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Abstract

In this paper, our attention is focused on the global existence of bifurcating
periodic solutions. We show that periodic solutions exist after the second critical
value of time delay. Furthermore, a numerical example is given.
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1 Introduction

Recently, there has been an increasing interest in the dynamics of internet congestion
models, see [1,3,4,6] and the references therein. If we understand more about the bifur-
cation behaviors of internet congestion control systems, we can explain the parameter
sensitivity observed in practice and achieve some desirable system behaviors.

In this paper, we consider an internet model with a single link and single source,
which was described in [2] as

ẋ(t) = k[w − x(t−D)p(x(t−D))]. (1.1)

Herex(t) denotes the sending rate of the source at timet, k is a positive gain parameter,
D > 0 is the sum of forward and return delays,w is a target number of markets per
unit time. The congestion indication functionp(·) is increasing, nonnegative, and not
identically zero, which can be viewed as the probability that a packet at the resource
receives a “mark” – a feedback congestion indication signal.
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There have been many significant results about equation (1.1). For instance, the
existence and properties of local Hopf bifurcation were studied by consideringk and
D as bifurcation parameters in [3] and [4], respectively. Furthermore, Hopf bifurcation
control was investigated in [1, 6]. However, the bifurcating periodic solutions obtained
in [3, 4] are generally local. That is to say, those periodic solutions only exist in the
one-sided small neighborhood of the first critical value. Therefore, it is necessary and
significant to investigate the global existence of these periodic solutions. In this pa-
per, by applying the global Hopf bifurcation result in Wu [5] for functional differential
equations which was established using a purely topological argument, we can get that
the local Hopf bifurcation of (1.1) implies the global extension under certain conditions.

The paper is organized as follows. In the next section, we give some preliminary
results about the local Hopf bifurcation of (1.1). In Section 3, the global existence of
bifurcating periodic solutions will be established. In Section 4, an example is analyzed
and some numerical simulations are presented.

2 Preliminary Results

We first present the existence of local Hopf bifurcation for system (1.1), more details can
be found in [4]. We assume that the congestion indication functionp(·) is a nonlinear
function and has at least third-order continuous derivative.

Let x∗ be the equilibrium point of (1.1). Thenx∗ satisfiesw = x∗p(x∗). The linear
part of (1.1) atx∗ is

u̇(t) = −k(p(x∗) + x∗p′(x∗))u(t−D), (2.1)

and the corresponding characteristic equation is given by the transcendental equation

λ + k(p(x∗) + x∗p′(x∗))e−λD = 0. (2.2)

Assume equation (2.2) has a pair of purely imaginary rootsλ = ±iω0 (ω0 > 0), we
insertλ = iω0 into (2.2) and obtain{

−k(p(x∗) + x∗p′(x∗)) cos(ω0D) = 0,
ω0 − k(p(x∗) + x∗p′(x∗)) sin(ω0D) = 0.

(2.3)

From this we can get

ω0D =
(2n + 1)π

2
, n = 0, 1, 2, . . .

and
ω0 − k(p(x∗) + x∗p′(x∗))(−1)n = 0.

Thus,
ω0 = k(p(x∗) + x∗p′(x∗)) (2.4)
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and

Dc(n) =
(2n + 1)π

2k(p(x∗) + x∗p′(x∗))
, n = 0, 2, 4, . . . . (2.5)

Let λ(D) = α(D) + iβ(D) be the root of (2.2) satisfying

α(Dc(n)) = 0, β(Dc(n)) = ω0, n = 0, 2, 4, . . . .

Proposition 2.1.
d

dD
Reλ(Dc(0)) =

(k(p(x∗) + x∗p′(x∗)))2

1 + π2/4
> 0.

Proposition 2.2. If the delay parameterD is smaller than the critical valueDc(0), then
the equilibriumx∗ of system(1.1) is asymptotically stable. WhenD passes through
Dc(0), a Hopf bifurcation will occur in the system atx∗.

3 Existence of Global Hopf Bifurcation

In this section, we mainly prove that the local Hopf bifurcation of (1.1) in Proposition
2.2 can be extended for large values by applying the global Hopf bifurcation theorem
in [5]. Following the work of Wu [5], we make the following definitions:

X = C([−D, 0], R),

Σ = Cl{(x, D, T ) ∈ X × R+ × R+ : x is aT -periodic solution of (1.1)},
N = {(x̄, D, T ) : w − x̄p(x̄) = 0}.

Let `(x∗, Dc(n), 2π/(Dc(n)ω0)) denote the connected component through

(x∗, Dc(n), 2π/(Dc(n)ω0))

in Σ, whereDc(n) andω0 are defined in the previous section.

Lemma 3.1. System(1.1)has no nontrivialD-periodic solution.

Proof. For a contradiction, suppose that system (1.1) has a nontrivialD-periodic solu-
tion. Then the ordinary differential equation

ẋ(t) = k[w − x(t)p(x(t))] (3.1)

has a nontrivial periodic solution. According to the properties of the functionp(·), we
can easily obtain that ifx(t) < x∗, thenẋ(t) > 0. If x(t) > x∗, thenẋ(t) < 0. So
system (3.1) has no nontrivial periodic solution. Thus the proof is complete.

Lemma 3.2. If the congestion indication functionp(·) is bounded, then all nontrivial
periodic solutions of(1.1)are uniformly bounded.
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Proof. If the congestion indication functionp(·) is bounded, then for anyt, there exist
p1 < p(x(t)) < p2, wherep1 andp2 are constants. Letx be a nontrivial periodic solution
of system (1.1). We define

x(η) = max{x(t)}, x(ξ) = min{x(t)}.

Thusx(η −D)p(x(η −D)) = w = x(ξ −D)p(x(ξ −D)), and from (1.1) we can get

x(t) = x(0) exp

{∫ t

0

k

[
w

x(s)
− x(s−D)

x(s)
p (x(s−D))

]
ds

}
,

which implies that eitherx(t) > 0 or x(t) < 0 if x(0) 6= 0. If x(t) > 0, thenẋ(t) < kw,
which inducesx(t) < x(t−D) + kwD. Thus

x(η) < x(η −D) + kwD

=
w

p(x(η −D))
+ kwD

<
w

p1

+ kwD.

If x(t) < 0, then we sety(t) = −x(t). Theny(η) = −x(ξ) and (1.1) is equivalent to
the equation

ẏ(t) = −k[w + y(t−D)p(−y(t−D))]. (3.2)

By the standard comparison theorem, we have

x(ξ) >
w

p2

+ kwD.

From above, we can know that ifx is a nontrivial periodic solution of (1.1), then

w

p2

+ kwD < x(t) <
w

p1

+ kwD.

As a result, the nontrivial periodic solutions of (1.1) are uniformly bounded.

Theorem 3.3. If the functionp(·) is bounded, then for anyD > Dc(n), n = 2, 4, 6, . . .,

system(1.1)has at least
n + 2

2
periodic solutions.

Proof. At first, we shall prove that̀(x∗, Dc(n), 2π/(Dc(n)ω0)) is unbounded. Follow-
ing the definition of an isolated center in Wu [5], we can easily show that(x∗, Dc(n), T )
is the only isolated center. The characteristic equation

∆(x∗, Dc(n), T ) = λ + k(p(x∗) + x∗p′(x∗))e−λD

is continuous in(x̄, D, T ) ∈ C × R+ × R+.
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Obviously, from∆(x∗, Dc(n), T )(iω0) = 0,
∂∆(x∗, Dc(n), T )

∂D
|D=Dc(n),λ=iω0 6= 0

and Lemma 3.1 and 3.2, we have that, for fixedn, there existε > 0, δ > 0 and a smooth
curveλ(D) : (Dc(n)− δ,Dc(n) + δ) → C such that∆(λ(D)) = 0, |λ(D)− iω0| < ε

for all D ∈ [Dc(n)−δ,Dc(n)+δ] andλ(Dc(n)) = iω0,
dReλ(D)

dD
|D=Dc(n) > 0. Define

Ωε, 2π
Dc(n)ω0

=

{
(η, T ) : 0 < η < ε,

∣∣∣∣T − 2π

Dc(n)ω0

∣∣∣∣ < ε

}
.

It is not difficult to show that on[Dc(n)−D, Dc(n) + D]× ∂Ωε,2π/(Dc(n))ω0 ,

∆(x∗, Dc(n), T )

(
η +

2π

T
i

)
= 0 if and only if η = 0, D = Dc(n), T =

2π

Dc(n)ω0

.

Moreover, if we define

H±
(

x∗, Dc(n),
2π

Dc(n)ω0

)
(η, T ) = ∆(x∗, Dc(n)± δ, T )

(
η + i

2π

T

)
,

then we can compute the crossing number of the isolated center

(
x∗, Dc(n),

2π

Dc(n)ω0

)
as follows:

γ

(
x∗, Dc(n),

2π

Dc(n)ω0

)
= degB

(
H−

(
x∗, Dc(n),

2π

Dc(n)ω0

)
, Ωε, 2π

Dc(n)ω0

)
−degB

(
H+

(
x∗, Dc(n),

2π

Dc(n)ω0

)
, Ωε, 2π

Dc(n)ω0

)
= −1.

We have ∑
(x̄,D̄,T̄ )∈`(x∗,Dc(n),2π/(Dc(n)ω0))

γ(x̄, D̄, T̄ ) < 0,

and thus, from [5, Theorem 3.3], the connected component`(x∗, Dc(n), 2π/(Dc(n)ω0))
in Σ is unbounded.

Next, we shall prove that the projection of` ontoD-space has no upper bound. From
(2.5), we have

Dc(n)ω0 =
(2n + 1)π

2
, n = 0, 2, 4, . . . .

Thus there exists anni ∈ N , such that

1

ni

<
2π

Dc(n)ω0

< 4.

Therefore the projection of̀(x∗, Dc(n), 2π/(Dc(n)ω0)) ontoT -space is bounded. From
Lemma 3.2, we can also get that the projection of`(x∗, Dc(n), 2π/(Dc(n)ω0)) ontox-
space is bounded. According to Lemma 3.1, we can easily obtain that the projection
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on D-space must be unbounded and includes[Dc(n), +∞). As a result, for anyD >

Dc(n), system (1.1) has at least
n + 2

2
periodic solutions with a period in

(
1

ni

, 4

)
. The

proof is now complete.

Remark3.4. If the congestion indication functionp(·) is bounded, then the periodic
solution still exists even if the parameterD is far from the second critical value.

4 Numerical Simulation

Consider the system

ẋ(t) =
3

2
[1− x(t−D) (tanh(x−D) + 1)] , (4.1)

wherep(x) = tanh x + 1 is bounded. We can compute that system (4.1) has the unique

equilibrium x∗ = 0.639232, andω0 = 3, Dc(n) =
(2n + 1)π

6
, Dc(0) = 0.523599,

Dc(2) = 2.61799, . . ., Dc(22) = 23.5619, . . .. From Figures 4.1–4.4, we can easily see
that whenD is far from the second critical valueDc(2), large periodic solutions exist.

Figure 4.1: Waveform plot of system (4.1) whenD = 0.5 < Dc(0)
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Figure 4.2: Waveform plot of system (4.1) whenD = 0.55 > Dc(0)
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Figure 4.3: Waveform plot of system (4.1) whenD = 2.7 > Dc(2)
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Figure 4.4: Waveform plot of system (4.1) whenD = 25 > Dc(22)
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