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Abstract

In this study, we investigate the eigenvalues and eigenvectors of a quadratic
pencil of q-difference equations. The results obtained are then used to solve the
corresponding system of differential equations with boundary and initial conditions
and zero conditions at infinity.
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1 Introduction

We consider the system of linear second order differential equations

cn
d2un(t)

dt2
= rn

dun(t)

dt
+ an−1un−1(t) + bnun(t) + qanun+1(t), (1.1)

n ∈ {0, 1, . . . , N − 1} , t ≥ 0

with the “boundary” conditions

u−1(t) = 0, uN(t) + huN−1(t) = 0, t ≥ 0 (1.2)

and the conditions (initial conditions att = 0 and zero “end” conditions att = ∞)

un(0) = fn, lim
t→∞

un(t) = 0, n ∈ {0, 1, . . . , N − 1} , (1.3)
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whereN ≥ 2 is a positive integer,q > 0 is a fixed real number,{un(t)}N
n=−1 is a

desired solution,fn (n = 0, 1, . . . , N − 1) are given complex numbers, the coefficients
cn, rn, an, bn of equation (1.1) and the numberh in the boundary conditions (1.2) are
real, and

an 6= 0, cn > 0, (1.4)

b0 − q |a0| ≥ 0, bN−1 − hqaN−1 − |aN−2| ≥ 0,
bn − |an−1| − q |an| ≥ 0, n ∈ {1, 2, . . . , N − 2} (1.5)

with strict inequality in at least one relation of (1.5). If{un(t)}N
n=−1 is a solution of

problem (1.1)–(1.3), then taking boundary conditions (1.2) into account, we have

c0
d2u0(t)

dt2
= r0

du0(t)

dt
+ b0u0(t) + qa0u1(t),

cn
d2un(t)

dt2
= rn

dun(t)

dt
+ an−1un−1(t) + bnun(t) + qanun+1(t), (1.6)

n = 1, 2, . . . , N − 2,

cN−1
d2uN−1(t)

dt2
= rN−1

duN−1(t)

dt
+ aN−2uN−2(t) + (bN−1 − hqaN−1)uN−1(t).

Consequently, finding a solution{un(t)}N
n=−1 of problem (1.1)–(1.3) is equivalent to the

problem of finding a solution{un(t)}N−1
n=0 of system (1.6) that satisfies the conditions

(1.3). Setting

u(t) =


u0(t)
u1(t)

...
uN−1(t)

 , f =


f0

f1
...

fN−1

 ,

C =


c0 0 0 · · · 0
0 c1 0 · · · 0
0 0 c2 · · · 0
...

...
...

.. .
...

0 0 0 · · · cN−1

 , R =


r0 0 0 · · · 0
0 r1 0 · · · 0
0 0 r2 · · · 0
...

...
...

.. .
...

0 0 0 · · · rN−1

 ,

J =



b0 qa0 0 · · · 0 0 0
a0 b1 qa1 · · · 0 0 0
0 a1 b2 · · · 0 0 0
...

...
...

.. .
...

...
...

0 0 0 . . . bN−3 qaN−3 0
0 0 0 · · · aN−3 bN−2 qaN−2

0 0 0 · · · 0 aN−2 bN−1 − hqaN−1


, (1.7)

we can write problem (1.6), (1.3) in the form

C
d2u(t)

dt2
= R

du(t)

dt
+ Ju(t), 0 ≤ t < ∞, (1.8)
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u(0) = f, lim
t→∞

u(t) = 0. (1.9)

Thus problem (1.1)–(1.3) is equivalent to problem (1.8), (1.9), i.e., if{un(t)}N
n=−1 is

a solution of problem (1.1)–(1.3), then the vector-functionu(t) = {un(t)}N−1
n=0 forms

a solution of problem (1.8), (1.9), and conversely, ifu(t) = {un(t)}N−1
n=0 is a solution

of (1.8), (1.9) then{un(t)}N
n=−1, whereu−1(t) = 0, anduN(t) = −huN−1(t), forms a

solution of problem (1.1)–(1.3).
Our principal aim in this paper is to prove that problem (1.1)–(1.3) (or, equivalently,

problem (1.8), (1.9)) has a unique solution and to investigate the structure of the solu-
tion, that is, to give an effective formula for it. To do so, we seek a nontrivial solution
of equation (1.8), which has the form

u(t) = eλty, (1.10)

whereλ is a complex constant andy is a constant vector (an element of the spaceCN )
which depends uponλ and which we desire to be nontrivial, that is, not equal to0, the
null vector. Substituting (1.10) into (1.8), we obtain

(λ2C − λR− J)y = 0. (1.11)

Definition 1.1. A complex numberλ0 is said to be an eigenvalue of equation (1.11) (or
of the quadratic pencilλ2C−λR−J) if there exists a nonzero vectory ∈ CN satisfying
equation (1.11) forλ = λ0. The vectory is called an eigenvector of equation (1.11),
corresponding to the eigenvalueλ0.

Thus the vector-function (1.10) is a nontrivial solution of equation (1.8) if and only
if λ is an eigenvalue andy is a corresponding eigenvector of equation (1.11). Note that
(1.11) is equivalent to the discrete boundary value problem

(λ2cn − λrn − bn)yn − an−1yn−1 − qanyn+1 = 0, n = 0, 1, . . . , N − 1, (1.12)

y−1 = 0, yN + hyN−1 = 0, (1.13)

that is, if{yn}N
n=−1 is a solution of problem (1.12), (1.13), then the vectory = {yn}N−1

n=0

forms a solution of equation (1.11), and conversely, ify = {yn}N−1
n=0 is a solution of

(1.11), then{yn}N
n=−1, wherey−1 = 0 andyN = −hyN−1, forms a solution of problem

(1.12), (1.13).
Let us denote byλ1, . . . , λm all eigenvalues of equation (1.11), and byy(1), . . . , y(m)

the corresponding eigenvectors. Then by linearity of equation (1.8) the vector-function

u(t) =
m∑

j=1

αje
λjty(j) (1.14)
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will be a solution of equation (1.8), whereα1, . . . , αm are arbitrary constants indepen-
dent oft. Now we must try to choose the constantsαj so that (1.14) will also satisfy the
conditions in (1.9):

m∑
j=1

αjy
(j) = f, lim

t→∞

m∑
j=1

αje
λjty(j) = 0. (1.15)

In this paper we show that under the conditions (1.4), (1.5), such a choice of constants
αj is possible if we pick out suitable eigenvaluesλj. We also find formulas for the
constantsαj. To this end we have to examine the eigenvalue problem (1.11) in detail.

The paper is organized as follows. In Section 2 we present some needed facts about
second order self-adjointq-difference equations because (1.12) is such an equation. In
Section 3 reality of the eigenvalues and “orthogonality” of the eigenvectors are estab-
lished. Section 4 contains further properties of the eigenvalues and eigenvectors. In
Section 5 we find the form of a general solution of equation (1.8). Section 6 determines
the number of the negative eigenvalues. Section 7 is devoted to the proof of the basis-
ness of “half” of the eigenvectors. Finally, in Section 8, using the results obtained for
the eigenvalue problem, we prove existence and uniqueness of solution to the problem
(1.1)–(1.3) and present an effective formula for the solution.

Note that a comprehensive treatment of general matrix polynomials to which our
quadratic pencilλ2C − λR − J belongs is given in [4]. However, due to the special
structure (1.7) of the matricesC, R andJ , and the conditions (1.4), (1.5), we have
succeeded in obtaining, in this paper, more specific results. Similar problems involving
usual difference equations (q = 1) were investigated earlier in [5,6].

2 Auxiliary Facts on Linear q-difference Equations

For a treatment ofq-calculus, we refer the reader to [7]. The theorems given below in
this section and related to second order self-adjointq-difference equations are similar to
those for usual second order difference equations [9] and are not difficult to verify.

Definition 2.1. Let q be a fixed real number such thatq 6= 0 andq 6= 1. Let us set

qZ = {qn : n ∈ Z} =
{
. . . , q−2, q−1, q0, q1, q2, . . .

}
.

Let y(x) be a complex-valued function defined forx ∈ qZ. The “q-difference” operator
Dq is defined by

Dqy(x) =
y(qx)− y(x)

(q − 1)x
, x ∈ qZ. (2.1)

The expression in (2.1) is called theq-derivative of the functiony atx.



q-deformed Linear Systems 59

Higher orderq-derivatives are defined by repeated application of the operatorDq.
For example, the second orderq-derivative is

D2
qy(x) = Dq(Dqy(x)) =

y(q2x)− (q + 1)y(qx) + qy(x)

q(q − 1)2x2
.

Fundamental properties ofDq are given in the following theorem.

Theorem 2.2.Assumef, g : qZ → C are functions. Then

(i) Dq(y(x) + z(x)) = Dqy(x) + Dqz(x),

(ii ) Dq(cy(x)) = cDqy(x) if c is a constant,

(iii ) Dq(y(x)z(x)) = (Dqy(x))z(x)+y(qx)Dqz(x) = y(x)Dqz(x)+(Dqy(x))z(qx),

(iv) Dq

(
y(x)

z(x)

)
=

(Dqy(x))z(x)− y(x)Dqz(x)

z(x)z(qx)
if z(x)z(qx) 6= 0.

Example 2.3.We have the following:

(i) Dqc = 0 if c is a constant,

(ii) Dqx = 1,

(iii) Dqx
2 = (q + 1)x,

(iv) Dqx
3 = (q2 + q + 1)x2,

(v) Dq ln x =
ln q

(q − 1)x
.

Theorem 2.4. If Dqy(x) is identically zero onqZ, theny(x) is constant onqZ.

Let p(x) andr(x) be given functions defined onqZ with p(x) 6= 0 for all x ∈ qZ.
The second order self-adjoint linear homogeneousq-difference equation is defined to be

Dq

[
p

(
x

q

)
Dqy

(
x

q

)]
+ r(x)y(x) = 0, x ∈ qZ, (2.2)

wherey(x) is a desired solution. We can also write equation (2.2) in the form

a

(
x

q

)
y

(
x

q

)
+ b(x)y(x) + qa(x)y(qx) = 0, x ∈ qZ, (2.3)

where

a(x) =
p(x)

(q − 1)2q2x2
, b(x) = r(x)− qa(x)− a

(
x

q

)
.
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Note that any equation written in the form of equation (2.3), wherea(x) 6= 0 on qZ, can
be written in the self-adjoint form of equation (2.2) by taking

p(x) = (q − 1)2q2x2a(x), r(x) = b(x) + qa(x) + a

(
x

q

)
.

Settingx = qn (n ∈ Z) in equation (2.3), we get

a(qn−1)y(qn−1) + b(qn)y(qn) + qa(qn)y(qn+1) = 0, n ∈ Z.

Finally, denoting

an = a(qn), bn = b(qn), yn = y(qn) for n ∈ Z,

we can write the last equation in the form

an−1yn−1 + bnyn + qanyn+1 = 0, n ∈ Z. (2.4)

Further we will deal with equations of the form (2.4) assuming thatq is any fixed positive
real number. Note that equation (1.12) has the form of equation (2.4). Take a fixed
integern0 ∈ Z and consider the initial conditions

yn0 = c0, yn0+1 = c1, (2.5)

wherec0 andc1 are given numbers.

Theorem 2.5 (Existence and Uniqueness Theorem).The initial value problem (IVP)
(2.4), (2.5)has exactly one solutiony = (yn).

Corollary 2.6. Let (yn) be a solution of equation(2.4). If yn is zero for two successive
integer values ofn, thenyn = 0 for all n ∈ Z.

Definition 2.7. Let y = (yn) andz = (zn) be solutions of equation (2.4). The Wron-
skian of these solutions is defined to be

Wn(y, z) =

∣∣∣∣ yn zn

yn+1 zn+1

∣∣∣∣ = ynzn+1 − yn+1zn, n ∈ Z.

Theorem 2.8. If y = (yn) andz = (zn) are solutions of equation(2.4), then

Wn(y, z) =
c

qnan

, n ∈ Z,

wherec is a constant.

Corollary 2.9. If y = (yn) and z = (zn) are solutions of equation(2.4), then either
Wn(y, z) = 0 for all n ∈ Z or Wn(y, z) 6= 0 for all n ∈ Z.

Theorem 2.10.Any two solutions of equation(2.4)are linearly independent if and only
if their Wronskian is different from zero.

Theorem 2.11.Equation(2.4) has two linearly independent solutions and every solu-
tion of equation(2.4) is a linear combination of these solutions.
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3 Properties of the Eigenvalues and Eigenvectors

In this section we establish the reality of the eigenvalues and get several “orthogonality”
relations for the eigenvectors of problem (1.11) assuming that there exist the eigenval-
ues and eigenvectors. Existence of the eigenvalues and eigenvectors and their further
properties will be established in the next section. Note that there are only a few works
concerning spectral analysis ofq-difference equations, see [1–3].

Consider the eigenvalue problem (1.11), where the matricesC, R, andJ have the
form (1.7), and we assume throughout that the conditions (1.4), (1.5) are satisfied. We
will investigate the equation (1.11) in the linear space

CN =
{
y = (yn)N−1

n=0 : yn ∈ C, n = 0, 1, . . . , N − 1
}

with the inner product

(y, z)q =
N−1∑
n=0

qnynzn, (3.1)

whereC denotes the set of complex numbers and the bar over a number denotes complex
conjugation.

The following two lemmas are not difficult to prove.

Lemma 3.1. The matricesC, R, andJ are self-adjoint with respect to the inner product
(3.1), that is, each of them satisfies the relation

(Ty, z)q = (y, Tz)q, ∀y, z ∈ CN .

Lemma 3.2. The matricesC andJ are positive, that is,

(Cy, y)q > 0, (Jy, y)q > 0, ∀y ∈ CN , y 6= 0.

Note that the positiveness ofJ follows from the condition (1.5) by virtue of the
following equality: For any real vectory = {yn}N−1

n=0 ∈ RN ,

(Jy, y)q = (b0 − q |a0|)y2
0 + qN−1(bN−1 − hqaN−1 − |aN−2|)y2

N−1

+
N−2∑
n=1

qn(bn − |an−1| − q |an|)y2
n +

N−1∑
n=1

qn |an−1| (yn−1 ± yn)2,

where the± sign in(yn−1 ± yn)2 is taken to be that ofan−1.

Theorem 3.3. Each eigenvalueλ of equation(1.11)is real, nonzero, and has the same
sign as

2λ(Cy, y)q − (Ry, y)q 6= 0, (3.2)

wherey is an eigenvector corresponding toλ.
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Proof. Let λ ∈ C be an eigenvalue of equation (1.11) andy = {yn}N−1
n=0 6= 0 be

a corresponding eigenvector. By forming the inner product of both sides of equation
(1.11) with the vectory, we get

λ2(Cy, y)q − λ(Ry, y)q − (Jy, y)q = 0. (3.3)

Since, by Lemma 3.2,(Jy, y)q > 0, we get from (3.3) thatλ 6= 0. Also, since
(Cy, y)q > 0, we have

λ =
(Ry, y)q ±

√
(Ry, y)2

q + 4(Cy, y)q(Jy, y)q

2(Cy, y)q

. (3.4)

Since(Ry, y)q is real by Lemma 3.1 and

(Ry, y)2
q + 4(Cy, y)q(Jy, y)q > 0,

we get from (3.4) thatλ is real. Further, the product ofλ with 2λ(Cy, y)q − (Ry, y)q is,
by (3.3),

λ [2λ(Cy, y)q − (Ry, y)q] = λ2(Cy, y)q + (Jy, y)q > 0,

so that (3.2) holds and the sign ofλ is the same as the sign of the expression in (3.2).
The theorem is proved.

Theorem 3.4.The eigenvectorsy andz of equation(1.11)corresponding to the distinct
eigenvaluesλ andµ, respectively, satisfy the “orthogonality” relations

(λ + µ)(Cy, z)q − (Ry, z)q = 0, (3.5)

λµ(Cy, z)q + (Jy, z)q = 0, (3.6)

λµ(Ry, z)q + (λ + µ)(Jy, z)q = 0. (3.7)

Proof. Multiplying in the sense of the inner product the first of the equalities

λ2Cy − λRy − Jy = 0, µ2Cz − µRz − Jz = 0

from the right byz and the second one from the left byy, and using the reality of the
eigenvalues and Lemma 3.1, we get

λ2(Cy, z)q − λ(Ry, z)q − (Jy, z)q = 0,

µ2(Cy, z)q − µ(Ry, z)q − (Jy, z)q = 0.

Eliminating from these two equations in turn(Jy, z), (Ry, z), and(Cy, z), we obtain
respectively the “orthogonality” relations (3.5), (3.6), and (3.7).
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4 Existence of Eigenvalues

To investigate the existence and further properties of the eigenvalues and eigenvectors
of equation (1.11), we note that equation (1.11) is equivalent to the problem of finding a
vector{yn}N

n=−1 that satisfies the boundary value problem (1.12), (1.13). We define the
solutiony = {ϕn(λ)}N

n=−1 of equation (1.12) satisfying the initial conditions

ϕ−1(λ) = 0, ϕ0(λ) = 1. (4.1)

Using (4.1), we can recursively findϕn(λ), n = 1, 2, . . . , N , from the equation (1.12),
andϕn(λ) is a polynomial inλ of degree2n. In fact, we can find that

ϕ1(λ) =
1

qa0

(λ2c0 − λr0 − b0),

ϕ2(λ) =
1

q2a0a1

(λ2c0 − λr0 − b0)(λ
2c1 − λr1 − b1)−

a0

qa1

,

ϕn(λ) =
c0c1 · · · cn−1

qna0a1 · · · an−1

λ2n + . . . .

It is easy to see that every solution{yn(λ)}N
n=−1 of equation (1.12) satisfying the initial

conditiony−1 = 0 is equal to{ϕn(λ)}N
n=−1 up to a constant factor:

yn(λ) = αϕn(λ), n = −1, 0, 1, . . . , N, (4.2)

with α = y0(λ). Indeed, both sides of (4.2) are solutions of equation (1.12) and they
coincide forn = −1 andn = 0. Hence (4.2) holds by the uniqueness of solution. We
get

yN(λ) + hyN−1(λ) = α[ϕN(λ) + hϕN−1(λ)].

Consequently setting
χ(λ) = ϕN(λ) + hϕN−1(λ), (4.3)

we have the following lemma.

Lemma 4.1. The eigenvalues of equation(1.11)are roots of the recursively constructed
polynomialχ(λ). To each eigenvalueλ0 corresponds, up to a constant factor, a single
eigenvector which can be taken to be the vector{ϕn(λ0)}N−1

n=0 .

The functionχ(λ) is called thecharacteristic functionof problem (1.12), (1.13) (or
of (1.11)). By Lemma 4.1 the eigenvalues of equation (1.11) coincide with the roots
of the functionχ(λ). On the other hand the eigenvalues of equation (1.11) coincide,
obviously, with the roots of the polynomialdet(λ2C − λR − J). Since bothχ(λ) and
det(λ2C − λR − J) are polynomials inλ of degree2N , it follows therefore that they
differ by at most a constant factor from each other. This factor is easily found. To this
end it suffices to compare the coefficients ofλ2N in these polynomials. This yields

det(λ2C − λR− J) = qNa0a1 · · · aN−1χ(λ).
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Lemma 4.2. There exist2N distinct eigenvalues.

Proof. Sinceϕn(λ) for eachn is a polynomial of degree2n, by (4.3)χ(λ) is a polyno-
mial of degree2N . Thereforeχ(λ) has2N roots. Now we show that the roots ofχ(λ)
are simple. Hence the statement of the lemma will follow. Differentiating the equation

(λ2cn − λrn − bn)ϕn(λ)− an−1ϕn−1(λ)− qanϕn+1(λ) = 0

with respect toλ, we get

(2λcn − rn)ϕn(λ) + (λ2cn − λrn − bn)ϕ̇n(λ)− an−1ϕ̇n−1(λ)− qanϕ̇n+1(λ) = 0,

where the dot over a function indicates the derivative with respect toλ. Multiplying the
first equation byϕ̇n(λ) and the second one byϕn(λ), and subtracting the left and right
members of the resulting equations, we get

(2λcn − rn)ϕ2
n(λ) + an−1[ϕn−1(λ)ϕ̇n(λ)− ϕ̇n−1(λ)ϕn(λ)]

−qan[ϕn(λ)ϕ̇n+1(λ)− ϕ̇n(λ)ϕn+1(λ)] = 0.

Summing the last equation multiplied byqn, for the valuesn = 0, 1, . . . ,m (m ≤ N−1)
and using the initial conditions (4.1), we get

qm+1am[ϕm(λ)ϕ̇m+1(λ)− ϕ̇m(λ)ϕm+1(λ)] =
m∑

n=0

qn(2λcn − rn)ϕ2
n(λ). (4.4)

Let us assumeχ(λ0) = 0. In particular, setting in (4.4),m = N − 1 andλ = λ0,
and using the equalityϕN(λ0) = −hϕN−1(λ0), which follows from the assumption
χ(λ0) = 0, we have

qNaN−1χ̇(λ0)ϕN−1(λ0) =
N−1∑
n=0

qn(2λ0cn − rn)ϕ2
n(λ0). (4.5)

The right-hand side of (4.5) is not zero by virtue of Theorem 3.3. Consequentlyχ̇(λ0) 6=
0, that is, the rootλ0 of the functionχ(λ) is simple.

We can summarize the results obtained above in the following theorem.

Theorem 4.3. The equation(1.11)has precisely2N real distinct eigenvaluesλj (j =
1, . . . , 2N). These eigenvalues are different from zero. To each eigenvalueλj there
corresponds, up to a constant factor, a single eigenvector which can be taken to be
ϕ(j) = {ϕn(λj)}N−1

n=0 , where{ϕn(λ)}N
n=−1 is the solution of equation(1.12)satisfying

initial conditions(4.1).
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5 General Solution of the Problem(1.1), (1.2)

Now we determine a general form of solutions of problem (1.1), (1.2).

Lemma 5.1. If ϕ(1), . . . , ϕ(2N) are eigenvectors of equation(1.11), corresponding to the
eigenvaluesλ1, . . . , λ2N , respectively, then the vectorsΦj = [ϕ(j), λjϕ

(j)] ∈ CN × CN

(j = 1, . . . , 2N ) form a basis forCN × CN .

Proof. Consider the linear spaceCN×CN of vectors denoted by[y, z], wherey, z ∈ CN .
Define on this space the bilinear form by the formula

〈[y, z], [u, v]〉 = (Cy, v)q + (Cz, u)q − (Ry, u)q, (5.1)

where(·, ·)q in the right-hand side denotes the inner product inCN defined by the for-
mula (3.1). Note that the formula (5.1) does not define an inner product in the space
CN × CN , because for the nonzero vectors[y, z] the numbers〈[y, z], [y, z]〉 are not
necessarily positive (they may also be zero or negative). In view of formula (3.5) of
Theorem 3.4, the vectors

Φj = [ϕ(j), λjϕ
(j)], j = 1, . . . , 2N

are orthogonal with respect to the bilinear form〈·, ·〉:

〈Φj, Φl〉 = 0, j 6= l. (5.2)

Further, it is remarkable that, by virtue of Theorem 3.3, we have

ρj = 〈Φj, Φj〉 = 2λj(Cϕ(j), ϕ(j))q − (Rϕ(j), ϕ(j))q 6= 0 (5.3)

and the sign ofρj coincides with the sign ofλj,

signρj = signλj. (5.4)

From (5.2) and (5.3) it follows thatΦ1, . . . , Φ2N are linearly independent in the space
CN × CN . Since the number of them is equal to2N anddim(CN × CN) = 2N , they
form a basis for the spaceCN × CN . The theorem is proved.

By Lemma 5.1, for an arbitrary vector[f, g] that belongs toCN × CN , we have the
unique expansion

[f, g] =
2N∑
j=1

βjΦj, i.e., f =
2N∑
j=1

βjϕ
(j), g =

2N∑
j=1

βjλjϕ
(j), (5.5)

and

βj =
1

ρj

〈[f, g], Φj〉 =
1

ρj

{λj(Cf, ϕ(j))q + (Cg, ϕ(j))q − (Rf, ϕ(j))q}, (5.6)

whereρj is defined by formula (5.3).
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Remark5.2. To prove Lemma 5.1 we could also use the orthogonality relation (3.6) or
(3.7). In the case of (3.6) we must use onCN × CN the bilinear form

〈[y, z], [u, v]〉 = (Jy, u) + (Cz, v), (5.7)

and in the case of (3.7)

〈[y, z], [u, v]〉 = (Jy, v) + (Jz, u) + (Rz, v).

The bilinear form (5.7), in contrast to the bilinear form (5.1), is an inner product in
CN ×CN . But in connection with the formulas (5.3) and (5.6) forρj andβj, the bilinear
form (5.1) has more advantages, since both the matricesC andR presented in it are
diagonal.

Theorem 5.3.The general solution{un(t)}N
n=−1 of problem(1.1), (1.2)has the form

un(t) =
2N∑
j=1

γje
λjtϕn(λj), n = −1, 0, 1, . . . , N, (5.8)

whereγ1, . . . , γ2N are arbitrary constants.

Proof. From the definitions ofλj andϕn(λ) it follows that (5.8) satisfies (1.1), (1.2)
for arbitrary constantsγ1, . . . , γ2N . Conversely, assume that{un(t)}N

n=−1 is an arbitrary
solution of (1.1), (1.2). Define the vectorsf = {fn}N−1

n=0 andg = {gn}N−1
n=0 by setting

un(0) = fn,
dun(0)

dt
= gn, n ∈ {0, 1, . . . , N − 1}, (5.9)

and then determine the constantsβ1, . . . , β2N using the expansion (5.5) of the vector
[f, g], and put

vn(t) =
2N∑
j=1

βje
λjtϕn(λj), n = −1, 0, 1, . . . , N.

Then the vector-functionv(t) = {vn(t)}N−1
n=0 satisfies the initial value problem

C
d2v(t)

dt2
= R

dv(t)

dt
+ Jv(t), 0 ≤ t < ∞, (5.10)

v(0) = f,
dv(0)

dt
= g. (5.11)

On the other hand,u(t) = {un(t)}N−1
n=0 also satisfies (5.10), (5.11), and it is well known

that a problem of the kind (5.10), (5.11) which can be written in the form of a first order
linear system has a unique solution. Henceu(t) = v(t), so that we have (5.8) with
γj = βj (j = 1, . . . , 2N ).
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6 Number of the Negative Eigenvalues

Above in Section 4 we showed that under the conditions (1.4), (1.5) equation (1.11) has
exactly2N eigenvaluesλj (j = 1, . . . , 2N) which are real, distinct, and different from
zero. We will assume that these eigenvalues are arranged in increasing order:

λ1 < λ2 < . . . < λ2N . (6.1)

Note also that sincean 6= 0 (n = 0, 1, . . . , N − 1) and q > 0, it follows from the
condition (1.5) that

b0 > 0, b1 > 0, . . . , bN−2 > 0, bN−1 − hqaN−1 > 0. (6.2)

Theorem 6.1.Half of the eigenvalues of equation(1.11)are negative and the other half
positive, that is, under the assumption(6.1)we have

λj < 0 for j = 1, . . . , N and λj > 0 for j = N + 1, . . . , 2N.

Proof. Consider the auxiliary eigenvalue problem

[λ2C − λεR− J(ε)]y = 0 (6.3)

depending on a parameterε ∈ [0, 1], where the matrixJ(ε) is obtained from the matrix
J by means of multiplication of all its nondiagonal elements byε. It is obvious that the
analog of the conditions (1.4) and (1.5) is fulfilled for allε ∈ (0, 1]. The eigenvalues of
equation (6.3) are nonzero for allε ∈ [0, 1] and coincide with the roots of the polynomial

det[λ2C − λεR− J(ε)]. (6.4)

For eachε ∈ (0, 1], the roots of the polynomial (6.4) are distinct by virtue of Lemma
4.2, being applicable to the equation (6.3). Denote them by

λ1(ε) < λ2(ε) < . . . < λ2N(ε).

The equation (6.3) is equivalent to the pair of equations

z = λy,

εC−1Rz + C−1J(ε)y = λz.

Therefore, the eigenvalues of equation (6.3) coincide with the eigenvalues of the matrix

A(ε) =

[
0 I

C−1J(ε) εC−1R

]
of dimension2N × 2N . Sinceλj(ε) (j = 1, . . . , 2N ) are the eigenvalues of the matrix
A(ε), being continuous inε ∈ [0, 1], they are continuous functions ofε (see [8, Chapter
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2, §5]). Note that at the pointε = 0 we do not state thatλ1(ε), λ2(ε), . . . , λ2N(ε) are
distinct. Now we show that for all values ofε ∈ (0, 1] half of λj(ε) (j = 1, . . . , 2N ) are
negative and the other half positive:

λj(ε) < 0 (j = 1, . . . , N), λj(ε) > 0 (j = N + 1, . . . , 2N).

Hence, in particular, forε = 1 the statement of the lemma will follow. Assume the
contrary. Let for some value ofε ∈ (0, 1]

λj(ε) < 0 (j = 1, . . . , k), λj(ε) > 0 (j = k + 1, . . . , 2N), (6.5)

where0 ≤ k ≤ 2N andk 6= N (for k = 0 all the eigenvaluesλj(ε) are understood to
be positive, and fork = 2N to be negative). Sinceλj(ε) (j = 1, . . . , 2N ) are different
from zero and are distinct and continuous functions for all values ofε ∈ (0, 1], the
inequalities (6.5) are valid for all values ofε ∈ (0, 1] with the same value ofk. Passing
in (6.5) to the limit asε → 0, we get

λj(0) ≤ 0 (j = 1, . . . , k), λj(0) ≥ 0 (j = k + 1, . . . , 2N).

But this is a contradiction, since forε = 0, the roots of the polynomial (6.4) are the
numbers

±

√
bj

cj

(j = 0, 1, . . . , N − 2), ±

√
bN−1 − hqaN−1

cN−1

,

half of which are negative and the other half positive by virtue of (6.2). Thus the theorem
is proved.

7 Basisness of “Half” of the Eigenvectors

Theorem 7.1. The eigenvectors of equation(1.11), corresponding to the negative (or
positive) eigenvalues form a basis forCN .

Proof. We may assume, by Theorem 6.1, that

λ1 < . . . < λN < 0 < λN+1 < . . . < λ2N .

To see that the eigenvectorsϕ(1), . . . , ϕ(N) corresponding to the eigenvaluesλ1, . . . , λN ,
respectively, form a basis forCN , let z = {zn}N−1

0 ∈ CN and

(z, ϕ(j))q = 0, j = 1, . . . , N. (7.1)

It suffices for us to establish that thenz = 0, the null vector. Applying (5.5) and (5.6)
to the vectorsf = 0 andg = C−1z, we have

0 =
2N∑
j=1

βjϕ
(j), C−1z =

2N∑
j=1

βjλjϕ
(j), (7.2)
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where

βj =
1

ρj

(z, ϕ(j))q, j = 1, . . . , 2N. (7.3)

From (7.3), in view of (7.1), we haveβj = 0, j = 1, . . . , N , and therefore, (7.2) takes
the form

0 =
2N∑

j=N+1

βjϕ
(j), C−1z =

2N∑
j=N+1

βjλjϕ
(j).

Multiplying the last equalities byz in the sense of the inner product inCN , we get

0 =
2N∑

j=N+1

βj(ϕ
(j), z)q =

2N∑
j=N+1

ρj |βj|2 , (7.4)

(C−1z, z)q =
2N∑

j=N+1

βjλj(ϕ
(j), z)q =

2N∑
j=N+1

ρjλj |βj|2 . (7.5)

By virtue of (5.4) we haveρj > 0, j = N + 1, . . . , 2N . Consequently from (7.4) it
follows thatβj = 0, j = N + 1, . . . , 2N , and from (7.5) we then get(C−1z, z)q = 0.
Hencez = 0, since

(C−1z, z)q =
N−1∑
n=0

qn

cn

|zn|2

andq > 0, cn > 0. The theorem is proved.

8 Solution of the Problem(1.1)–(1.3)

We now give an application of the results obtained above.

Theorem 8.1. The problem(1.1)–(1.3) has a unique solution{un(t)}N
n=−1 that is rep-

resentable in the form

un(t) =
N∑

j=1

αje
λjtϕn(λj), n = −1, 0, 1, . . . , N, (8.1)

in whichλ1, . . . , λN are the negative eigenvalues of equation(1.11), and{ϕn(λ)}N
n=−1

is the solution of equation(1.12)satisfying initial conditions(4.1). Further, the coeffi-
cientsα1, . . . , αN are defined with the help of the unique expansion

f =
N∑

j=1

αjϕ
(j), (8.2)

in whichϕ(j) = {ϕn(λj)}N−1
n=0 .
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Proof. By Theorem 7.1, the vectorsϕ(1), . . . , ϕ(N) form a basis ofCN . Therefore, for
the vectorf = {fn}N−1

0 ∈ CN presented in the first condition of (1.3), there exist the
numbersα1, . . . , αN uniquely determined by the expansion (8.2). Next we defineun(t)
by formula (8.1). Then{un(t)}N

n=−1 will be a solution of problem (1.1), (1.2) satisfying
the first condition in (1.3) in view of (8.2), and the second one in view of thatλ1, . . . , λN

are negative. For proof of the uniqueness of solution, we note that by Theorem 5.3 the
general solution of problem (1.1), (1.2) has the representation

un(t) =
2N∑
j=1

γje
λjtϕn(λj), n = −1, 0, 1, . . . , N, (8.3)

whereγ1, . . . , γN are arbitrary constants. Let (8.3) satisfy the conditions (1.3). Then
from the second condition in (1.3) it follows that there it must beγN+1 = . . . = γ2N = 0,
sinceλj > 0 for j = N + 1, . . . , 2N and are distinct. Further, settingt = 0 in (8.3) and
using the first condition in (1.3), and (8.2) we getγj = αj, j = 1, . . . , N . The theorem
is proved.

Remark8.2. The expansion (8.2) written in the form

fn = α1ϕn(λ1) + α2ϕn(λ2) + . . . + αNϕn(λN), n = 0, 1, . . . , N − 1,

gives us a linear nonhomogeneous system of equations in unknownsα1, α2, . . . , αN .

Remark8.3. As follows from (8.1), for the solution of problem (1.1)–(1.3) we have

un(t) = O(e−δt), n = −1, 0, 1, . . . , N,

ast →∞, whereδ = min{|λ1| , . . . , |λN |}.
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