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Abstract

In this paper we study the existence and nonexistence of positive singular radial
solutions of the Dirichlep-Laplacian system

Apu+ f(z,u,v) =0 InQ
Agv—g(z,u,v) =0 iIn§
u=v=0 on s,

where N > max(p,q), p,q > 1, as well as the solution’s behavior near zero.
Here, (2 is the unit ball ofR"Y except for the center zero, arfdg are nonnegative
continuous functions. We use Leray—Schauder’s theorem and a method of mono-
tone iterations to prove existence, and we will be concerned with the study of the
asymptotic behavior of solutions. Also, we will present some sufficient conditions
for nonexistence of positive solutions.

AMS Subject Classifications:35J65.
Keywords: p-Laplacian operator, Leray—Schauder’s theorem, monotone iterations tech-
nique.

1 Introduction and Main Results

We prove the existence of radial positive solutions of the nonlinear system with elliptic
equations
pu = a(:v)uavﬁ +hi(z) inB
Q=0 :v) w’ + hy(z) in B’ (1.1)
v=20 ononB,
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whereB is the unit ball oRY, B’ = B\ {0}, N > max(p, q), p,q > 1,anda, b, hy, hy €
L*>(B) are given nonnegative functions. A positive solutianv) of (1.1) is said to be
singular at zero (or just singular) if

lim sup(u(r) + v(r)) = oo.
r—0t
Set
N—p N—q
= lim sup <rﬁu(r) + rqjv(r)> :

r—0t
If [ = oo, then the solutiorfu, v) is called strongly singular; while f < [ < oo, this
singularity is said to be fundamental.

The problem (1.1) does not have a variational structure and much attention has been
given to the existence of solutions for such systems by using different approaches. The
asymptotic behavior of the solutions was an interesting question to solve, especially
when the solution presents some singularities around the origin. The previous articles
which are treating the question of the existence are numerous, see C. Cid and C. Yarur
[4]; concerning the behavior of the solution near zero and nonexistence of nonnegative
solutions without boundary conditions see M.F. Bidaut—Veron and P. Grillot [3]. Note
that for the system

~Au=u* u>0 inB
{ u=>0 onoB, (1.2)

. . . : . N+2
nonnegative singular solutions exist under the conditior N3 In such a case,

the solutionu with a singularity at zero satisfies -

0 < limsup |r|¥ ?u(r) < oo,
r—0+

and thus the singularity is of fundamental type. See S.S. Lin [6], P.L. Lions [7], W.M.
Ni and P. Sacks [8].

Our method includes two fundamental cases (the sublinear and superlinear class) as
done by A. Ahammou [1, 2] for the system

—Apu = a(@)|ul* tu 4 b(z) vt in B
— A = c(x)|u] " u+ d(z) v e in B (1.3)
u=v=0 onoB,

where he treated the question of existence in two principal classes:
By<(p—-1(g—1) and py>(p—1)(g—1),

by using techniques of the topological degree theory combined with the blow-up method
introduced by B. Gidas and J. Spruck [5]. In this work we supposeihat (p — 1 —
a)(q — 1 — 0) and we formulate our main results as follows.
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Theorem 1.1 (Sublinear Case) Assume that

and suppose furthermore that

. N(p—1)
|- > — 0r
TN,

. N —
- P o+

—q N—p N —q
8 <1 and + 0 < 1.
Np-1)" " Ng-1) !

Np-1)" N(g—-1)

Then, for any\ € [0, oo, there exists a nonnegative nontrivial solution v) to the
problem(1.1) such that

o N-—p\ "
lim r%u(r) = ( p) AT
r—07+ p—1

Theorem 1.2 (Superlinear Case) Assume that

h1 = hy = 0 and suppose furthermore that

N—p
N(p—-1) N—p =14
I- v > and o+ B <1lor
N-—p N(p—-1)  N(g—1-9)
. N-»p —q N-p N —gq
ii- o+ g <1 and + o< 1.
Nep-1" " Ng-1) Np-1) " Ng-1)

Then there exists a positive constant, such that for any\ € [0, Ay ,], the problem
(1.1) has a nonnegative nontrivial solutidn, v) satisfying

—p N-p\ '
lim 77 u(r) = (_p) Ap—T,
r—0t p— 1

2 Preliminaries
For allr € [0, 1] let f, g be the functions defined by
Fryu(r), v(r)) = a(ryu®(r)o® (r) + ha(r)

g(r, u(r), v(r)) = b(r)u? (r)v’ (r) + ha(r).
Set

a= sup a(r), b= sup b(r)
ref0,1] rel0,1]
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hy = sup hy(r) andhy = sup ha(r).

rel0,1] r€(0,1]
Since this work is concerned with radial solutions, system (1.1) may be written as
(leP23— “fru(r),v(r)), in(0,1)
(PR = e 1g(nu( )w(r)), in (0,1) (2.1)
u(l) =v(1) =

Define the solution operatasi = (51, Ss) by

&mmmzlll(Mﬁ[W*mm@mwmynm (2.2)

1-N

So(u,v)(r) = /rl sat ()\2 + /51 tN gt u(t), vt ))(lef)qil ds, (2.3)

where); and\, are nonnegative numbers. Then, a nonnegative fixed pain} of the
operatorsS is a nonnegative solution to (2.1).

3 Existence Results and Asymptotic Behavior

3.1 SublinearCasefy < (p—1—a)(¢g—1—9)
First of all, we show the following result.

Proposition 3.1. Consider the hypothesis of Theorem 1.1. Then, there exists an invari-
ant set4 under the operatob:
S(A) C A.

Proof. Here we detail the proof under the caseof Theorem 1.1; the casei- can be
treated similarly. Recall that:
N(p—1)
N—-p
Let (A1, X2) € ([0, 00[)?, and consider a set of (C'(0,1])* such that

71— v >

A={(m,0) € (CO? 0 u< i, 0< o<yl T

wherep is a positive constant aridk satisfy

l —1—
RN ek el
p—1l—a k v
and set N
N/:__p,y
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Next, we prove tha# is invariant undetS. We have from the expression (2.2)&f

! s 1
= = + = hi\ P 1
S1(u,v) —/ srT (M Pal+ﬁk/ a(t)tN_% R e e ]\;) s
" 0

. N—p N’ —
Now, 3y < (p—1—a)(g—1—0)impliesN — o i ﬁ > (0. We obtain
al+Bk 1
ap hy 1-N
Sl(u U) <>\1 + N— N/ — + _> / §r-1 dS
al+Gk h N — -1 N
ap 1 p 2
< (At N T = ) ( ) -1,
( N - prO‘ - qflchsﬂ N p—1

1 /N—p\"!
Let\, = 3 ( f) p'®~Y. Then we have for any; € [0, \; )]
p R—

S1(u,v) <

1

(o7 —l(p— 1 p—1
y 1+ apltBr=lp=1) N ﬁp—l(p—l) N—p —(-1) I =
2 N—Ma_ N/l—_qéﬁ N p—1 ‘

p—

Sinceal 4+ gk — I(p — 1) < 0, we get forp sufficiently large

Si(u,v) < plrert . (3.1)

N_
q(5<0 and

. e N —
From another side, the conditiofs implies thatV — py — s
q — JR—

p—1
from the expression (2.3) ¢f, we get

1 1
_ » h
SQ(U,’U) :/ Squjf (/\2 _I_pvl-i-dk/ b(t)th]: T o= 1 65 ldt—f- ]\?) ds

Ly bp—lerék Nep. N'—g ho
< sa1 [ Ay + ; sV st 4 2 ds
>~ /T q < 2 uﬂy + qN —q S_ N P q N

i)
| [~
Jun
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N —q
qg—1

1
pk: 1 N bp7l+6k—k(q—1) N @p—k(q—l) N’ — q —(g=1)\ a1 qujljilé
2 \Mpqy g Noag NN g—1-9 '

P q—1-¢

1 o1 .
Let Ay, = 3 ( ) p"7=D_ Then we obtain for alk, € [0, \s,]

Sinceyl + 0k — k(¢ — 1) < 0 and—k(q — 1) < 0, we deduce that fos large enough
Sy, v) < phr@ pE Va1 (3.2)
In this way, (3.1) and (3.2) justify the invariance.dfunders. O

Note that the operatat may be not compact since it is not necessarily equicontin-
uous. Therefore we have to transfeinto another continuous and compact operator
T. We will treat only the casei- of Theorem 1.1; concerningi- the arguments are
analogue.

We now construct the operat@t. Consider the positive numbersi, k as con-
structed in Proposition 3.1, and let;, \;) € ([0, 00[)*. LetT be an operator defined
on a subseB of (C[0, 1])* such that

B= {(y, 2) €(C0,1])*: 0<y<pr,0< 2 < p’“r@‘%”@—l—é)”vp(r)} ,

wheree is a positive number and, is defined by

_ 1\ 1+e
ntr) = (i Gty ey

We definel” = (73, T») by:
and

1

. 1 - s . =1
Ti(y,2)(r) = o +€/ sPT ()\1 +/ thN=lf (t,rpfllvfey,v;12> dt) ds (3.3)
r 0

1

1

1 1 _N q
Tr(y, z)(r) = vp(r)/ st ()\2 +/ tN1g (t,r%*sy,vp_lz> dt) ds. (3.4)

In view of applying Leray—Schauder’s fixed point theorem, the next result will be useful.
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Proposition 3.2. Under the case -i- of Theorem 1.1, we have:

e 1 is a closed convex bounded subset;
e Bis invariant underT’;

e T'is a continuous and compact operator Bn

Proof. The first point is evident. From Proposition 3.4, is invariant undersS, so
T(B) C B.

To prove continuity off" in B, let (y,, z,) be a sequence converging Brto (y, z).
Then the Lebesgue dominated convergence theorem implies that

T T () (1) = T(w.2)()

for all » € [0, 1]. Moreover, the famil{T" (y,, z,) ,n > 1} U{T'(y, 2)} is equicontinu-
ous sinces is closed and’(5) is equicontinuous. Hence, the convergenc® 6§, z,)
to T'(y, z) is uniform with respect tg, z. Thereforel" is a continuous operator.

Now, we prove thaf’(B) is a relatively compact subset @f'[0, 1])>. According to
the Ascoli-Arzela theorem, and sin€é53) is bounded, it remains to prove tH&(s) is
an equicontinuous subset @0, 1])°. Using (3.3) and (3.4), it follows

S0.20) = (5L ) T

— ! <)\1 +/ tNLf (t,r%_‘sy, >dt) ) ,
0

ST 2)() = (1 T 2)0)

— p Rty ST (e ()\2+/ g(t,tplsy,v;lz)do :

SinceB is invariant undefl’, we deduce that

d N—-p L ee1 N—=—p , .

_T < -+ E— - 15

o1y, 2)(r) _(p 1+6)p M
d N —q N'—q __q N —q 4. N-a. 4
_T < - 1 qg—1— 56 - - € qflf(;E
’d?" Q(y,Z)(T) q—l—(5( +€)p 7“ +q_1_5p r )

and for a suitable > 0, we get

< (Y

d
<(C; and ‘ng(y,z)(r)

020

uniformly with respect tay and z. Then, the sef’(B) is equicontinuous, and conse-
quently it is a compact operator. ]



8 Abdelaziz Ahammou and Khalid Iskafi

Now, we are ready to prove the first main result.

Proof of Theorem 1.1By Proposition 3.2, we deduce by Leray—Schauder’s fixed point
theorem that, for al{\;, \2) € ([0, oo[)?, the operatofl” has a fixed poinfy, z) in B.
Furthermore(y, z) is a fixed point ofT" if and only if (u,v) = (r%_‘sy,vglz> is a
fixed point ofS. Hence we derive thdt;, v) € A such that

1
-1

u(r) = / = (/\1 + /O Ty (a(t)uv” + hy (1)) dt) T ds
and 1
v(r) = [1 st ()\2 + /s1 N (b(t) w0’ + ho(t)) dt) o ds

with (A1, A2) € ([0, oo[)?, and the Theorem 1.1 follows. We may use similar arguments
to show the result for the casg- Concerning the asymptotic behaviorigfwe apply
the L'Hopital rule to the expression af Then for all\; € [0, o[, we have

u) 7 Y0

N—p
lim re=tu(r) = (

r—0+ p— 1 rﬂ%l‘* Tlpf]r
N—p\ " " =
o : N-1 a, (B
— (p — ) Tlir(% (Al +/0 N (a(t)u” + ha (1)) dt)
_ (V=) AT
p—1 b
This completes the proof. m

3.2 Superlinear Case;8y > (p—1—a)(g—1—-9)

Proof of Theorem 1.2In this proof, we study only the case of Theorem 1.2 because

the arguments are the same for the case Recall that,; = h, = 0 and
N(p—1) N-—p N'—q
— and a+ g <1.
N—p Np-1) N(@-1-9
Now, we construct nonnegative functions by monotone iterations under the operator

S. Let Aj, A2, Ao, A2 0, 0 be nonnegative numbers agd;, v;) = (A1 0uop, A20v04),

where
N—p\ ! L N’ — -1
Ao = o5t (— L M7 Xy = ot | — 1 A,
’ p—1 ’ qg—1—90

1 — v >

p—N q—N'

Upp(r) =1t —1, vo,(r)=ra1s —1
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and
N = M%
p—1

and let(u,, vy,) be the sequence defined by

neN*
(Uny1,Vn11) = S (Un, Vn) - (3.5)

Then we obtain

1,28k
S1 (Q Tttt

/

N — N —
From <- we haveN — P - q G > 0. Then
p—1 g—1—9
’ al+0k 1
—-N q—N ap 1-N
Sy <er€91 ’riqls) < ()\1 + o T > / sP1ds
N — prOé - qTf] r
1
al+06k p—1 . -1
S <)\1 + Ncig N'—q ) (N p) TI;’—]Y .
N = Jta— 550 p=1
1 (N—-p P I(p—1
Let ), = At 0"~V Then we have for any; € [0, /\’19}

p—N q—N’
S (QZT T, 9’““”)

_1
<4l ag AR (N —P)_(p_l) . .
EACR = r= = A |

p q

Moreover, if we chooséandk such that

l _1_
B P g1
p—1—a k vy

and for o sufficiently small, then we obtain

N —

Sh (er%, okra” p‘lpv)(q_l_d)A) < dr. (3.6)
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. N’
From the hypothesig-we haveN — f

— 1~ 1 5 <0, and by (2.3) we obtain

g—1-9
4
) ds

N —
p—=
I p=N k q—N"_ 1 1-N l+5k’ N—
Sy | o're=1, 0 ra1=5 ) = [ sa1 | Ay + o b(t)t
( "

bQ’yl+5k N—N’— N —q 5 q-1
AQ + / N/ N—q 5 N q—1-9 ds

1
I+8k —1 1
- ) [y
N/ + q——l—q(s(s i N T
= (

_1
)\2 + bQ’YH—&k " (u) - rqq:ﬁla
N'+ 245 — N g—1-46

N —q \"! A
ﬁ) 0"~Y_ Then we obtain for any, € [07 )\29]
qg—1—

Sy (@% T IN;)
1
_ Q’“ 1 . bgvl—i-&k—k(q—l) N —q —(g=1)\ q¢-1 qu:ljilé
T2 \V S -N ) \g—1-9 '

Sinceyl + ok — k(¢ — 1) > 0, for o small enough, we deduce that

~ 1
Let)\gg = 5 (

N—p

S e S (3.7)

Moreover, for all(Ay, X2) € [0, \],] ¥ [0, \s,], We have

2 (N-p\ ' L =
u(r) =277 1 Al ugp(r) < gr
(3.8)

L %V_Q = k(= 5= (@-1-8)7"
'Ul(T) = 241 m )\ qu( ) < o’r p—1

Thus, from (3.6), (3.7), (3.8) and using the monotony of the opefatare deduce

Siur, 1) < g'r'5T (3.9)
k, (—X=Ly)(g—1-8)"1 '
So(ug,vr) < o"r' e :
and by iteration we derive
1 =N
Ups1 = S1(Up, vy) < O're T

YneN*.  (3.10)

Un+1 = SQ(una Un) < QkT(Q? pt Ma-1-87
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Now, from (3.10) the sequende,,, z,), = r%un, roa1 vn) is bounded. So

Nopy g
there exists a subsequeneg, , z,, )r converging to(y, z) = (rg—lpu , r T v) in
(C[0,1])*. That is to say, there exists a subsequefige, v,,, ) Which converges to
(u,v) in (C[0,1])* ask — oo, and satisfies

1
1— p—1

Uy, (1) = / s (A1+ /0 tN_lf(t,unk(t),vnk(t))dt> ds

and )
=1

1 1
Vo (1) = / ot (A2+ / tng@,um(t),vnk(t))dt) s,

and by the Lebesgue dominated convergence theorem, this becomes

1 s =
u(r) :/ sl <)\1 +/ tNla(t)uO‘vﬁdt) ds
T 0

1

1 1 a1
v(r) = / a1 (/\2+ / tN—lb(t)qut) ds

with (A1, A2) € [0, A}, ] [O,ng]. Hence,(u, v) is a nonnegative nontrivial solution
to the problem (2.1). We may proceed similarly about the caseof Theorem 1.2.
Similarly as in the proof of Theorem 1.1, we apply the Gjpital rule to deduce

and

/ . Nop N_p ! Til
VA1 € [0,M],] : Tlir&rp—l u(r) = - A

This concludes the proof. O

3.3 Asymptotic Behavior of Solutions

In this subsection, we present two results describing the solution’s singularity which
may be strong or fundamentally singular under some sufficient conditions.

Theorem 3.3. Assume that the hypotheses of Theorem 1.1 or Theorem 1.2 hold, and let
(u,v) be a nonnegative nontrivial solution to the syst@hi) such that
N-p
rlilr(r]l+ re=tu(r) # 0.

Suppose that the function— b(r) does not vanish near zero and assume furthermore

that
N—p N —q

+
Np-1)) " N@g-1
Then, the solutiofiu, v) has a strong singularity.

o> 1.
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Proof. Consider the solutiofu, v) of the problem (2.1). Then the functiancan be
written as

_1
1-N g-1

v(r) = [ ST (A2 + /SltN—l (b(t)u"v’ + ha(t)) dt) ds, 1€ (0,1],

with A\, > 0. Using the L'Hopital rule we get

liminf rat o(r) > (qu_—lq) B (/01 tNlb(t)uV(t)v‘S(t)dt) ” :

r—0t

Since lim 771 u(r) > 0 and lim r+ v(r) > 0, there exist positive constants, and

r—0t+ r—0t

K5 such that for- near zero

qg—N

u(r) > Klr% and v(r) > Kyrar.

Then, fore small enough, we get

N—p N—q

/ N1t (1) (H)dt > K / NSy o
0 0

N — N — - i
1p’y — 1q(5 < 0. Hence(u, v) is strongly singular. O
p— q—

Theorem 3.4. Assume that the hypotheses of Theorem 1.1 or Theorem 1.2 hold, and let
(u,v) be a nonnegative nontrivial solution ¢8.1) such that

becauseV —

lim+ r%u(r) < 0. (3.11)
r—0

Suppose that the function— «(r) does not vanish near zera,< p — 1, and

By —ad < N]E[p—__;)(ﬁ—a). (3.12)

Then, the solutiofiu, v) has a fundamental singularity.

Before presenting the proof of this theorem, the following lemma will be useful. It
, - . 1
describes the monotonicity of the functior— r"u(r) on (0, 5) for somen > 0.

Lemma 3.5. If v is a nonnegative function i6(0, 1) satisfying
- (T’N_1|u’(r)|p_2u'(r)), >0 and «' <0 Vre(0,1),

then there exists a positive expongnt= 1y, such that the functiom — r"u(r) is

: 1
nondecreasing of0, 5).



Singular Radial Positive Solutions 13

Proof. Consider a nonnegative functiarsuch that
— (PN Y ()PR () >0 and W/(r) <0 Vre (0,1) (3.13)
1 .
and letr € (0, 5) ands € [r, 2r|. Integrating (3.13) offr, s, we get
=N ()R (5) 2 =Nl ()R (),
and since:’ is nonpositive or{0, 1], we derive
1 1-N

—u/(s) = (P () P s

which we integrate once more on 2r| to obtain

u(r) —u(2r) > (u)—l (TN_l\u’(r)]p_l)P%l [(27")#1 — 1

p—1

Thus .
u(r) > (N—_lp) [1 - 2*]“] rld (r)].

p p—
In this way we get

(r'u(r))' >0 Vre (o, %) :

N — p p=N71 .
wheren = p— [1 — 291 ] . Therefore, the proof is complete. ]
p J—

Proof of Theorem 3.3lIf the problem (2.1) has a solutidm, v) satisfying

. N—p
lim r»=1u(r) < oo,
r—0t

then we have for alt € (0, 1]

1-N p—1

u(r) = / 15ﬁ (/\1 - /0 Ty (a(t)uv” + hy (1)) dt) ds (3.14)

o(r) = / e <A2 N / Y (b + by (1) dt)q_lds, (3.15)

where\;, A, are nonnegative numbers. Since the function> a(r) does not vanish
, 1 :
near zero and if we choo$e< r < 7 then we obtain from (3.14) that

1

2r N s p—1
u(r) > K/ sP1 (/ tN_lua(t)vﬁ(t)dt> ds
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with K > 0, and since» is nonincreasing, we get

Thus
u(r) > Krﬁuﬁ(%)m%(%). (3.16)

Multiplying (3.16) byr%, we obtain

N—p

re=tu(r) > Ky~ O =) (7“ p=1 u(27”)) v U%(Qr)a

and using Lemma 3.5, we get

a

Pt @y (2n)] = KT ) (5 () ) er 2r),

wheren is the positive number which has been constructed in Lemma 3.5. Thus

21 (r%u(%)) > K (V= Z:fa)w%(%), (3.17)
whereK > 0. Usinga < p — 1 and (3.11), this becomes
-p 1
v(r) < Koo (5 O‘_N), 0<r< 3" (3.18)

From another side, since the function— —r"~'|«/|P~%' is nondecreasing and is
nonpositive,

u(r) < Kor% vr € (0,1], (3.19)
with K, = —u'(1)§_
the L'Hopital rule to obtain

g N—q\' —
lim 7ot v(r) = (_q) lim — (r)

r—0t q— 1 r—0t =

ra-t

N-g\ ™" ! a1

< (—f) (/\2+ / N1 (cu™v® + hy) dt) . (3.20)
q— 0

1 .
> 0. Now, we use the expression (3.15)wé&nd we apply
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Consequently, by using inequalities (3.18) and (3.19) in (3.20), we have

1

1 1 q—1
lim ()S(N_—f) <>\’2+cK / th:-wﬁa)zldH%)
0

r—0t
(M) oA e
B ? _Nep (N _N=py)E N
p—1 8

p—1

1

q—1

< 00

because (3.12) holds. Therefore, the solutiorv) of the system (2.1) is fundamentally
singular. O

4 Nonexistence Results

In this section, we prove nonexistence of nonnegative nontrivial radially solutions to the
system

— (rN_l|u'|”_2u')/ = -1 (a(r)uo‘vﬁ + hi(r)), in(0,1)
(erl\v’\qﬂv/)/ = pN-1 (b(r)u%‘S + ho(r)), in(0,1) (4.1)
u(l) =v(1) =0,
wherea, b, hy, hy are nonnegative continuous functions definedmn] in R. The fol-
lowing is the main result of this section.

Theorem 4.1. Consider that- — a(r) does not vanish near zeroinf b(r) > 0, and

rel0,1]
suppose that
sup ha(r) >0, 4.2)
rel0,1]
N-p —q
a<p-—1 and o+ g > 1. (4.3)
Np—-1) N(g-1)

Then the problen.1) has no radial positive solutions such that

111(1;1+ r%u(r) < 0. (4.4)

Proof. Suppose that the system (4.1) has a solution) satisfying the condition (4.4).
Then we obtain for all- € (0, 1]

1-N p—1

u(r) = /Tl 51 ()\1 + /Os N (a(t)uo” + ha(t)) dt) ds (4.5)

1
q—1

v(r) = / 13211 <)\2+ / 1 N (b(E)u v’ + ho(1)) dt) ds, (4.6)

Z
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where\;, A, are nonnegative numbers. Since the function> a(r) does not vanish
near zero, we obtain from (4.5)

1

2r N s p—1
u(r) > K/ sP1 </ tN_lua(t)vﬁ(t)dt> ds

with K > 0. Sincev is nonincreasing, we get

1

2r s p—1
u(r) > K/ sﬁuﬁ(s)v%(s) (/ tNldt> ds
5 2r i s Plf1
> Kupl(Zr)vpl(Qr)/ sp=1 (/ tN_ldt> ds

N o

z

2

and ) 5
u(r) > Kre=Tur=—1(2r)ve=1(2r).

By multiplying the last inequality by%, we obtain

N a 8

rrtu(r) > Kr@ 0T (V- ispe ) (r p1 U(QT))E (rFU(QT)>p ,

and using Lemma 3.5, we get

N—p —p

P (@) 2 KT V1) (5 uan) ) (reuen)

wheren is the positive number which has been constructed in Lemma 3.5. Thus

. R _ p N_g —q L
on <T%U(2T)> p—1 > KT(pfl) 1(N71;11 ozf%ﬁ) (T%U(QT)>Z) 1 (47)

with K > 0. Since (4.3) and (4.4) hold, we get from (4.7) that

. N—gq
lim reto(r) =0.
r—07t

Now, we use expression (4.6) oto apply the L'Hbpital rule
N—g

0= rlir(% ra=to(r)

— <N — q> B ()\2 + /01 N (b U’ + ho(1)) dt) - (4.8)

qg—1
which contradicts the hypothesis (4.2). Therefore, the conclusion follows. O

Remark4.2 If we suppose that, = 0, then we may deduce from (4.6) and (4.8)
thatv = 0. So the expressions (4.5) and (4.8) imply that the system (4.1) has only
two solutions: (0,0) and (u,0), whereu > 0 on B’, and thus the singularity is of
fundamental type.
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