y1 £ ya)?,
n=1 n=1

where thet sign in(y,_; + v,,)? is taken to be that of,,_;.

Theorem 3.3. Each eigenvalue of equation(1.11)is real, nonzero, and has the same
sign as

wherey is an eigenvector corresponding %o
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Proof. Let A\ € C be an eigenvalue of equation (1.11) apd= {y.}.—, # 0 be
a corresponding eigenvector. By forming the inner product of both sides of equation
(1.11) with the vectoy, we get

Since, by Lemma 3.2(Jy,y), > 0, we get from (3.3) that # 0. Also, since
(Cy,y), > 0, we have

(Ry,y)q £ \/(Ry, Y)2 4+ 4(Cy,y)e(Jy, y)q
A= : (3.4)
2<Cy> y)q

Since(Ry, y), is real by Lemma 3.1 and

(Ry,y)2+ 4(Cy,y)e(Jy,y)q > O,

we get from (3.4) thah is real. Further, the product afwith 2)\(Cy, y), — (Ry,v), IS,
by (3.3),

A2M(Cy,y)q — (Ry, y)g) = X(Cy,y)g + (Jy,y)q > 0,

so that (3.2) holds and the sign dfis the same as the sign of the expression in (3.2).
The theorem is proved. O

Theorem 3.4. The eigenvectorg and z of equation(1.11)corresponding to the distinct
eigenvalues\ and, respectively, satisfy the “orthogonality” relations

(A + 1) (Cy, 2)g — (Ry, z)q =0, (3.5)
Mi(Cy, 2)g + (Jy, 2)g = 0, (3.6)
A(Ry, 2)g + (A + 1) (Jy, 2)q = 0. (3.7)

Proof. Multiplying in the sense of the inner product the first of the equalities
NCy— ARy —Jy=0, p*Cz—puRz—Jz=0

from the right byz and the second one from the left pyand using the reality of the
eigenvalues and Lemma 3.1, we get

)\Q(Cy, 2)g — MRy, 2)g — (Jy,2)q = 0,

1 (Cy, 2)g — u(Ry, 2)g — (Jy, 2), = 0.

Eliminating from these two equations in tufdy, z), (Ry, z), and(Cy, z), we obtain
respectively the “orthogonality” relations (3.5), (3.6), and (3.7). O
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4 Existence of Eigenvalues

To investigate the existence and further properties of the eigenvalues and eigenvectors
of equation (1.11), we note that equation (1.11) is equivalent to the problem of finding a
vector{yn}ff:_1 that satisfies the boundary value problem (1.12), (1.13). We define the

solutiony = {gpn()\)}fj:_l of equation (1.12) satisfying the initial conditions

p-1(A) =0, @o(A) = 1. (4.1)

Using (4.1), we can recursively find,(\), n = 1,2,..., N, from the equation (1.12),
andyp,,(A) is a polynomial in\ of degree2n. In fact, we can find that

1
AN = —(N2¢y— Arg—b
p1(N) qao( €o To 0),
(/\200—)\7“0—[)0)(/\201—/\7‘1—bl)—&

1
A) = :
902( ) qa,

B q*apa;
CoC1 " Cp—1 \9p
©n(A) = A
n() q"apay - Gp_q

™ _, of equation (1.12) satisfying the initial

up to a constant factor:

It is easy to see that every soluti¢n, (\)}
conditiony_; = 0 is equal to{p, (M)}

n=-—1
Yn(N) = a,(N), n=-1,0,1,... N, (4.2)

with o = yo(A). Indeed, both sides of (4.2) are solutions of equation (1.12) and they
coincide forn = —1 andn = 0. Hence (4.2) holds by the uniqueness of solution. We
get
yn(A) + hyn-1(A) = afpn(A) + hon-1(N)].
Consequently setting
X(A) = on(A) + hon-1(N), (4.3)

we have the following lemma.

Lemma 4.1. The eigenvalues of equati¢h.11)are roots of the recursively constructed
polynomialy()\). To each eigenvalug, corresponds, up to a constant factor, a single
eigenvector which can be taken to be the ve¢tar(A\)}" !

n=0 "

The functiony () is called thecharacteristic functiorof problem (1.12), (1.13) (or
of (1.11)). By Lemma 4.1 the eigenvalues of equation (1.11) coincide with the roots
of the functiony (). On the other hand the eigenvalues of equation (1.11) coincide,
obviously, with the roots of the polynomiadbt(A\*C' — AR — J). Since bothy()\) and
det(A\’C — AR — J) are polynomials in\ of degree2V, it follows therefore that they
differ by at most a constant factor from each other. This factor is easily found. To this
end it suffices to compare the coefficients\é¥ in these polynomials. This yields

det(N2C — AR — J) = ¢V apay - - -an_1x(\).
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Lemma 4.2. There exisRN distinct eigenvalues.

Proof. Sincep, () for eachn is a polynomial of degreen, by (4.3)x(\) is a polyno-
mial of degre@N. Thereforex(\) has2/N roots. Now we show that the roots @f\)
are simple. Hence the statement of the lemma will follow. Differentiating the equation

(Azcn - )\Tn - bn)gon()\> - anflgpnfl()o — qanPn+1 (>\) =0

with respect to\, we get

(2Acn — Tn)@n(A) + ()‘2671 — A1y — bn)‘:pn()‘) — Un-19Pn-1(A) = qanPni1 (/\) =0,

where the dot over a function indicates the derivative with respext Multiplying the
first equation byp, (\) and the second one lyy, (), and subtracting the left and right
members of the resulting equations, we get

(2X¢n = 1) @R () + ano1[Pa-1(N)@a(X) = Guo1(N)pn(N)]
—qan[Pn(A)Pnr1(A) = @n(A)ens1 ()] = 0.

Summing the last equation multiplied b¥y, for the values: = 0,1,... ., m(m < N—1)
and using the initial conditions (4.1), we get

m

qm+1aM[QPm<)‘)@m+l (A) = (N pm1(A)] = Z q"(2Ac, — Tn)@i@‘)' (4.4)

n=0

Let us assumeg(\g) = 0. In particular, setting in (4.4yn = N — 1 and\ = )\,
and using the equalityx(\g) = —hen_1(Xo), Which follows from the assumption
X(Ao) = 0, we have

=2

-1

¢V an—1x(No)en-1(X0) = Y q"(2hocn — 1) @2 (Xo)- (4.5)

i
o

The right-hand side of (4.5) is not zero by virtue of Theorem 3.3. Consequgiy #
0, that is, the roof\, of the functiony () is simple. O

We can summarize the results obtained above in the following theorem.

Theorem 4.3. The equatior(1.11) has precisel®2 N real distinct eigenvalues; (j =
1,...,2N). These eigenvalues are different from zero. To each eigenvaltigere
corresponds, up to a constant factor, a single eigenvector which can be taken to be
09 = {o,(\)}), where{p, (M)} is the solution of equatiofl.12) satisfying

initial conditions(4.1).
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5 General Solution of the Problem(1.1), (1.2)

Now we determine a general form of solutions of problem (1.1), (1.2).

Lemma5.1.1f oM, ..., o) are eigenvectors of equatigfh.11) corresponding to the

eigenvalues\,, . .., \,w, respectively, then the vectols = [, A;0)] € CV x CV
(j =1,...,2N) form a basis folC" x C".

Proof. Consider the linear spa¢&” xC" of vectors denoted by, z|, wherey, = € C”.
Define on this space the bilinear form by the formula

<[y7 Z]? [u7 U]) = (Cy7 U)q + (C'Z? u)q - (Ryu u)q7 (51)

where(-, -), in the right-hand side denotes the inner productihdefined by the for-

mula (3.1). Note that the formula (5.1) does not define an inner product in the space
CY x C", because for the nonzero vectdysz] the numbers[y, 2], [y, z]) are not
necessarily positive (they may also be zero or negative). In view of formula (3.5) of
Theorem 3.4, the vectors

D = [V N\, j=1,...,2N
are orthogonal with respect to the bilinear fofm):
(@, @) =0, j#L (5.2)
Further, it is remarkable that, by virtue of Theorem 3.3, we have
pi = (5, ®;) = 2X,(Cp, W), — (R, ), £ 0 (5.3)

and the sign op; coincides with the sign of;,

Sigrnp; = sign);. (5.4)
From (5.2) and (5.3) it follows thab, ..., ®,y are linearly independent in the space
CY x C". Since the number of them is equal2®’ anddim(C" x C") = 2N, they
form a basis for the spad@” x C". The theorem is proved. O

By Lemma 5.1, for an arbitrary vectff, ¢] that belongs t€”" x C", we have the
unigue expansion

2N 2N A 2N ‘
[fog1 =) 8%, ie, f=Y 8", g=> BireY, (5.5)
j=1 j=1 j=1

and

ﬁj = i <[fa g}v (I)j> = pl{/\J(Cf’ Qp(j))q + (Cg,gp(j))q - (Rfv Sp(j))q}’ (56)

J

wherep; is defined by formula (5.3).
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Remark5.2 To prove Lemma 5.1 we could also use the orthogonality relation (3.6) or
(3.7). In the case of (3.6) we must use®©fi x C" the bilinear form

([y, 2], [u, v]) = (Jy,u) + (Cz,0), (5.7)

and in the case of (3.7)

<[ya Z]? [u7v]> = (Jy,?}) + (JZ’U) + (RZ’U)‘

The bilinear form (5.7), in contrast to the bilinear form (5.1), is an inner product in
CN x CV. But in connection with the formulas (5.3) and (5.6) forand3;, the bilinear
form (5.1) has more advantages, since both the matticasad R presented in it are
diagonal.

Theorem 5.3. The general solutiofiu, (t)}.__, of problem(1.1), (1.2) has the form

n=-—1

Z% O n=-1,0,1,...,N, (5.8)

wherevy, ..., N are arbitrary constants.

Proof. From the definitions of\; and, () it follows that (5.8) satisfies (1.1), (1.2)
for arbitrary constants, . . ., v.n. Conversely, assume thed,, (¢ )}N, | is an arbitrary
solution of (1.1), (1.2). Define the vectofs= { f,,}-' andg = {g,}"~; by setting

du,(0)

=gn, ne{0,1,...,N—1}, (5.9)

and then determine the constapts. .., Gon using the expansion (5.5) of the vector
[/, 9], and put

2N
t) = Zﬁje’\jtgon()\j), n=-1,0,1,...,N.
=1

Then the vector-function(t) = {v, ()}, satisfies the initial value problem

*o(t)  _do(t)
O = R+ Ju(t), 0<t<oc, (5.10)
v(0) = dz:l(t()) =g (5.11)

On the other handy(t) = {u,(t)})=, also satisfies (5.10), (5.11), and it is well known
that a problem of the kind (5.10), (5.11) which can be written in the form of a first order
linear system has a unique solution. Henge) = v(t), so that we have (5.8) with

= B;(j=1,...,2N). O
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6 Number of the Negative Eigenvalues

Above in Section 4 we showed that under the conditions (1.4), (1.5) equation (1.11) has
exactly2N eigenvalues\; (j = 1,...,2N) which are real, distinct, and different from
zero. We will assume that these eigenvalues are arranged in increasing order:

A< Ay < ... < A\ap. (61)

Note also that since,, # 0 (n = 0,1,...,N — 1) andg > 0, it follows from the
condition (1.5) that

b() > 0, by > 0, ..., by_o > 0, by_1 — han_l > 0. (62)

Theorem 6.1. Half of the eigenvalues of equati¢h.11)are negative and the other half
positive, that is, under the assumpti(@l) we have

Aj<Oforj=1,...,N and \; >0forj=N+1,...,2N.
Proof. Consider the auxiliary eigenvalue problem
[NC —XeR—J(e)]y=0 (6.3)

depending on a parametek [0, 1], where the matrix/(¢) is obtained from the matrix
J by means of multiplication of all its nondiagonal elementsDbit is obvious that the
analog of the conditions (1.4) and (1.5) is fulfilled for al€ (0, 1]. The eigenvalues of
equation (6.3) are nonzero for alk [0, 1] and coincide with the roots of the polynomial

det[\*C — \eR — J(¢)]. (6.4)

For eache € (0, 1], the roots of the polynomial (6.4) are distinct by virtue of Lemma
4.2, being applicable to the equation (6.3). Denote them by

)\1(8) < )\2(6) < ... < )\2]\[(6).
The equation (6.3) is equivalent to the pair of equations

z = Ay,
eC'Rz+C ' (e)y = Az

Therefore, the eigenvalues of equation (6.3) coincide with the eigenvalues of the matrix

0 I
Ale) = CtJE) eC'R
of dimensior2N x 2N. Sincel;(e) (j = 1,...,2N) are the eigenvalues of the matrix

A(e), being continuous ia € [0, 1], they are continuous functions ofsee [8, Chapter
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2, §5]). Note that at the point = 0 we do not state tha, (¢), )\2(8) )\QN( ) are
distinct. Now we show that for all values efe (0,1] half of \;(¢) (j = 1,...,2N) are
negative and the other half positive:

N(e)<0(i=1,....,N), \(e)>0(j=N+1,...,2N).

Hence, in particular, foe = 1 the statement of the lemma will follow. Assume the
contrary. Let for some value afe (0, 1]

A(E) <0G =1,...,k), MNE)>0(G=Fk+1,...,2N), (6.5)

where0 < k£ < 2N andk # N (for & = 0 all the eigenvalues (<) are understood to
be positive, and fok = 2NV to be negative). Sincg;(¢) (j = 1,...,2N) are different
from zero and are distinct and continuous functions for all values &f (0, 1], the

inequalities (6.5) are valid for all values ofc (0, 1] with the same value of. Passing
in (6.5) to the limit ax — 0, we get

NO)<O0(G=1,....k), N(0)>0(G=k+1,...,2N).

But this is a contradiction, since far = 0, the roots of the polynomial (6.4) are the
numbers

Cj CN—-1

b, b1 — hgax_
+ i(j:QL“wN—m,:b¢Nl an-1
J

half of which are negative and the other half positive by virtue of (6.2). Thus the theorem
is proved. ]

7 Basisness of “Half” of the Eigenvectors

Theorem 7.1. The eigenvectors of equatigf.11) corresponding to the negative (or
positive) eigenvalues form a basis fof' .

Proof. We may assume, by Theorem 6.1, that
M <. <AV <0< Ay <. < an.

To see that the eigenvectasS . .., o) corresponding to the eigenvaluks . . ., Ay,
respectively, form a basis f@", letz = {z,}; ' € C" and

(z,9), =0, j=1,...,N. (7.1)

It suffices for us to establish that then= 0, the null vector. Applying (5.5) and (5.6)
to the vectorsf = 0 andg = C~ 'z, we have

2N 2N
0="> 8D, Cz=Y" BN, (7.2)
j=1 j=1
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where
1

B; = —(z,6M),, j=1,...,2N. (7.3)

Pj
From (7.3), in view of (7.1), we havé; = 0, j = 1,..., N, and therefore, (7.2) takes

the form
2N 2N
0=Y_ Bie", Clz= Y BirpV

j=N+1 j=N+1

Multiplying the last equalities by in the sense of the inner product@’, we get

2N 2N
0= B, 2)g= D pilBI7, (7.4)
Jj=N+1 j=N+1
2N
(C™'2,2), Z Bi(eD,2)g = D o IB17 (7.5)
j=N+1 j=N+1

By virtue of (5.4) we havep, > 0, j = N +1,...,2N. Consequently from (7.4) it
follows that3; = 0,7 = N +1,...,2N, and from (7.5) we then gétC~ 'z, z), = 0.

Hencez = 0, since
N—
q" 2
(C™12,2) — |za]
2; -

andq > 0, ¢, > 0. The theorem is proved. O

8 Solution of the Problem(1.1)1.3)

We now give an application of the results obtained above.

Theorem 8.1. The problem(1.1)+1.3) has a unique solutiomun(t)}ﬁf:_1 that is rep-
resentable in the form

Za] Onl n=-1,0,1,...,N, (8.1)

in which Ay, ..., Ay are the negative eigenvalues of equat{aril) and{gpn(/\)}ff:_1
is the solution of equatiofil.12) satisfying initial conditiong4.1). Further, the coeffi-
cientsay, ..., ay are defined with the help of the unique expansion

N
=Y a0", (8.2)
j=1

in which o) = {p,(\,)}".
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Proof. By Theorem 7.1, the vectors'), . .., oY) form a basis ofC". Therefore, for
the vectorf = {f, év_l e CV presented in the first condition of (1.3), there exist the
numbersyy, . . ., ax uniquely determined by the expansion (8.2). Next we defjie)

by formula (8.1). Therﬁ{un(t)}f:_1 will be a solution of problem (1.1), (1.2) satisfying

the first condition in (1.3) in view of (8.2), and the second one in view ofxhat. . , Ay
are negative. For proof of the uniqueness of solution, we note that by Theorem 5.3 the
general solution of problem (1.1), (1.2) has the representation

Z% on n=-1,0,1,...,N, (8.3)

where~y, ...,y are arbitrary constants. Let (8.3) satisfy the conditions (1.3). Then
from the second condition in (1.3) it follows that there it musthe; = ... = vy =0,
since\; > 0forj = N +1,...,2N and are distinct. Further, setting= 0 in (8.3) and
using the first condition in (1.3), and (8.2) we get= o, j = 1,..., N. The theorem

is proved. O

Remark8.2 The expansion (8.2) written in the form
fn = 0519071()\1) + 042(1071()‘2) +...+ aNQDn()‘N)a n = 07 17 s ,N - 17

gives us a linear nonhomogeneous system of equations in unkrRowns . . ., ay.

Remark8.3. As follows from (8.1), for the solution of problem (1.1)—(1.3) we have
U (t) = 0(e™®), n=-1,0,1,...,N,

ast — oo, whered = min{|\{|, ..., [An|}.
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