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Abstract

In this paper we prove the differentiability properties of solutions of nonlinear
dynamic equations on time scales with respect to parameters. This complements
the previous work of the first and third authors regarding the existence and conti-
nuity of solutions with respect to parameters. In addition, we treat separately time
scale dynamic equations which are linear with respect to the unknown function
and the parameter. For this case we derive an improved result which says that the
solution is an entire function of the parameter.

AMS Subject Classifications:34A12, 34K99, 39A12.
Keywords: Time scale, embedding theorem, differentiation with respect to parameters,
entire function, complex domain.

1 Introduction

In this paper we study the differentiability properties of solutions of dynamic equations
on the so-called time scalesT, which are defined to be any nonempty and closed subsets
of R. This allows one to unify the traditional results for the differential equations (which
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we call thecontinuous case) and the difference equations (which we call thediscrete
case), explain the differences between the continuous and discrete theories, and extend
such results to arbitrary time scales.

In this paper we consider the nonlinear time scale dynamic system

x∆ = f(t, x, λ), t ∈ [a, ρ(b)]T, (1.1)

x(a) = x0(λ), (1.2)

where the nonlinearityf and the initial valuex0 may depend on a parameterλ ∈ Rr.
The data and the solutions are considered to bereal valued, however, the results of this
paper easily extend to the complex setting.

Assuming that there exists a solutionx(t, 0) on [a, b]T of the problem (1.1), (1.2) with
λ = 0, the first and third authors proved a time scale embedding theorem in [16, Theo-
rem 3.2] saying that the solutionx(t, λ) of (1.1), (1.2) exists on[a, b]T and is continuous
in

(
t, x0(λ), λ). In particular, the functionx(t, ·) is continuous inλ. Note that the em-

bedding theorem in [16, Theorem 3.2] was proved for the case whenλ ∈ R, but the
same proof remains valid whenλ ∈ Rr.

In the present work we continue in this direction and show that, under suitable as-
sumptions, the solutionsx(t, λ) of (1.1), (1.2) are differentiable inλ, and the partial

derivativexλ(t, λ) :=
∂

∂λ
x(t, λ), satisfies atλ = 0 the linearized dynamic equation

Z∆ = A(t)Z + P (t), t ∈ [a, ρ(b)]T, (1.3)

Z(a) = Dx0(0), (1.4)

whereDx0(·) denotes the Jacobian of the functionx0(·), A(t) is then × n matrix and
P (t) is then× r matrix defined on[a, ρ(b)]T by

A(t) := fx

(
t, x(t, 0), 0

)
, P (t) := fλ

(
t, x(t, 0), 0

)
. (1.5)

The proof is based on the Gronwall inequality on time scales (see Lemma 2.3 below).
An expected consequence of this is that the time scale differentiation ofx(t, λ) with

respect tot and the usual (partial) differentiation ofx(t, λ) with respect toλ can be
interchanged, i.e., the functionx∆(t, ·) is differentiable inλ and

∂

∂λ

[
x∆(t, λ)

]
λ=0

=
[
xλ(t, 0)

]∆
for all t ∈ [a, ρ(b)]T. (1.6)

Of course, such a result is very desirable, for instance, this issue arises forr = 1 when
studying eigenvalue problems on time scales, see e.g. [2, Lemma 4] or [7, formula (3)],
although in [2] it is not explicitly stated that such a property should be satisfied. This
problem can be viewed from the perspective of partial dynamic equations, where the
solutionx is defined onT × Rr, the product ofr + 1 time scales, or on its subset
[a, b]T × B̄γ, whereB̄γ is the closed ball inRr of radiusγ. Then formula (1.6) rep-
resents the equality of the mixed second order partial derivatives ofx(t, λ). As in the
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continuous time case, this result is indeed guaranteed once these mixed second order
partial derivatives arecontinuousin the topology of the given time scale, see [6, The-

orem 6.1]. However, as we shall see, in our case the functions
∂

∂λ
[x∆(t, λ)]λ=0 and

[xλ(t, 0)]∆ arenot continuousin t but merely (piecewise) rd-continuous, which makes
the conclusion of [6, Theorem 6.1] in our case inaccessible. On the other hand, we will
prove that formula (1.6) nicely follows from the theory of time scale dynamic equations.

The idea of interchanging the∆-derivative and the usual derivative
∂

∂λ
for a function

x(t, λ) onT×Rr is not completely new. In [14, Lemma 2] we encounter aone-parameter
family x(t, λ) of functions defined on[a, b]T × (−γ, γ) for which formula (1.6) is sat-
isfied. In this reference as well as in [17, Theorem 5.1] the question is to show that
for any given solutionη(·) of the linearized equation, there exists a familyx(t, λ) solv-
ing the original nonlinear equation and satisfying the given boundary conditions such
thatx(t, ·), x∆(t, ·) ∈ C1 (or even C2) andxλ(t, 0) = η(t) for all t ∈ [a, b]T, and that
(1.6) holds. In [14, Lemma 2] this family is explicitly constructed to have readily the
differentiability requirements including identity (1.6). While in [17, Theorem 5.1] this
construction is done through the application of the natural extension of the embedding
theorem [16, Theorem 3.2] to vector parameters. In this case, the needed differentiabil-
ity of this family with respect to the vector-parameterλ is a consequence of the results
of this paper. Therefore, in the present paper we start with the nonlinear equation (1.1)
and the initial condition (1.2), both may depend on the vector-parameterλ, and then
show that the solutionx(t, ·), x∆(t, ·) ∈ C1 and that (1.6) holds.

The question of the differentiability of solutions of nonlinear equations ontime
scaleshas been studied in the literature in [20, Theorem 2.7.1]. In this reference we
can find conditions which guarantee that the solutionx(t, λ) is differentiable inλ, but
only under a rather restrictive assumption that the Lipschitz constantK of the nonlin-
earity f satisfiesK (b − a) < 1. Our result below (Theorem 3.1) does not require
this.

Our result extends to time scales the corresponding continuous time result, i.e., for
the classicaldifferentialequationx′ = f(t, x, λ), see e.g. [12, Theorem 7.1, Appendix]
whenλ ∈ Rr, or [21, Theorem 1.10.1] for the one-parameter case. Finally, let us men-
tion that the methods we employed in [16, Section 3] to prove the time scale embedding
theorem as well as the methods in this paper extend directly to the time scale dynamic
equations

x∆ = f(t, xσ, λ), t ∈ [a, ρ(b)]T, (1.7)

x∆ = f(t, x, xσ, λ), t ∈ [a, ρ(b)]T, (1.8)

or even to time scale dynamic equations of all stated forms withcomplex-valueddata
and solutions (see Remark 3.8).

For the special case whenr = 1 and the right-hand sidef is linear in x andλ we
obtain in Theorem 4.3 a better result, namely that the solutionx(t, ·) is anentire function
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in λ. This is proven along the hints provided in [21, pg. 79] for the continuous time case.
Such a result is again important especially in the theory of eigenvalue problems for time
scale symplectic systems.

In this paper we use a common time scale notation and terminology as in [9], with
which the reader can also get acquainted in [16, Section 2].

The paper is divided as follows. In the next section we recall the assumptions and
the statement of the time scale embedding theorem from [16]. In Section 3 we establish
our main result (Theorem 3.1) regarding the differentiability of solutions of problem
(1.1), (1.2) with respect to the parameterλ. Finally, in Section 4 we treat the linear case
and prove that the solutions are entire functions inλ.

2 Elementary Time Scale Notation

Let T be a bounded time scale. ThenT can be identified with the time scale interval
[a, b]T, wherea := min T andb := max T both exist and belong toT. The forward and
backward jump operators are denoted byσ(t) andρ(t), respectively, and the graininess
function byµ(t) := σ(t)− t. A point t ∈ [a, ρ(b)]T is right-scattered, if σ(t) > t, while
t ∈ [σ(a), b]T is left-scattered, if ρ(t) < t. Similarly, a pointt ∈ [a, b)T is right-dense, if
σ(t) = t, while t ∈ (a, b]T is left-dense, if ρ(t) = t.

A function f on T (with values in a Banach space) isregulatedif the right-hand
limit f(t+) exists (finite) at all right-dense pointst ∈ [a, b)T and the left-hand limit
f(t−) exists (finite) at all left-dense pointst ∈ (a, b]T. A function f is rd-continuous
(we write f ∈ Crd) if it is regulated and if it is continuous at all right-dense points
t ∈ [a, b)T. A functionf is piecewise rd-continuous(we writef ∈ Cprd) if it is regulated
and if it is rd-continuous at all, except possibly at finitely many, right-dense points
t ∈ [a, b)T. At the right-dense points{t1, · · · , tk} where a given Cprd-functionf is not
continuous, the statements and conditions involving the valuesf(ti), i ∈ {1, . . . , k},
simply mean that these statements and conditions hold when the valuef(ti) is replaced
by f(t+i ). This convention will be assumed throughout the paper without further recall.
A matrix-functionf is regressiveif I + µ(t) f(t) is invertible for allt ∈ [a, ρ(b)]T.

A function f is rd-continuously∆-differentiable(we writef ∈ C1
rd) if f∆(t) exists

for all t ∈ [a, ρ(b)]T andf∆ ∈ Crd. A continuous functionf is piecewise rd-continuously
∆-differentiable(we write f ∈ C1

prd) if f is continuous andf∆ exists at all, except
possibly at finitely many,t ∈ [a, ρ(b)]T andf∆ ∈ Cprd.

The compositions of a functionf with the jump operators are denoted byfσ(t) :=
f
(
σ(t)

)
andfρ(t) := f

(
ρ(t)

)
.

Let us fixn ∈ N, ε ∈ (0, b − a), andγ0 > 0, and letx̄ : [a, b]T → Rn be a given
C1

prd vector function. Similarly to [23, Section 2], assume that we are given open sets

X ⊆ Rn andΛ ⊆ Rr such thatT2ε(x̄)× B̄γ0 ⊆ [a, ρ(b)]T ×X × Λ, where

T2ε(x̄) :=
{
(t, x) ∈ [a, ρ(b)]T × Rn such that

∣∣x− x̄(t)
∣∣ < 2ε

}
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is the2ε-tube about the function̄x(·), T2ε(x̄) is its closure,B̄γ0 is the closed ball inRr

of radiusγ0, and where| · | is the Euclidean norm. For a continuous functionx(·) on
[a, b]T the notationx ∈ T2ε(x̄) means that

(
t, x(t)

)
∈ T2ε(x̄) for all t ∈ [a, ρ(b)]T.

Let be given functions

f : [a, ρ(b)]T ×X × Λ → Rn, x0 : Λ → Rn.

In this paper we will assume that

(H0) system (1.1), (1.2) withλ = 0 has a solution̄x(·) on [a, b]T,

and that the data in problem (1.1), (1.2) satisfy the following hypotheses:

(H1) f is Cprd× C× C-continuous on its domain, see [14, Definition 3],

(H2) f is Lipschitz continuous inx uniformly in (t, λ), that is, there exists a constant
K > 0 such that for all(t, x), (t, y) ∈ T2ε(x̄) andλ ∈ Bγ0 we have∣∣f(t, x, λ)− f(t, y, λ)

∣∣ ≤ K |x− y|,

(H3) x0 is continuously differentiable inλ,

(H4) fx andfλ exist and are Cprd× C× C-continuous on their domain.

The following time scale embedding theorem is a straightforward extension of the
one proven in [16, Theorem 3.2], in which proof the uniqueness is implicit andλ being
in Rr is admitted.

Theorem 2.1 (Embedding theorem).Assume that(H0)–(H2) hold. Then there exist
constantsα > 0 andγ > 0 such that for any parameterλ and initial valuex0(λ) such
that |λ| < γ and|x0(λ)− x̄(0)| < γ there is a unique solutionx(·, λ) on [a, b]T of (1.1),
(1.2)satisfyingx(t, 0) = x̄(t) for all t ∈ [a, b]T, x(·, ·) is continuous in(t, λ), and

∣∣x(t, λ)− x̄(t)
∣∣ ≤ α

{∣∣x0(λ)− x̄(0)
∣∣ +

∫ b

a

∣∣ f(
t, x̄(t), λ

)
− f

(
t, x̄(t), 0

)∣∣ ∆t

}
for all t ∈ [a, b]T.

Remark2.2. Consider a linear system on[a, ρ(b)]T

x∆ = S(t)x, t ∈ [a, ρ(b)]T, x(t0) = x0, (2.1)

wheret0 ∈ [a, b]T, andS(t) is ans× s matrix with Cprd-entries.
(i) When t0 = a, Theorem 2.1 yields that for anyx0 ∈ Rs the system (2.1) has a

unique solution on[a, b]T. To see this, just notice thatx ≡ 0 solves the system (2.1) on
[a, ρ(b)]T for x0 = 0. Thus, by Theorem 2.1, there existsγ > 0 such that for|x0| < γ,
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system (2.1) has a unique solution. Using the linearity of the system, it follows that for
anyx0 the system has a unique solution.

(ii) If t0 ∈ (a, b]T, then for anyx0 ∈ Rs the system (2.1) has a unique solution
on [a, b]T whenever on[a, t0)T the matrixS(t) is regressive, that is,I + µ(t)S(t) is
invertible.

(iii) Consider the linear system

x∆ = S(t)xσ, t ∈ [a, ρ(b)]T, x(t0) = x0. (2.2)

Then for anyx0 ∈ Rs the system (2.2) has a unique solution on[a, b]T wheneverI −
µ(t)S(t) is invertible on[t0, ρ(b)]T. This follows from [16, Remark 3.9], the version of
Theorem 2.1 corresponding to (2.2) and thatx ≡ 0 solves the system (2.2) on[a, ρ(b)]T

for x0 = 0.
(iv) Consider the linear system

x∆ = S(t)x+ T (t)xσ, t ∈ [a, ρ(b)]T, x(t0) = x0, (2.3)

whereS(t) andT (t) are s × s matrices with Cprd-entries. Combining parts (ii) and
(iii) above yields that the system (2.3) has a unique solution on[a, ρ(b)]T whenever
I + µ(t)S(t) is invertible on[a, t0)T andI − µ(t)T (t) is invertible on[t0, ρ(b)]T.

The following Gronwall inequality on time scales will be used in the proof of the
main result of this paper. Hereep(t, s) is the time scale exponential function, i.e., the
functionep(·, s) is the unique solution of the initial value problemx∆ = p(t)x, x(s) =
1, see [9, Section 2.2].

Lemma 2.3. Let y, g, p ∈ Cprd be real-valued scalar functions on[a, ρ(b)]T such that
p(·) ≥ 0 and

y(t) ≤ g(t) +

∫ t

a

y(τ) p(τ) ∆τ for all t ∈ [a, b]T.

Then

y(t) ≤ g(t) +

∫ t

a

ep

(
t, σ(τ)

)
g(τ) p(τ) ∆τ for all t ∈ [a, b]T.

Proof. See [1, Theorem 5.6] or [9, Theorem 6.4].

3 Main Results and Proofs

In this section we state and prove the following main result of this paper.

Theorem 3.1.Suppose that(H0)–(H4)hold. Then there existsδ > 0 such that for|λ| <
δ there exists a unique solutionx(t, λ) of problem(1.1), (1.2) such that the function
x(·, ·) is continuous in(t, λ) on [a, b]T × Bδ, andx(t, ·) is continuously differentiable

at λ = 0 uniformly in t, and the derivativexλ(t, λ) :=
∂

∂λ
x(t, λ) satisfies atλ = 0

the linearized system(1.3)–(1.5). Furthermore,x∆(t, ·) is continuously differentiable at
λ = 0 uniformly int and formula(1.6)holds.
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Remark3.2. (i) Although we stated the above differentiability property ofx(t, ·) at
λ = 0, it is clear that one may replace the pointλ = 0 by anyλ ∈ Bγ0.

(ii) From the proof of Theorem 3.1 it will follow that if we replace the assumptions
(H1), (H3), and (H4) by the hypothesis

(H5) f and its partial derivatives with respect tox andλ up to orderm are Cprd×C×C-
continuous on their domain, andx0 ∈ Cm on its domain,

then the solutionx(t, ·) of (1.1), (1.2) andx∆(t, ·) will be of the class Cm, i.e., the partial
derivatives ofx(t, ·) andx∆(t, ·) with respect to theλi’s up to orderm are continuous.

Before proving Theorem 3.1 we shall discuss some implications of the hypotheses
(H1)–(H4) made on the dataf andx0.

(C1) Assumption (H4) yields that the functionf(t, x̄(t), ·
)

is differentiable atλ = 0
uniformly in t, see [14, Definition 2 and Proposition 2]. That is, for any givenε > 0
there existsδ1 > 0 such that0 < |λ| < δ1 implies∣∣ f(t, x̄(t), λ

)
− f(t, x̄(t), 0

)
− fλ(t, x̄(t), 0

)
λ
∣∣

|λ|
< ε for all t ∈ [a, ρ(b)]T. (3.1)

(C2) Assumption (H4) implies that the functionf(t, ·, λ) is differentiable at̄x(t)
uniformly in (t, λ). That is, for givenε > 0 there existsδ2 ∈ (0, δ1) such that for all
t ∈ [a, ρ(b)]T and0 < |x− x̄(t)| < δ2 we have∣∣ f(t, x, λ

)
− f

(
t, x̄(t), λ

)
− fx(t, x̄(t), λ

)
[x− x̄(t)]

∣∣∣∣x− x̄(t)
∣∣ < ε.

And since, by Theorem 2.1 ,x(t, ·) is continuous atλ = 0 uniformly in t, then for the
specifiedδ2 > 0 there existsδ3 ∈ (0, δ2) such that|λ| < δ3 implies

∣∣x(t, λ)− x̄(t)
∣∣ < δ2

for all t ∈ [a, b]T. Hence, for such|λ| < δ3 we have that∣∣ f(
t, x(t, λ), λ

)
− f

(
t, x̄(t), λ

)
− fx(t, x̄(t), λ

)
[x(t, λ)− x̄(t)]

∣∣∣∣x(t, λ)− x̄(t)
∣∣ < ε (3.2)

for all t ∈ [a, ρ(b)]T.
(C3) Assumption (H4) implies that the functionsfx(t, ·, ·) andfλ(t, ·, ·) are contin-

uous atλ = 0 uniformly in t. Thus, for anyε > 0 there isδ4 ∈ (0, δ3) such that for all
t ∈ [a, ρ(b)]T and0 < |x− x̄(t)| < δ4 we have∥∥fx(t, x, λ

)
− fx(t, x̄(t), 0

)∥∥ < ε and
∥∥fλ(t, x, λ

)
− fλ(t, x̄(t), 0

)∥∥ < ε,

where‖·‖ is any matrix norm compatible with the vector norm| · |, see [4, Sections 9.3–
9.4]. Thet-uniformcontinuity ofx(t, ·) at λ = 0 implies the existence of there exists
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δ5 ∈ (0, δ4) such that|λ| < δ5 implies
∣∣x(t, λ) − x̄(t)

∣∣ < δ4 for all t ∈ [a, b]T. Hence,
for all t ∈ [a, ρ(b)]T and for all|λ| < δ5 we have that∥∥fx(t, x(t, λ), λ

)
− fx(t, x̄(t), 0

)∥∥ < ε,
∥∥fλ(t, x(t, λ), λ

)
− fλ(t, x̄(t), 0

)∥∥ < ε,
(3.3)

and ∥∥fx(t, x̄(t), λ
)
− fx(t, x̄(t), 0

)∥∥ < ε. (3.4)

(C4) The functionfx(·, x̄(·), 0
)

is bounded byM1 > 0. Thus, using (3.3)(i), it
follows that for|λ| < δ5 and fort ∈ [a, ρ(b)]T we have∥∥fx(t, x̄(t), 0

)∥∥ ≤M1 and
∥∥fx(t, x(t, λ), λ

)∥∥ < ε+M1. (3.5)

(C5) By hypothesis (H3), the functionx0(·) is continuously differentiable atλ = 0.
Furthermore, by (1.2) we havex(a, ·) = x0(·). Thus, for a givenε > 0 there exists
δ0 ∈ (0, δ5) such that0 < |λ| < δ0 implies∣∣x(a, λ)− x(a, 0)−Dx0(0)λ

∣∣
|λ|

< ε and

∣∣∣∣Dx0(λ)−Dx0(0)

∣∣∣∣ < ε. (3.6)

Therefore, we just proved the following assertion.

Lemma 3.3. Suppose that(H0)–(H4) hold. Then for everyε > 0 there existsδ0 > 0
such that0 < |λ| < δ0 implies that conditions(3.1)–(3.6)hold true.

Proof. We takeδ0 from the above conclusion (C5). Then, by construction ofδ0 through
(C1)–(C5) above it follows that all the inequalities in (3.1)–(3.6) are satisfied for|λ| <
δ0.

Lemma 3.4. Assume that for someε > 0 there existsδ0 > 0 such that for0 < |λ| <
δ0 and t ∈ [a, ρ(b)]T, conditions(3.1), (3.2), (3.4), and (3.5)(i) hold. Then for any
continuous functionZ : [a, b]T → Rn×r and for anyt ∈ [a, ρ(b)]T we have∣∣ f(t, x(t, λ), λ

)
− f(t, x(t, 0), 0

)
− fx(t, x(t, 0), 0

)
Z(t)λ− fλ(t, x(t, 0), 0

)
λ

∣∣
|λ|

≤ (2ε+M1)

∣∣ x(t, λ)− x(t, 0)− Z(t)λ
∣∣

|λ|
+ 2ε ‖Z(t)‖+ ε. (3.7)

If for 0 < |λ| < δ0 andt ∈ [a, ρ(b)]T, we have(3.3)and (3.5)(ii) hold, then for any pair
of continuous matrix functionsZ,Z1 : [a, b]T → Rn×r we have∥∥ fx(t, x(t, λ), λ

)
Z1(t)− fx(t, x(t, 0), 0

)
Z(t) + fλ(t, x(t, λ), λ

)
− fλ(t, x(t, 0), 0

)∥∥
≤ (ε+M1)

∥∥Z1(t)− Z(t)
∥∥ + ε ‖Z(t)‖+ ε. (3.8)
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Proof. Denote the left-hand side of (3.7) asψ(t, λ), and put

ξ(t, λ) :=
x(t, λ)− x(t, 0)− Z(t)λ

|λ|
. (3.9)

Then we get

ψ(t, λ) ≤
∣∣ f(t, x(t, λ), λ

)
− f(t, x(t, 0), λ

)
− fx(t, x(t, 0), λ

)
[x(t, λ)− x(t, 0)]

|λ|

+
fx(t, x(t, 0), λ

)
[x(t, λ)− x(t, 0)]− fx(t, x(t, 0), 0

)
Z(t)λ

∣∣
|λ|

+

∣∣ f(t, x(t, 0), λ
)
− f(t, x(t, 0), 0

)
− fλ(t, x(t, 0), 0

)
λ

∣∣
|λ|

(3.1)
≤

∣∣ f(t, x(t, λ), λ
)
− f(t, x(t, 0), λ

)
− fx(t, x(t, 0), λ

)
[x(t, λ)− x(t, 0)]

∣∣∣∣x(t, λ)− x(t, 0)
∣∣ ×

×
∣∣x(t, λ)− x(t, 0)

∣∣
|λ|

+

∣∣[fx(t, x(t, 0), λ
)
− fx(t, x(t, 0), 0

)]
[x(t, λ)− x(t, 0)]

∣∣
|λ|

+
∣∣ fx(t, x(t, 0), 0

)
ξ(t, λ)

∣∣ + ε

(3.2)
≤ ε

∣∣ξ(t, λ)
∣∣ + ε

|Z(t)λ|
|λ|

+
∥∥ fx(t, x(t, 0), λ

)
− fx(t, x(t, 0), 0

) ∥∥ · ∣∣ x(t, λ)− x(t, 0)
∣∣

|λ|
+

∥∥ fx(t, x(t, 0), 0
) ∥∥ · ∣∣ξ(t, λ)

∣∣ + ε

(3.4), (3.5)(i)
≤ (2ε+M1)

∣∣ξ(t, λ)
∣∣ + 2ε ‖Z(t)‖+ ε.

Therefore, estimate (3.7) is established.
Denote the left-hand side of (3.8) asφ(t, λ). Then we get

φ(t, λ) ≤
∥∥ fx(t, x(t, λ), λ

)
[Z1(t)− Z(t)] + [fx(t, x(t, λ), λ

)
− fx(t, x(t, 0), 0

)
]Z(t)‖

+ ‖fλ(t, x(t, λ), λ
)
− fλ(t, x(t, 0), 0

)∥∥
(3.3), (3.5)(ii)

≤ (ε+M1)
∥∥Z1(t)− Z(t)

∥∥ + ε ‖Z(t)‖+ ε,

whence, estimate (3.8) holds.

Now we have all the preparatory material in order to prove Theorem 3.1.

Proof of Theorem 3.1.First note that, by [14, Proposition 1], the assumption (H1) im-
plies that for any functionx ∈ T2ε(x̄) the compositionf

(
·, x(·), λ

)
∈ Cprd, and hence it

is ∆-integrable.
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Let x(t, λ) be the solution of (1.1), (1.2), which exists fort ∈ [a, b]T and|λ| < γ by
the embedding theorem (Theorem 2.1). LetZ(·) be the solution of the linear equation
(1.3) satisfying (1.4). By Remark 2.2(i), [15, Remark 2.1(ii)] or [13, Theorem 5.7], the
solutionZ(·) indeed exists and is continuous on[a, b]T. Hence, there existsM2 > 0
such that

‖Z(t)‖ ≤M2 for all t ∈ [a, b]T. (3.10)

Let ε > 0 be arbitrary and takeδ := min{γ, δ0}, whereδ0 > 0 is from Lemma 3.3.
Then for0 < |λ| < δ all the inequalities in (3.1)–(3.8) are satisfied. Consequently, with
the notation from (1.5) and (3.9) we have∣∣ξ(t, λ)

∣∣ ≤ ∣∣ξ(a, λ)
∣∣

+

∫ t

a

∣∣ f(τ, x(τ, λ), λ
)
− f(τ, x(τ, 0), 0

)
− A(τ)Z(τ)λ− P (τ)λ

∣∣
|λ|

∆τ

(3.6)(i), (3.7)
≤ ε+

∫ t

a

{
(2ε+M1)

∣∣ξ(τ, λ)
∣∣ + 2ε ‖Z(τ)‖+ ε

}
∆τ

(3.10)
≤ g0 +

∫ t

a

p0

∣∣ξ(τ, λ)
∣∣ ∆τ,

where the positive constantsp0 andg0 are given by

p0 := 2ε+M1, g0 := ε [1 + (2M2 + 1) (b− a)].

Sincep0 > 0, it follows that1 + µ(t) p0 > 0, i.e.,p0 is positively regressive. Then the
corresponding time scale exponential functionep0(t, s) > 0 for all t, s ∈ [a, b]T, by [9,
Theorem 2.44(i)]. Therefore, by the Gronwall inequality on time scales (Lemma 2.3),

∣∣ξ(t, λ)
∣∣ ≤ g0 +

∫ t

a

ep0

(
t, σ(τ)

)
g0 p0 ∆τ for all t ∈ [a, b]T. (3.11)

Sinceep0(·, ·) is continuous in its arguments, it is bounded, i.e., there existsM3 > 0
such that

ep0

(
t, σ(τ)

)
≤M3 for t ∈ [a, b]T, τ ∈ [a, ρ(t)]T.

Then, from (3.11) we get for anyt ∈ [a, b]T

∣∣ξ(t, λ)
∣∣ ≤ g0 +

∫ b

a

M3 g0 p0 ∆τ

= ε [1 + (2M2 + 1) (b− a)] [1 +M3 (2ε+M1) (b− a)]

→ 0 asε→ 0+.

Therefore, the functionx(t, ·) is differentiable atλ = 0 uniformly in t andxλ(t, 0) =
Z(t) for all t ∈ [a, b]T.
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Since the solutionx(t, λ) exists for allλ ∈ Bδ and the assumptions (H0)–(H4) are
independent of the position of the pointλ = 0 in the ballBδ, we can conclude that at any
λ ∈ Bδ, the functionx(t, ·) is differentiableuniformly int, and thatZ(·, λ) := xλ(·, λ)
solves

Z∆ = A(t, λ)Z + P (t, λ), t ∈ [a, ρ(b)]T, (3.12)

Z(a) = Dx0(λ), (3.13)

whereA(t, λ) is then × n matrix andP (t, λ) is then × r matrix defined on[a, ρ(b)]T

by
A(t, λ) := fx

(
t, x(t, λ), λ

)
, P (t, λ) := fλ

(
t, x(t, λ), λ

)
. (3.14)

Clearly,Z(t, 0) = Z(t) holds.
We now show thatxλ(t, ·) is continuous atλ = 0 uniformly int. Let ε > 0 be given

andδ := min{γ, δ0}, whereδ0 > 0 is from Lemma 3.3. Then for0 < |λ| < δ all the
inequalities in (3.3), (3.5)(ii), and (3.6)(ii) are satisfied. Hence, by Lemma 3.4, estimate
(3.8) holds withZ1(t) := Z(t, λ). Thus, denote

Γ(t, λ) := fx(t, x(t, λ), λ
)
Z(t, λ)− fx(t, x(t, 0), 0

)
Z(t)

+ fλ(t, x(t, λ), λ
)
− fλ(t, x(t, 0), 0

)
. (3.15)

Then (3.12) and (3.13) yield

‖Z(t, λ)− Z(t)‖ ≤
∥∥Dx0(λ)− x0(0)

∥∥ +

∫ t

a

‖Γ(τ, λ) ‖∆τ

(3.6)(ii), (3.8)
≤ ε+

∫ t

a

{
(ε+M1) ‖Z1(t)− Z(t)‖+ ε ‖Z(t)‖+ ε

}
∆τ

(3.10)
≤ g1 +

∫ t

a

p1

∥∥Z(τ, λ)− Z(τ)
∥∥ ∆τ,

where the positive constantsp1 andg1 are given by

p1 := ε+M1, g1 := ε [1 + (M2 + 1) (b− a)].

Continue similarly to the argument forξ(t, λ) above, and after applying the time scale
Gronwall inequality (Lemma 2.3) we conclude that for anyt ∈ [a, b]T

‖Z(t, λ)− Z(t)‖ ≤ ε [1 + (M2 + 1) (b− a)] [1 +M4 (ε+M1) (b− a)]

→ 0 asε→ 0+,

whereM4 stands for the bound ofep1(·, ·) on [a, b]T. Therefore,Z(t, ·) = xλ(t, ·) is
continuous atλ = 0 uniformly in t.

Now there are two ways to prove thatx∆(t, ·) is also continuously differentiable in
λ atλ = 0 uniformly in t.
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1st method: By using the estimate (3.7) and notation (3.9) we have for anyt ∈
[a, ρ(b)]T and0 < |λ| < δ the estimate∣∣ξ∆(t, λ)

∣∣ =

∣∣ x∆(t, λ)− x∆(t, 0)− Z∆(t)λ
∣∣

|λ|
≤ (2ε+M1)

∣∣ξ(t, λ)
∣∣ + ε (2M2 + 1).

(3.16)
Since we have already proven thatx(t, 0) is differentiable atλ = 0 uniformly in t and
that xλ(t, 0) = Z(t), there existsδ5 ∈ (0, δ) such that for0 < |λ| < δ5 we have∣∣ξ(t, λ)

∣∣ < ε, for all t ∈ [a, ρ(b)]T. Thus, for suchλ we conclude from (3.16) that∣∣ξ∆(t, λ)
∣∣ ≤ (2ε+M1) ε+ ε (2M2 + 1) → 0 asε→ 0+.

Hence,x∆(t, ·) is differentiable atλ = 0 uniformly int, and
∂

∂λ

[
x∆(t, λ)

]
λ=0

= Z∆(t)

for all t ∈ [a, ρ(b)]T. The fact thatZ(t) = xλ(t, 0) yields that formula (1.6) holds.
Of course, similar arguments show thatx∆(t, ·) is differentiable at anyλ ∈ Bδ

uniformly in t, and that
∂

∂λ

[
x∆(t, λ)

]
= Z∆(t, λ), whereZ(t, λ) is the solution of

(3.12) and (3.13). To show the continuity of
∂

∂λ

[
x∆(t, λ)

]
atλ = 0 uniformly in t, we

use the estimates (3.8) and (3.15). It follows that fort ∈ [a, ρ(b)]T and0 < |λ| < δ we
have∥∥Z∆(t, λ)−Z∆(t)

∥∥ = ‖Γ(t, λ) ‖
(3.8), (3.10)
≤ (ε+M1) ‖Z(t, λ)−Z(t)‖+εM2+ε, (3.17)

Since we have already proven thatZ(t, ·) = xλ(t, ·) is continuous atλ = 0 uniformly in
t, then there existsδ6 ∈ (0, δ) such that for0 < |λ| < δ6 we have‖Z(t, λ)− Z(t)‖ < ε
for all t ∈ [a, ρ(b)]T. Thus, for suchλ we conclude from (3.17) that∥∥Z∆(t, λ)− Z∆(t)

∥∥ ≤ (ε+M1) ε+ ε (M2 + 1) → 0 asε→ 0+,

proving the continuity of
∂

∂λ

[
x∆(t, λ)

]
atλ = 0 uniformly in t.

2nd method: We know that the functionx(t, λ) satisfies the equation

x∆(t, λ) = f
(
t, x(t, λ), λ

)
, for all t ∈ [a, ρ(b)]T, |λ| < δ. (3.18)

Since we have shown thatx(t, ·) is differentiable uniformly int whenλ is near0 and
thatxλ(t, λ) is continuous atλ = 0 uniformly in t, then the right-hand side of equation
(3.18) is continuously differentiable inλ at λ = 0 uniformly in t, and thusx∆(t, ·) is
also continuously differentiable atλ = 0 uniformly in t and

∂

∂λ

[
x∆(t, λ)

]
=

∂

∂λ

[
f
(
t, x(t, λ), λ

)]
= A(t, λ)xλ(t, λ) + P (t, λ) = A(t, λ)Z(t, λ) + P (t, λ)

= Z∆(t, λ) =
[
xλ(t, λ)

]∆

for all t ∈ [a, ρ(b)]T, whereZ(t, λ), A(t, λ), andP (t, λ) are defined in (3.12)–(3.14).
Whence, identity (1.6) holds. The proof of Theorem 3.1 is now complete.
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Remark3.5. (i) In the proof above we obtained that (1.6) holds not only atλ = 0
but for all λ near0. However, since the solutionx(t, λ) exists for allλ ∈ Bδ and the
assumptions (H0)–(H4) are independent of the position of the pointλ = 0 in the ball
Bδ, we can conclude that the rule for interchanging the derivatives holds for anyλ ∈ Bδ,
i.e.,

∂

∂λ

[
x∆(t, λ)

]
=

[
xλ(t, λ)

]∆
for all t ∈ [a, ρ(b)]T, λ ∈ Bδ.

(ii) When r = 1, one may think to replace the parameter interval[−λ0, λ0] by some
time scaleinterval [α, β]T̃, whereT̃ is another time scale (possibly different fromT).
However, the proof of formula (1.6) uses the chain rule onRn and it is well known that
such a chain rule does not work on general time scales, see e.g. [9, Section 1.5].

Remark3.6. In the theory of dynamic equations on time scales one often encounters the
situation when the right-hand side of the equation depends onxσ instead ofx. Thus, we
can consider the problem (1.7), (1.2). Then the corresponding embedding theorem holds
under the additional assumption that the matrixI − µ(t) fx

(
t, x̄σ(t), 0

)
is invertible for

all t ∈ [a, ρ(b)]T, see [16, Remark 3.9]. In this case the conclusion of Theorem 3.2
remains true with the linearized system

Z∆ = fx

(
t, x̄σ(t), 0

)
Zσ + fλ

(
t, x̄σ(t), 0

)
, t ∈ [a, ρ(b)]T,

instead of equation (1.3). We refer to [17, Section 3] for a general transformation
method between the two types of problems (1.1) and (1.7). Moreover, see [16, Re-
marks 3.8, 3.9] for the discussion about the above regressivity-type condition on the
matrixfx

(
·, x̄σ(·), 0

)
and the position of the given initial condition.

Remark3.7. A most general form of the problem is then the dynamic equation (1.8),
(1.2), in which bothx andxσ is present inf . Then the linearized equation takes the
form

Z∆ = fx(t)Z + fy(t)Z
σ + fλ(t), t ∈ [a, ρ(b)]T,

wherefx andfy denote the partial derivatives off with respect to second and third
variables, respectively, and the partial derivatives are evaluated at

(
t, x̄(t), x̄σ(t), 0

)
. In

this case the result requires the invertibility of the matrixI − µ(t) fy

(
t, x̄(t), x̄σ(t), 0

)
on [a, ρ(b)]T.

Remark3.8. Upon replacing the involved norms of real-valued vectors and matrices by
the corresponding norms ofcomplex-valuedvectors and matrices, one can easily check
that the methods of proof of the embedding theorem (Theorem 2.1) in [16] and the proof
of the differentiability theorem (Theorem 3.1) extend directly tocomplex-valueddata

f : [a, ρ(b)]T ×X × Λ → Cn, x0 : Λ → Cn,

where nowX ⊆ Cn, Λ ⊆ Cr,

T2ε(x̄) :=
{
(t, x) ∈ [a, ρ(b)]T × Cn such that

∣∣x− x̄(t)
∣∣ < 2ε

}
,
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and whereBγ0 := {λ ∈ Cr, |λ| < γ0} is the open ball with radiusγ0. In this case we
may replace the assumptions (H3) and (H4) by the requirement thatf is holomorphic in
its (complex) argumentsx andλ and thatx0 is holomorphic inλ. Then we can conclude
that the complex-valued solutionx(t, λ), which is now defined on[a, b]T × Bδ, is also
holomorphic inλ. Note that in this case the independent variablet ∈ [a, b]T is still real.

4 Linear Systems

In this section we deal with linear dynamic systems. In the first part we apply The-
orem 3.1, and in particular formula (1.6), to an eigenvalue problem associated with a
special linear system, called a time scale symplectic system. In the second part of this
section we prove for the case of general linear systems that the solutions are entire func-
tions of the parameterλ.

Consider the eigenvalue problem

X∆ = A(t)X+B(t)U, U∆ = C(t)X+D(t)U−λW (t)Xσ, t ∈ [a, ρ(b)]T, (4.1)

whereA,B, C,D,W : [a, ρ(b)]T → Rn×n are given Cprd matrices,W (t) is symmetric,
andλ is a scalar parameter. We assume that the2n × 2n coefficient matrixS(t) :=(
A(t) B(t)
C(t) D(t)

)
satisfies the identity

ST (t)J + JS(t) + µ(t)ST (t)JS(t) = 0 for all t ∈ [a, ρ(b)]T, (4.2)

whereJ :=
(

0 I
−I 0

)
hasn × n block entries. Linear systems whose coefficient matrix

satisfies (4.2) are in the literature calledtime scale symplectic(or Hamiltonian) systems,
see e.g. [3,10,15].

Remark4.1. (i) Observe that one can write the eigenvalue problem (4.1) as a linear
matrix system in which the right hand side has no shift in(X,U). Indeed, by using the
identityXσ − X = µX∆ in the first equation of (4.1), we obtain that the eigenvalue
problem (4.1) is equivalent to(

X
U

)∆

= S(t, λ)

(
X
U

)
t ∈ [a, ρ(b)]T, (4.3)

where

S(t, λ) :=

(
A B

C − λW (I + µA) D − λµWB

)
(t) = S(t) + λQ(t), (4.4)

with

Q(t) :=

(
0 0

−W (I + µA) −µWB

)
(t). (4.5)
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(ii) Suppose that an initial pointt0 ∈ [a, b]T and initial dataX0, U0 ∈ Rn×n are
given. Then, by part (i) above and by Remark 2.2, we can assert that for everyλ ∈ R,
there exists on[a, b]T a unique solution

(
X(·, λ), U(·, λ)

)
of (4.1) satisfying(

X(t0, λ), U(t0, λ)
)

= (X0, U0)

as long as the following conditions hold:

(a) the2n× 2n matrix I + µ(t)S(t) is invertible for allt ∈ [a, t0)T (void if t0 = a),

(b) the2n×2nmatrixI−µ(t) T (t) is invertible for allt ∈ [t0, ρ(b)]T (void if t0 = b),

whereT (t) :=
(

0 0
−λ W (t) 0

)
. Notice however that condition (b) above is always satisfied.

While condition (a) is known to hold under condition (4.2), because in this case the
matrix I + µ(t)S(t) is symplectic. Note also that if (4.2) holds, i.e., if (4.1) withλ = 0
is a time scale symplectic system, then (4.1) is a time scale symplectic system for all
λ ∈ R, i.e., the matrixS(t, λ) given in (4.4) satisfies the identity (4.2) as well.

Remark4.2. The question whether the solutions
(
X(·, λ), U(·, λ)

)
of (4.1) are differen-

tiable with respect toλ and whether the equalities

∂

∂λ

[
X∆(t, λ)

]
λ=0

=
[
Xλ(t, 0)

]∆
,

∂

∂λ

[
U∆(t, λ)

]
λ=0

=
[
Uλ(t, 0)

]∆
(4.6)

are satisfied on any time scale was posed e.g., in [7, formula (3)]. Of course, this
property holds for the time scalesT = R and T = Z, and it is often used in the
oscillation and eigenvalue theories for continuous time linear Hamiltonian systems and
discrete symplectic systems, see [5, 11, 19, 22]. As a consequence of Theorem 3.1 and
Remark 3.7 we can now conclude that the identities in (4.6) indeed hold on any time
scale and that the functionsXλ(·, 0), Uλ(·, 0), andX(·, 0) satisfy the linearized system

(Xλ)
∆ = A(t)Xλ +B(t)Uλ, (Uλ)

∆ = C(t)Xλ +D(t)Uλ−λW (t)Xλ
σ−W (t)Xσ,

in which we suppress the argument(t, 0) in the solution.

Since the eigenvalue problem (4.1) islinear in λ, it is expected that its solutions as
functions of the parameterλ enjoy “nicer” properties than continuous differentiability.
Let us now turn our attention to a general linear system

y∆ = [A(t) + λB(t)] y, t ∈ [a, ρ(b)]T,

whereA(·) andB(·) are givenn×nmatrix functions. The following result is motivated
by [21, Problem 1.10.4, pg. 79].

Theorem 4.3.LetA,B : [a, ρ(b)]T → Rn×n are Cprd functions andλ ∈ R a parameter,
and assume thatA(·) is regressive on[a, ρ(b)]T. Then the fundamental matrixΦ(t, λ) of
the system

Y ∆ = [A(t) + λB(t)]Y, t ∈ [a, ρ(b)]T, Y (a) = I, (4.7)

is an entire function of the parameterλ.
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Proof. Let Y0(·) be the unique solution, i.e., the fundamental matrix, of the system

Y ∆ = A(t)Y, t ∈ [a, ρ(b)]T, Y (a) = I.

By induction, if the matrix functionYk−1(t) is defined for somek ∈ N, then we letYk(·)
to be the unique solution of the system

Y ∆ = A(t)Y +B(t)Yk−1(t), t ∈ [a, ρ(b)]T, Y (a) = 0.

The existence of these solutions is guaranteed e.g. by [15, Remark 2.1(ii)] or by [13,
Theorem 5.7]. In addition, by the variation of constants formula, see [9, Theorem 5.24],
we have

Yk(t) = Y0(t)

∫ t

a

Y −1
0

(
σ(τ)

)
B(τ)Yk−1(τ) ∆τ, t ∈ [a, b]T, k ∈ N. (4.8)

Let α, β ∈ R be such that ∥∥Y0(t)
∥∥ ≤ α for all t ∈ [a, b]T, (4.9)∥∥Y0(t) [Y σ

0 (τ)]−1B(τ)
∥∥ ≤ β for all t, τ ∈ [a, ρ(b)]T, (4.10)

where‖ · ‖ is the spectral matrix norm. It follows by induction that∥∥Yk(t)
∥∥ ≤ αβk hk(t, a) for t ∈ [a, b]T, k ∈ N ∪ {0}, (4.11)

wherehk(t, a) are the time scale polynomials, i.e.,h0(t, a) ≡ 1, h1(t, a) = t − a, and

in generalhk+1(t, a) :=

∫ t

a

hk(τ, a) ∆τ , see [9, Section 1.6]. Note thathk(t, a) ≥ 0 for

all t ∈ [a, b]T. Indeed, fork = 0 inequality (4.11) reduces to (4.9), and if we assume
that

∥∥Yk−1(t)
∥∥ ≤ αβk−1 hk−1(t, a), then identity (4.8) yields

∥∥Yk(t)
∥∥ ≤ ∫ t

a

∥∥Y0(t) [Y σ
0 (τ)]−1B(τ)

∥∥ · ∥∥Yk−1(τ)
∥∥ ∆τ

≤ αβk

∫ t

a

hk−1(τ, a) ∆τ = αβk hk(t, a).

Now the result of [8, Theorem 4.1] shows thathk(t, a) ≤
(t− a)k

k!
for t ≥ a. Conse-

quently, for anyt ∈ [a, b]T we have∥∥∥∥ ∞∑
k=0

λk Yk(t)

∥∥∥∥ ≤ ∞∑
k=0

|λ|k
∥∥Yk(t)

∥∥ ≤ ∞∑
k=0

|λ|k αβk hk(t, a)

≤ α
∞∑

k=0

|λ|k βk (t− a)k

k!
= α e|λ|β (t−a).



Differentiation with Respect to Parameters 51

Hence, the series
∞∑

k=0

λk Yk(t) converges uniformly on[a, b]T to a continuous function

Φ(t, λ). We now multiply equation (4.8) byλk and add up all these equations fork ∈
N ∪ {0} and get

Y0(t) +
∞∑

k=1

λk Yk(t) = Y0(t) + Y0(t)

∫ t

a

Y −1
0

(
σ(τ)

)
B(τ)

∞∑
k=1

λk Yk−1(τ) ∆τ,

t ∈ [a, b]T. Hence, by shifting the summation index in the series on the right-hand side,

it follows that the functionΦ(t, λ) :=
∞∑

k=0

λk Yk(t) satisfies the equation

Φ(t, λ) = Y0(t) + Y0(t)

∫ t

a

Y −1
0

(
σ(τ)

)
B(τ)λΦ(τ, λ) ∆τ, t ∈ [a, b]T.

Therefore, again by the time scale variations of constants formula,

Φ∆(t, λ) = [A(t) + λB(t)] Φ(t, λ) for all t ∈ [a, ρ(b)]T.

Moreover,Φ(a, λ) = Y0(a) +
∞∑

k=1

Yk(a) = I, i.e.,Φ(·, λ) is the fundamental matrix of

the dynamic equation in (4.7). From the series representation ofΦ(t, λ) it follows that
Φ(t, ·) is an entire function inλ.

Remark4.4. From the proof of Theorem 4.3 and from the estimate

hk(t, s) ≤
(t− s)k

k!
for all t, s ∈ [a, b]T, t ≥ s

in [8, Theorem 4.1] one can see that if we replace the initial conditionY (a) = I in
Theorem 4.3 byY (s) = I for some given points ∈ [a, b]T, then the fundamental matrix
(and hence all the solutions) of the equationY ∆ = [A(t)+λB(t)]Y is an entire function
in λ for all pointst ∈ [s, b]T.

The following consequence of Theorem 4.3 presents the nice property enjoyed by
the solutions of the eigenvalue problem (4.1).

Corollary 4.5. Assume that forλ = 0 the coefficient matrixS(t) = S(t, 0) of system
(4.1)satisfies identity(4.2). Then, the solutions of(4.1)are entire functions ofλ.

Proof. First note that the system being symplectic atλ = 0, yields thatI + µ(t)S(t) is
invertible on[a, b]T, and thus for any initial condition att0 ∈ [a, b]T, and for anyλ ∈ R,
the system (4.1) has a unique solution

(
X(t, λ), U(t, λ)

)
on [a, b]T that is differentiable

in λ, see Remarks 4.1(ii) and 4.2. Now write the system (4.1) in the form (4.3)–(4.5).
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Then, it has the form of (4.7), whereY := ( X
U ), A := S, andB := Q. SinceS is

regressive, then by Theorem 4.3, the fundamental matrixΦ(t, λ) of (4.3)–(4.5) starting
at t0 = a is an entire function inλ. Therefore, every solution of system (4.1) is also an
entire function ofλ, because it is of the form(

X(t, λ)
U(t, λ)

)
= Φ(t, λ)

(
M
N

)
on [a, b]T,

whereM,N ∈ Rn×n are constant matrices.

Remark4.6. The result of Corollary 4.5 is used e.g. in [24, pg. 290] in the context of
the second order Sturm–Liouville dynamic equation

−
(
p(t) y∆

)∆
+ q(t) yσ = λw(t) yσ. (4.12)

In this reference, the differentiability of the solutiony(t, λ) with respect toλ is also
used in the proof of [24, Lemma 2.5]. Note that for the same equation (4.12) the differ-
entiability of y(t, λ) with respect toλ is proven in [18, Lemma 3.2]. Equation (4.12) is
a special case of our symplectic system (4.1).
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Measure Chains,Kluwer Academic Publishers, Boston, 1996.

[21] W. T. Reid,Ordinary Differential Equations,Wiley, New York, 1971.

[22] M. Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems,
Internat. J. Difference Equ.2 (2007), no. 2, 221–244.

[23] V. Zeidan, P. Zezza, The conjugate point condition for smooth control sets,J. Math.
Anal. Appl.132(1988), no. 2, 572–589.

[24] C. Zhang, Y. Shi, Eigenvalues of second-order symmetric equations on time scales
with periodic and antiperiodic boundary conditions,Appl. Math. Comput.203
(2008), no. 1, 284–296.


