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Abstract

In this paper we prove the differentiability properties of solutions of nonlinear
dynamic equations on time scales with respect to parameters. This complements
the previous work of the first and third authors regarding the existence and conti-
nuity of solutions with respect to parameters. In addition, we treat separately time
scale dynamic equations which are linear with respect to the unknown function
and the parameter. For this case we derive an improved result which says that the
solution is an entire function of the parameter.

AMS Subject Classifications:34A12, 34K99, 39A12.
Keywords: Time scale, embedding theorem, differentiation with respect to parameters,
entire function, complex domain.

1 Introduction

In this paper we study the differentiability properties of solutions of dynamic equations
on the so-called time scal@s which are defined to be any nonempty and closed subsets
of R. This allows one to unify the traditional results for the differential equations (which
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we call thecontinuous cageand the difference equations (which we call thiscrete
casg, explain the differences between the continuous and discrete theories, and extend
such results to arbitrary time scales.

In this paper we consider the nonlinear time scale dynamic system

= f(tn ), 1€ [a,p()] (L.1)
z(a) = 2°(\), (1.2)

where the nonlinearity and the initial value: may depend on a parameterc R”.
The data and the solutions are considered teebevalued, however, the results of this
paper easily extend to the complex setting.

Assuming that there exists a solutieft, 0) on|a, b]; of the problem (1.1), (1.2) with
A = 0, the first and third authors proved a time scale embedding theorem in [16, Theo-
rem 3.2] saying that the solutiari¢, \) of (1.1), (1.2) exists ofu, b], and is continuous
in (¢,2°(\), \). In particular, the function:(¢, -) is continuous im\. Note that the em-
bedding theorem in [16, Theorem 3.2] was proved for the case whenR, but the
same proof remains valid whene R".

In the present work we continue in this direction and show that, under suitable as-
sumptions, the solutions(t, A) of (1.1), (1.2) are differentiable in, and the partial

derivativez, (¢, \) := am(t, A), satisfies at = 0 the linearized dynamic equation
Z5 = A(t) Z+ P(t), t€ [a,p(b)), (1.3)
Z(a) = Dz°(0), (1.4)

whereDz"(-) denotes the Jacobian of the functigh(-), A(t) is then x n matrix and
P(t) is then x r matrix defined ona, p(b)], by

A(t) == f(t,2(¢,0),0), P(t):= fr(t, z(t,0),0). (1.5)

The proof is based on the Gronwall inequality on time scales (see Lemma 2.3 below).

An expected consequence of this is that the time scale differentiatioft,0f) with
respect tat and the usual (partial) differentiation af¢, \) with respect to\ can be
interchanged, i.e., the functiart* (¢, ) is differentiable in\ and

(%\ [22(t, )\)])\:0 = [za(t, O)]A forallt € [a, p(b)]s. (1.6)

Of course, such a result is very desirable, for instance, this issue arises-férwhen
studying eigenvalue problems on time scales, see e.g. [2, Lemma 4] or [7, formula (3)],
although in [2] it is not explicitly stated that such a property should be satisfied. This
problem can be viewed from the perspective of partial dynamic equations, where the
solution z is defined onT x R", the product ofr + 1 time scales, or on its subset
la,b]. x B,, where B, is the closed ball irR" of radius~y. Then formula (1.6) rep-
resents the equality of the mixed second order partial derivative$tok). As in the
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continuous time case, this result is indeed guaranteed once these mixed second order
partial derivatives areontinuousn the topology of the given time scale, see [6, The-

, 0
orem 6.1]. However, as we shall see, in our case the func%r{#(t, A)]x=o0 and

[zA(t,0)]* arenot continuousn ¢ but merely (piecewise) rd-continuous, which makes
the conclusion of [6, Theorem 6.1] in our case inaccessible. On the other hand, we will
prove that formula (1.6) nicely follows from the theory of time scale dynamic equations.

The idea of interchanging th®-derivative and the usual derivati\ga for a function

x(t, A) onTxR" is not completely new. In [14, Lemma 2] we encountenaparameter
family x(¢, A) of functions defined offu, b], x (—~,~) for which formula (1.6) is sat-
isfied. In this reference as well as in [17, Theorem 5.1] the question is to show that
for any given solution)(-) of the linearized equation, there exists a family, \) solv-

ing the original nonlinear equation and satisfying the given boundary conditions such
thatx(t,-), 2°(t,-) € C* (or even €) andz,(t,0) = n(t) for all t € [a,b],, and that

(1.6) holds. In [14, Lemma 2] this family is explicitly constructed to have readily the
differentiability requirements including identity (1.6). While in [17, Theorem 5.1] this
construction is done through the application of the natural extension of the embedding
theorem [16, Theorem 3.2] to vector parameters. In this case, the needed differentiabil-
ity of this family with respect to the vector-parameteis a consequence of the results

of this paper. Therefore, in the present paper we start with the nonlinear equation (1.1)
and the initial condition (1.2), both may depend on the vector-parametand then

show that the solutiom(t, -), (¢, -) € C* and that (1.6) holds.

The question of the differentiability of solutions of nonlinear equationdime
scaleshas been studied in the literature in [20, Theorem 2.7.1]. In this reference we
can find conditions which guarantee that the solutién \) is differentiable in\, but
only under a rather restrictive assumption that the Lipschitz consfaoitthe nonlin-
earity f satisfiesK (b — a) < 1. Our result below (Theorem 3.1) does not require
this.

Our result extends to time scales the corresponding continuous time result, i.e., for
the classicatlifferentialequation:’ = f(¢,z, \), see e.g. [12, Theorem 7.1, Appendix]
when\ € R", or [21, Theorem 1.10.1] for the one-parameter case. Finally, let us men-
tion that the methods we employed in [16, Section 3] to prove the time scale embedding
theorem as well as the methods in this paper extend directly to the time scale dynamic
equations

& = f(t, 2%, N), tela,pb), (1.7)
& = f(t,z, 2%, N), t€la,pb), (1.8)

or even to time scale dynamic equations of all stated forms egthplex-valuediata
and solutions (see Remark 3.8).

For the special case when= 1 and the right-hand sid¢ is linear in z and A\ we
obtain in Theorem 4.3 a better result, namely that the solutjan) is anentire function



38 R. Hilscher, V. Zeidan and W. Kratz

in \. This is proven along the hints provided in [21, pg. 79] for the continuous time case.
Such aresultis again important especially in the theory of eigenvalue problems for time
scale symplectic systems.

In this paper we use a common time scale notation and terminology as in [9], with
which the reader can also get acquainted in [16, Section 2].

The paper is divided as follows. In the next section we recall the assumptions and
the statement of the time scale embedding theorem from [16]. In Section 3 we establish
our main result (Theorem 3.1) regarding the differentiability of solutions of problem
(1.1), (1.2) with respect to the paramekerFinally, in Section 4 we treat the linear case
and prove that the solutions are entire function.in

2 Elementary Time Scale Notation

Let T be a bounded time scale. Th&ncan be identified with the time scale interval
[a, b]:, wherea := min T andb := max T both exist and belong t&. The forward and
backward jump operators are denoteds§y) andp(t), respectively, and the graininess
function byu(t) := o(t) — t. A pointt € [a, p(b)] is right-scatteredif o(¢) > ¢, while

t € [o(a), b, is left-scatteredif p(t) < t. Similarly, a pointt € [a, b), is right-denseif
o(t) =t, whilet € (a, b, is left-denseif p(t) = t.

A function f on T (with values in a Banach space)regulatedif the right-hand
limit f(t*) exists (finite) at all right-dense points€ [a,b), and the left-hand limit
f(t7) exists (finite) at all left-dense pointse (a,b];. A function f is rd-continuous
(we write f € Cy) if it is regulated and if it is continuous at all right-dense points
t € [a,b),. Afunction f is piecewise rd-continuousve write f € Cyq) if it is regulated
and if it is rd-continuous at all, except possibly at finitely many, right-dense points
t € [a,b);. Atthe right-dense point§ty, - - - ,t;} where a given Gg-function f is not
continuous, the statements and conditions involving the vafggs, i € {1,...,k},
simply mean that these statements and conditions hold when thef(@Jués replaced
by f(t]"). This convention will be assumed throughout the paper without further recall.
A matrix-function f is regressivef I + u(t) f(t) is invertible for allt € [a, p(D)]:.

A function f is rd-continuouslyA-differentiable(we write f € CL) if f2(t) exists
forallt € [a, p(b)]: andf> € Cyq. A continuous functiorf is piecewise rd-continuously

A-differentiable(we write f € Cérd) if f is continuous and® exists at all, except

possibly at finitely manyt; € [a, p(b)]: and 2 € Cpra.

The compositions of a functiofi with the jump operators are denoted f(t) :=
(o) andf?(t) = f(p(1)).

Let us fixn € N, ¢ € (0,b — a), andy, > 0, and letz : [a,b], — R" be a given
Cgrd vector function. Similarly to [23, Section 2], assume that we are given open sets
X CR"andA C R” such thatly.(z) x B,, C [a,p(b)]; x X x A, where

Toe(z) :== {(t,z) € [a,p(b)]: x R" such thafz — z(t)| < 2}



Differentiation with Respect to Parameters 39

is the2e-tube about the function(-), T».(7) is its closure B, is the closed ball ifR”
of radiusy,, and wherg - | is the Euclidean norm. For a continuous functian) on
[a, b]; the notationz € Th.(z) means thatt, z(t)) € To.(z) forall t € [a, p(b)]:.

Let be given functions

fila,p(d)]: x X x A —R" 2°: A —R"
In this paper we will assume that
(HO) system (1.1), (1.2) with = 0 has a solutiorz(-) on [a, b],
and that the data in problem (1.1), (1.2) satisfy the following hypotheses:
(H1) fis Cyq x C x C-continuous on its domain, see [14, Definition 3],

(H2) f is Lipschitz continuous ir: uniformly in (¢, A), that is, there exists a constant
K > 0 such that for allz, z), (¢,y) € T».(z) and\ € B,, we have

‘f(tvxa)‘) _f(tay7/\)| < K|ZL‘—y|,

(H3) % is continuously differentiable in,
(H4) f, andf, exist and are G4 x C x C-continuous on their domain.

The following time scale embedding theorem is a straightforward extension of the
one proven in [16, Theorem 3.2], in which proof the uniqueness is implicitdneing
in R" is admitted.

Theorem 2.1 (Embedding theorem).Assume thafHO)—(H2) hold. Then there exist
constantsy > 0 and~ > 0 such that for any parameter and initial valuez°(\) such
that|\| < v and|z"(\) — 2(0)| < ~ there is a unique solution(-, \) on[a, b] of (1.1),
(1.2) satisfyingz(t,0) = z(t) for all ¢ € [a, b], x(-, ) is continuous in(¢, ), and

b
z(t,\) — z(t)| < {{xO(A) — z(0)] +/ | f(t,z(t), \) — f(t,x(t),o)\At}

forall ¢ € [a, b];.
Remark2.2 Consider a linear system dam, p(b)];
2 =Sz, tela,pd)], x(ty) =2’ (2.1)

wheret, € [a, b],, andS(t) is ans x s matrix with Gg-entries.

(i) Whent, = a, Theorem 2.1 yields that for any’ € R* the system (2.1) has a
unique solution ora, bl;. To see this, just notice that= 0 solves the system (2.1) on
[a, p(b)]; for 2° = 0. Thus, by Theorem 2.1, there exists> 0 such that for2°| < ~,
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system (2.1) has a unique solution. Using the linearity of the system, it follows that for
anyz” the system has a unique solution.

(ii) If to € (a,b]:, then for anyz® € R* the system (2.1) has a unique solution
on [a, b], whenever orfa, ty), the matrixS(t) is regressive, that is] + u(t) S(¢) is
invertible.

(iii) Consider the linear system

et = S(t) 2%, tela,pb)., x(t) =" (2.2)

Then for anyz” € R® the system (2.2) has a unique solution[er], wheneverl —
w(t) S(t) is invertible onlty, p(b)].. This follows from [16, Remark 3.9], the version of
Theorem 2.1 corresponding to (2.2) and that 0 solves the system (2.2) da, p(b)],
for 2" = 0.

(iv) Consider the linear system

2 =Stz +Tt)x%, t€a,pb), x(ty) =2, (2.3)

where S(t) and7'(t) ares x s matrices with Gq-entries. Combining parts (ii) and
(iii) above yields that the system (2.3) has a unique solutiofaop(b)], whenever
I+ u(t) S(t) is invertible onfa, ty), andl — u(t) T'(¢) is invertible on[ty, p(b)]..

The following Gronwall inequality on time scales will be used in the proof of the
main result of this paper. Hekg(t, s) is the time scale exponential function, i.e., the
functione,(-, s) is the unique solution of the initial value problert = p(t) z, z(s) =
1, see [9, Section 2.2].

Lemma 2.3. Lety, g,p € Cuq be real-valued scalar functions dn, p(b)], such that
p(-) > 0and

y(t) < g(t) + /t y(7)p(r) AT forall ¢ € [a,b];.
Then . '
y(t) < g(t) +/ 6p(t, J(T)) g(T)p(r) At forall t € [a,b]-.
Proof. See [1, Theorem 5?16] or [9, Theorem 6.4]. ]

3 Main Results and Proofs

In this section we state and prove the following main result of this paper.

Theorem 3.1.Suppose thaiH0)—(H4)hold. Then there exists> 0 such that fof\| <

J there exists a unique solution(¢, \) of problem(1.1), (1.2) such that the function
x(-,-) is continuous int, \) on [a, bl x Bs, andx(t,-) is continuously differentiable
at A\ = 0 uniformly int, and the derivativer,(t,\) := a%x(t, A) satisfies at\ = 0
the linearized systeifi.3)«(1.5). Furthermore,z>(t, -) is continuously differentiable at
A = 0 uniformly int and formula(1.6) holds.
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Remark3.2 (i) Although we stated the above differentiability property«f,-) at
A = 0, itis clear that one may replace the paolnt= 0 by any\ € B,.

(i) From the proof of Theorem 3.1 it will follow that if we replace the assumptions
(H1), (H3), and (H4) by the hypothesis

(H5) f and its partial derivatives with respectt@nd\ up to ordem are G,y x Cx C-
continuous on their domain, and € C™ on its domain,

then the solution:(¢, -) of (1 1), (1.2) and:> (¢, -) will be of the class C, i.e., the partial
derivatives ofz(t, -) andz* (¢, -) with respect to the,;’s up to ordern are continuous.

Before proving Theorem 3.1 we shall discuss some implications of the hypotheses
(H1)-(H4) made on the dataandz®.

(C1) Assumption (H4) yields that the functigift, z(¢), -) is differentiable at = 0
uniformly in ¢, see [14, Definition 2 and Proposition 2]. That is, for any giver 0
there exist®; > 0 such that) < || < 4; implies

| f(t,2(t), A) — f(t,2(t),0) — fa(t, Z(t),0) Al
A

<e foralltea,pb).. (3.1)

(C2) Assumption (H4) implies that the functiofit, -, A) is differentiable atz(¢)
uniformly in (¢, ). That is, for givere > 0 there exists), € (0,0,) such that for all
€ |a, p(b)]y and0 < |z — Z(t)| < b2 We have

| f(t,m, X)) = f(t,2(t),\) — fo(t,Z(t),\) [z — 2(1)] |
}1: — f(t)‘

And since, by Theorem 2.1z(¢, -) is continuous af = 0 uniformlyin ¢, then for the
specifiedh, > 0 there existg; € (0, d;) such that)| < &5 implies |z (¢, \) — Z(t)| < 65
forall ¢t € [a, b],. Hence, for such\| < d; we have that

[ F(t 2t ), ) = F(L2(1),N) = folt, T(2), A) [2(t,A) — 2(1)] |
|2(t,A) — z(t)]

< e (3.2)

forall t € [a, p(b)]:.
(C3) Assumption (H4) implies that the functiorig(t, -, -) and f\(¢, -, -) are contin-
uous at\ = 0 uniformly in ¢. Thus, for any > 0 there isd, € (0, d3) such that for all
€ [a, p(b)]y and0 < |z — z(t)| < 04 we have

| fat, 2, N) = fo(t,2(1),0)|| <e  and ||/t 2, A) — fr(t,2(2),0)]] <e,

where|| - || is any matrix norm compatible with the vector nofm, see [4, Sections 9.3—
9.4]. Thet-uniformcontinuity ofz(¢,-) at A\ = 0 implies the existence of there exists
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d5 € (0,04) such thafA| < &5 implies|z(t, A) — z(¢)| < d4 for all t € [a,b].. Hence,
forallt € [a, p(b)], and for all|\| < J5; we have that

| falt, 2 (t, X), A) — fa(t,2(2),0)]] <, | At 2t X), A) = [t 2(1),0)]| <e,
(3.3)
and
| fa(t, 2(), A) — fu(t, 2(1),0)|| <e. (3.4)

(C4) The functionf,(-,z(-),0) is bounded byM; > 0. Thus, using (3.3)(i), it
follows that for|\| < é5 and fort € [a, p(b)], we have

| fo(t,2(),0)|| < My and || fo(t, z(t,N),N)|| < e+ M. (3.5)

(C5) By hypothesis (H3), the functim:?( -) is continuously differentiable at = 0.
Furthermore, by (1.2) we have(a,-) = 2°(-). Thus, for a givere > 0 there exists
do € (0,d5) such thab < |\| < &y implies

|x(a, A) — z(a,0) — Dx°(0) A ’
A

<e and |Dz°(\) — Da%0)| <e. (3.6)

Therefore, we just proved the following assertion.

Lemma 3.3. Suppose thatH0)—(H4) hold. Then for every > 0 there exists), > 0
such that) < |A\| < &, implies that condition$3.1)+3.6) hold true.

Proof. We takej, from the above conclusion (C5). Then, by constructiof,ahrough
(C1)—(C5) above it follows that all the inequalities in (3.1)—(3.6) are satisfiephfor
Jo- O

Lemma 3.4. Assume that for some > 0 there exists), > 0 such that for) < |\| <
do andt € [a, p(b)]y, conditions(3.1), (3.2), (3.4), and (3.5)i) hold. Then for any
continuous functiol : [a, b, — R™*" and for anyt € [a, p(b)]; we have

| f(t,z(t, M), \) = f(t,2(t,0),0) — fult,2(t,0),0) Z(t) A — fr(t,2(t,0),0) A|
Al
| z(t,\) — z(t,0) — Z(t) X |
Al

S (25 + Ml)

+2 | Z()] +e. (B.7)

If for 0 < |\| < §p andt € [a, p(b)]+, we have3.3)and (3.5)ii) hold, then for any pair
of continuous matrix functiong, 7; : [a, b, — R"*" we have

| fo(t,z(t, A), X) Zi(t) — fo(t,2(t,0),0) Z(t) + fa(t, z(t, A), X) — frlt,z(t,0),0)]]
<(e+M)||Zit) - Z(@t) ||+ Z@)| +e. (3.8)
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Proof. Denote the left-hand side of (3.7) a$t, \), and put

2(t,\) — 2(t,0) — Z(H)A
Al '

E(t,A) = (3.9)

Then we get

| f(t,z(t,A),A) = f(t,2(2,0),A) = fo(t, 2(2,0), A) [#(t, A) — z(¢,0)]
Al
fo(t, 2(t,0),0) [2(t,\) — x(t,0)] — fo(t, z(t,0),0) Z(t) Al
' R
| f(t,z(t,0),A) — f(t,2(t,0),0) — fr(t,z(,0),0) A|
! N

P(t, ) <

@) | £(t,2(t,2), A) — F(t2(t,0),3) — fult, 2(t,0), ) [r(t, \) — (1, 0)]|
N (t’)‘)_ (70)|

X

‘x(t,)\) —x(t,())’
Al
|[fo(t, 2(t,0),A) = fo(t, 2(t,0),0)] [2(t, A) — (t,0)] |
" A
+ | falt, 2(£,0),0) £t N) | + €

12() Al
P

X

D let N +e

| z(t,\) — x(t,0) |
R

+ || fa(t, 2(t,0), A) = folt, z(£,0),0) || -

+ || fot, 2(2,0),0) || - |€(E,N)] + &

(3.4), (3.5)(1)
< (254 M) |8 N)| + 26 |1 Z(1)]] + ¢

Therefore, estimate (3.7) is established.
Denote the left-hand side of (3.8) a&, \). Then we get

Ot A) < || fult, 2(t, X),A) [Z1(8) = Z(0)] + [fu(t, 2(t, N). A) = fult,2(2,0),0)] Z(2)]
+ 1At 2(t,A), ) = fult 2(t,0),0)
(3.3), (3.5)(ii)
(e + M) HZ1(t) — Z(t)H +el|lZ@)| +e,
whence, estimate (3.8) holds. O
Now we have all the preparatory material in order to prove Theorem 3.1.

Proof of Theorem 3.1First note that, by [14, Proposition 1], the assumption (H1) im-
plies that for any function: € 7>.(z) the compositiory (-, z(-), A) € Cyq, and hence it
is A-integrable.



44 R. Hilscher, V. Zeidan and W. Kratz

Letz(¢, \) be the solution of (1.1), (1.2), which exists foe [a, b], and|\| < 7 by
the embedding theorem (Theorem 2.1). IZ&t) be the solution of the linear equation
(1.3) satisfying (1.4). By Remark 2.2(i), [15, Remark 2.1(ii)] or [13, Theorem 5.7], the
solution Z(-) indeed exists and is continuous @nb|,. Hence, there existd/, > 0
such that
1Z(t)|| < My forallt € [a,b];. (3.10)

Lete > 0 be arbitrary and také := min{~, dy}, whered, > 0 is from Lemma 3.3.
Then for0 < |A| < ¢ all the inequalities in (3.1)—(3.8) are satisfied. Consequently, with
the notation from (1.5) and (3.9) we have

€08, M) < [€(a, V)]
t ‘ f(r,z(1, N, )\) — f(r, x(T, O),O) —A(T)Z(T) A= P(71) )\|
- w .

T

(3.6)(1), (3.7) ¢
< 5+/ { (e + M) [E(r, N)| + 22 | Z(7)|| + € } AT

(3.10) t
< 90+/ po |€(T, N)| AT,

where the positive constanis andg, are given by
po:i=2+ M, go:i=c[l+(2My+1)(b—a).

Sincep, > 0, it follows that1 + u(t) po > 0, i.e.,po iS positively regressive. Then the
corresponding time scale exponential functign(¢, s) > 0 for all ¢, s € [a, b];, by [9,
Theorem 2.44(i)]. Therefore, by the Gronwall inequality on time scales (Lemma 2.3),

‘f(t, )\)‘ < go+ /t €po (t,a(T)) gopo AT forallt € [a, b];. (3.11)

Sincee,, (-, -) is continuous in its arguments, it is bounded, i.e., there exigts> 0
such that
ep (t,0(7)) < Ms fort € [a,blz, T € [a, p(t)]s.

Then, from (3.11) we get for anye [a, b];

b
(8, 0] §90+/ M3 go po AT

=e[l+(2M2+1)(b—a)] [l + M; (2 + M) (b—a)]
— 0 ase —07.

Therefore, the function(t, -) is differentiable at\ = 0 uniformly int andz(¢,0) =
Z(t)forallt € [a,b];.
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Since the solution:(¢, \) exists for all\ € Bs and the assumptions (H0)—(H4) are
independent of the position of the poit= 0 in the ball Bs, we can conclude that at any
A € By, the functionz(¢, -) is differentiableuniformly in¢, and thatZ (-, \) := z, (-, A)
solves

Z2 = At,\)Z + P(t,)\), t¢€la,p(b), (3.12)
Z(a) = Da(\), (3.13)

whereA(t, A) is then x n matrix andP(t, ) is then x r matrix defined ora, p(b)]-

by
A, A) == fo (6,2t N),A), Pt A) == it z(t, ), ). (3.14)

Clearly, Z(t,0) = Z(t) holds.

We now show that, (¢, -) is continuous ah = 0 uniformly int. Lete > 0 be given
andd := min{~, do}, whered, > 0 is from Lemma 3.3. Then fav < |\| < ¢ all the
inequalities in (3.3), (3.5)(ii), and (3.6)(ii) are satisfied. Hence, by Lemma 3.4, estimate
(3.8) holds withZ; (t) := Z(t, \). Thus, denote

D(t,\) i= fu(t,z(t, A),N) Z(t,\) — fo(t,2(t,0),0) Z(¢)
+ At z(t, ), A) — fa(t,2(¢,0),0). (3.15)
Then (3.12) and (3.13) yield

1Z(t,N) = Z()|| < [|[Da’(A) — 2°(0) +/t IT(r, A) [| AT

(3.6)(ii), (3.8) t
< €+/ {e+M)|Z:(t) = Z2@t)| +ellZ@)]| +<} AT

(3.10) t
< ¢ +/ D1 HZ(T, A) — Z(T)H AT,
where the positive constants andg, are given by
pri=e+ M, gi=cec[l+(M+1)(b—a)l.

Continue similarly to the argument f@(¢, \) above, and after applying the time scale
Gronwall inequality (Lemma 2.3) we conclude that for any [a, 0.

|Z(t,\)— Z(t)]| <e[l+ (My+1)(b—a)][l+ My(e+ M) (b—a)]

— 0 ase — 0t

where )M, stands for the bound of,, (-,-) on [a,b],. Therefore,Z(t,-) = x.(t,-) is
continuous ai = 0 uniformly in¢.

Now there are two ways to prove that (¢, -) is also continuously differentiable in
Aat\ = 0 uniformly in ¢.
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1st method By using the estimate (3.7) and notation (3.9) we have for famy
[a, p(b)]r and0 < |A| < § the estimate
| 22t A) — 22(t,0) — Z2(t) A

A(t,\)
enl= A

< (26 + M) |€(t,N)| + € (2 M + 1).

(3.16)
Since we have already proven thdt, 0) is differentiable at\ = 0 uniformly in ¢t and
thatx,(¢,0) = Z(t), there exists); € (0,0) such that for0 < |A\] < J5 we have
(¢, \)| < e, forallt € [a, p(b)].. Thus, for such\ we conclude from (3.16) that

ISA(t,A)| <(2e+M)e+e(2My+1) -0 ase — 07,

Hencex?(t,-) is differentiable at. = 0 uniformly int, anda%\ (22t N)],_, = Z2(t)

forallt € [a, p(b)].. The fact thatZ(¢) = x,(¢,0) yields that formula (1.6) holds.
Of course, similar arguments show thett (¢, -) is differentiable at any\ € B;

uniformly int, and that— 0 22(t,\)] = Z2(t,\), whereZ(t, \) is the solution of

] = 2
(3.12) and (3.13). To show the continuityg& [z2(¢, \)] atA = 0 uniformly in¢, we

use the estimates (3.8) and (3.15). It follows thattfer [a, p(b)], and0 < |A| < J we
have

A A (3.8),(3.10)
125 N2 = ITEN I S (M) | Z(E N —Z () |+ Mate, (3.17)

Since we have already proven tha(, -) = x,(t, -) is continuous ak = 0 uniformly in
t, then there exist& € (0, ) such that fol) < |A| < d we have||Z(t,\) — Z(t)|| < e
forallt € [a, p(b)].. Thus, for such\ we conclude from (3.17) that

|Z2(t,A) = Z2()|| < (e + My)e+e(Ma+1) >0 ase — 07,

proving the continuity of% [a:A(t, A)] atx = 0 uniformly in¢.
2nd methodWe know that the function (¢, \) satisfies the equation
a2 (t,A\) = f(t,z(t,\),\), forallt € [a,p(b)ls [ <6. (3.18)

Since we have shown thatt, -) is differentiable uniformly int when A\ is near0 and
thatz, (¢, A) is continuous ah = 0 uniformly in ¢, then the right-hand side of equation
(3.18) is continuously differentiable ih at A\ = 0 uniformly in ¢, and thusz> (¢, -) is
also continuously differentiable at= 0 uniformly in ¢ and

SN = o [ 0), )]
— AN oa(t ) + P(EN) = A(£,A) Z(E ) + P(£,2)
— Z5(t,\) = [ma(5, M)]°

forall t € [a,p(b)]r, whereZ(t,\), A(t,\), and P(t, \) are defined in (3.12)—(3.14).
Whence, identity (1.6) holds. The proof of Theorem 3.1 is now complete. ]
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Remark3.5. (i) In the proof above we obtained that (1.6) holds not onlyat 0
but for all A near0. However, since the solution(t, \) exists for all\ € B; and the
assumptions (HO)—(H4) are independent of the position of the po#at0 in the ball
Bs, we can conclude that the rule for interchanging the derivatives holds for angg;,
i.e., 5
B\ [22(t,N)] = [x)\(t,/\)}A forallt € [a, p(b)]z, A € Bs.

(i) Whenr = 1, one may think to replace the parameter intefvaly, \o] by some
time scaleinterval [«, 5]z, whereT is another time scale (possibly different fréfi).
However, the proof of formula (1.6) uses the chain rulékdrand it is well known that

such a chain rule does not work on general time scales, see e.g. [9, Section 1.5].

Remark3.6. In the theory of dynamic equations on time scales one often encounters the
situation when the right-hand side of the equation depends amstead ofr. Thus, we

can consider the problem (1.7), (1.2). Then the corresponding embedding theorem holds
under the additional assumption that the mafrix p(t) f, (¢,z°(t), 0) is invertible for

allt € [a,p(b)];, see [16, Remark 3.9]. In this case the conclusion of Theorem 3.2
remains true with the linearized system

Z% = f.(£,7°(t),0) Z° + fr(t,27(¢),0), t € [a, p(b)]x,

instead of equation (1.3). We refer to [17, Section 3] for a general transformation
method between the two types of problems (1.1) and (1.7). Moreover, see [16, Re-
marks 3.8, 3.9] for the discussion about the above regressivity-type condition on the
matrix f, (-, z7(-),0) and the position of the given initial condition.

Remark3.7. A most general form of the problem is then the dynamic equation (1.8),

(2.2), in which bothz andz? is present inf. Then the linearized equation takes the
form

Z% = fo() Z+ [,(t) Z° + fA(t), t€ [a,p(b)],

where f, and f, denote the partial derivatives ¢f with respect to second and third
variables, respectively, and the partial derivatives are evaluatgdzt), z°(¢), 0). In

this case the result requires the invertibility of the matrix (t) f, (¢, z(t), z7(t),0)

on [CL, p<b>]T

Remark3.8. Upon replacing the involved norms of real-valued vectors and matrices by
the corresponding norms obmplex-valuedectors and matrices, one can easily check
that the methods of proof of the embedding theorem (Theorem 2.1) in [16] and the proof
of the differentiability theorem (Theorem 3.1) extend directlgtonplex-valuediata

fila,pB): x X x A —C", 2°:A—C",
where nowX C C*", A C C",

Toe(z) := {(t,z) € [a, p(b)]: x C" such thajz — z(t)| < 2¢},



48 R. Hilscher, V. Zeidan and W. Kratz

and whereB,, := {\ € C", || < v} is the open ball with radius,. In this case we
may replace the assumptions (H3) and (H4) by the requirement ithdtolomorphic in
its (complex) argumentsand and that:° is holomorphic in\. Then we can conclude
that the complex-valued solutiar(t, \), which is now defined ofu, b], x Bs, is also
holomorphic in\. Note that in this case the independent varialde|a, b], is still real.

4 Linear Systems

In this section we deal with linear dynamic systems. In the first part we apply The-
orem 3.1, and in particular formula (1.6), to an eigenvalue problem associated with a
special linear system, called a time scale symplectic system. In the second part of this
section we prove for the case of general linear systems that the solutions are entire func-
tions of the parameter.

Consider the eigenvalue problem

XA = A X+Bt)U, U”=C{t)X+Dt)U-AW(t)X°, t¢€a,pb), (4.1)

whereA, B,C,D, W : [a, p(b)]y — R™ " are given Gq matrices,W (t) is symmetric,
and \ is ascalar parameter. We assume that the x 2n coefficient matrixS(t) :=

At) B(t) i : .
(C(t) D(t)) satisfies the identity

ST(t) T + TS + u(t) ST(t) IS(t) =0 forallt € [a,p)]s,  (4.2)

where7 := ( ° }) hasn x n block entries. Linear systems whose coefficient matrix
satisfies (4.2) are in the literature callade scale symplectior Hamiltonian systems
see e.g. [3,10,15].

Remark4.1 (i) Observe that one can write the eigenvalue problem (4.1) as a linear
matrix system in which the right hand side has no shiftih U). Indeed, by using the
identity X° — X = X in the first equation of (4.1), we obtain that the eigenvalue
problem (4.1) is equivalent to

A
(g) — St ) (g) € a, p(B)s, (4.3)
where
S(t,A) = (C WU ) Do WB) () =S +AQ(),  (4.4)
with

0 0
Q(t) = (—W(I+MA) _MWB) (). (4.5)
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(ii) Suppose that an initial pointy € [a, b]. and initial dataX®, U° € R™*" are
given. Then, by part (i) above and by Remark 2.2, we can assert that for ewers,
there exists offu, b, a unique solutiof X (-, \), U(-, \)) of (4.1) satisfying

(X (to, A), U(to, N)) = (X0, Us)
as long as the following conditions hold:
(@) the2n x 2n matrix I + p(t) S(t) is invertible for allt € [a, to). (void if ¢y = a),
(b) the2n x 2n matrix I — u(t) 7 (t) is invertible for allt € [ty, p(b)]; (void if ¢ty = b),

where7 (t) := (481,(,5) 8) Notice however that condition (b) above is always satisfied.
While condition (a) is known to hold under condition (4.2), because in this case the
matrix I + u(t) S(t) is symplectic. Note also that if (4.2) holds, i.e., if (4.1) with= 0

is a time scale symplectic system, then (4.1) is a time scale symplectic system for all
A € R, i.e., the matrixS(¢, \) given in (4.4) satisfies the identity (4.2) as well.

Remark4.2 The question whether the solutio (-, A), U(-, \)) of (4.1) are differen-
tiable with respect to. and whether the equalities
0 0

5[}(%, Ny = [Xa(,0)]7, 5[%(@ Ny = [Ua(t,0)] (4.6)

are satisfied on any time scale was posed e.g., in [7, formula (3)]. Of course, this
property holds for the time scaléds = R andT = 7Z, and it is often used in the
oscillation and eigenvalue theories for continuous time linear Hamiltonian systems and
discrete symplectic systems, see [5,11,19,22]. As a consequence of Theorem 3.1 and
Remark 3.7 we can now conclude that the identities in (4.6) indeed hold on any time
scale and that the functiod$, (-, 0), U,(+,0), andX (-, 0) satisfy the linearized system

(X2)2 = A(t) Xa+B(t) Uy, (Ux)* = C(t) Xa+D(t) Uy = AW (1) X\7 =W (t) X7,

in which we suppress the argumént0) in the solution.

Since the eigenvalue problem (4.1)iisear in ), it is expected that its solutions as
functions of the parameter enjoy “nicer” properties than continuous differentiability.
Let us now turn our attention to a general linear system

y> =AW +ABO)]y,  tela,pO)s,
whereA(-) andB(-) are givem x n matrix functions. The following result is motivated
by [21, Problem 1.10.4, pg. 79].

Theorem 4.3.LetA, B : [a, p(b)]: — R™™" are Cyq functions and\ € R a parameter,
and assume that(-) is regressive ofu, p(b)];. Then the fundamental matrix(¢, \) of
the system

Y2 =[A@®) +AB®)Y, tea,pb)s, Y(a)=1I, (4.7)

is an entire function of the parameter
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Proof. Let Yy(+) be the unigue solution, i.e., the fundamental matrix, of the system
Y& =A@M)Y, tela,p®d)]., Y(a)=1I

By induction, if the matrix functiorY},_, (¢) is defined for somé € N, then we lety}(+)
to be the unique solution of the system

Y& =AY + B(t)Yii(t), t€[a,p()]s, Y(a)=0.

The existence of these solutions is guaranteed e.g. by [15, Remark 2.1(ii)] or by [13,
Theorem 5.7]. In addition, by the variation of constants formula, see [9, Theorem 5.24],
we have

Yi(t) = Yo(t) / t Yy (o(7)) B(r) Yeer(r) A7, t€a,b),, kEN.  (4.8)

Leta, 5 € R be such that

| Yot) || <« forallt e [a,b], (4.9)
| Yo(t) Y (1)) ' B(r) || < 8 forallt, € [a, p(b)]s, (4.10)

where|| - || is the spectral matrix norm. It follows by induction that
| Yi(t) || < aB* hi(t,a) fort € [a,bly, k€ NU{0}, (4.11)

wherehy(t, a) are the time scale polynomials, i.q(t,a) = 1, hy(t,a) = t — a, and

t
in generaly.(t,a) := / hi(1,a) AT, see [9, Section 1.6]. Note that(¢,a) > 0 for
allt € [a,b];. Indeed, fork = 0 inequality (4.11) reduces to (4.9), and if we assume

that|| Yi—1(t) || < a 857" hy—1(t, a), then identity (4.8) yields
IO < [ 1% b5 1B |- [ Yies() | A7

<aph /t hi_1(7,0) AT = a B hy(t, a).

t— k
Now the result of [8, Theorem 4.1] shows that(t,a) < ( k'a) fort > a. Conse-
quently, for anyt € [a, bl we have '

e e}

ZA’% H Zw 1Ye@®) ]| <> 1A a B hi(t, a)

k=0 k=0

(t_CL)k —a
Saz‘)\‘kﬂkT:Oéep\‘ﬁ(t )
k=0
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Hence, the serieg MY, (t) converges uniformly offa, b, to a continuous function
k=0

®(t, \). We now multiply equation (4.8) by* and add up all these equations fore

NuU {0} and get

O+ 3800 =350 30 [ ¥ (o) Blr) 3o Vi) e

t € [a,bl;. Hence, by shifting the summation index in the series on the right-hand side,

it follows that the functionb (¢, A) Z MY, (t) satisfies the equation

O(t, \) = Yo(t) + Yo(t) /t Yo (o(7)) B(T) N®(T,\) AT, t € [a,b]s.

Therefore, again by the time scale variations of constants formula,

DA(t,\) = [A(t) + AB(t)] ®(t,\) forallt € [a, p(b)]:.

Moreover,®(a, \) )+ ZYk = I,i.e.,®(-, \) is the fundamental matrix of

the dynamic equation in (4. 7) From the series representatidrizod\) it follows that
(¢, ) is an entire function ir. N

Remark4.4. From the proof of Theorem 4.3 and from the estimate

t— k
hi(t,s) < ( k“s) forallt,s € [a,b]y, t > s

in [8, Theorem 4.1] one can see that if we replace the initial conditiom) = I in
Theorem 4.3 by (s) = I for some given point € [a, b|;, then the fundamental matrix
(and hence all the solutions) of the equafioh = [A(t)+\ B(t)] Y is an entire function
in \ for all pointst € [s, b],.

The following consequence of Theorem 4.3 presents the nice property enjoyed by
the solutions of the eigenvalue problem (4.1).

Corollary 4.5. Assume that foA = 0 the coefficient matrixS(t) = S(¢,0) of system
(4.1) satisfies identity4.2). Then, the solutions gf.1) are entire functions ok.

Proof. First note that the system being symplectid.at 0, yields thatl + p(t) S(¢) is
invertible on[a, b];, and thus for any initial condition &t < [a, b];, and for any\ € R,

the system (4.1) has a unique solutig¥i(t, A), U(t, X)) on [a, b]. that is differentiable

in \, see Remarks 4.1(ii) and 4.2. Now write the system (4.1) in the form (4.3)—(4.5).
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Then, it has the form of (4.7), wheié := (£), A := S, andB := Q. SinceS is
regressive, then by Theorem 4.3, the fundamental mettix\) of (4.3)—(4.5) starting
att, = a is an entire function ir\. Therefore, every solution of system (4.1) is also an
entire function of\, because it is of the form

()5((; i;) =) (%) on [a, b

whereM, N € R"*" are constant matrices. O

Remark4.6. The result of Corollary 4.5 is used e.g. in [24, pg. 290] in the context of
the second order Sturm—Liouville dynamic equation

— () ™) + () y” = Aw(t) y°. (4.12)

In this reference, the differentiability of the solutigit, \) with respect to) is also
used in the proof of [24, Lemma 2.5]. Note that for the same equation (4.12) the differ-
entiability of y(¢, A) with respect to\ is proven in [18, Lemma 3.2]. Equation (4.12) is

a special case of our symplectic system (4.1).
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