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Abstract

In this paper we study the existence and nonexistence of positive singular radial
solutions of the Dirichletp-Laplacian system

∆pu + f(x, u, v) = 0 in Ω
∆qv − g(x, u, v) = 0 in Ω

u = v = 0 on∂Ω,

whereN > max(p, q), p, q > 1, as well as the solution’s behavior near zero.
Here,Ω is the unit ball ofRN except for the center zero, andf , g are nonnegative
continuous functions. We use Leray–Schauder’s theorem and a method of mono-
tone iterations to prove existence, and we will be concerned with the study of the
asymptotic behavior of solutions. Also, we will present some sufficient conditions
for nonexistence of positive solutions.

AMS Subject Classifications:35J65.
Keywords: p-Laplacian operator, Leray–Schauder’s theorem, monotone iterations tech-
nique.

1 Introduction and Main Results

We prove the existence of radial positive solutions of the nonlinear system with elliptic
equations 

−∆pu = a(x)uαvβ + h1(x) in B′

∆qv = b(x)uγvδ + h2(x) in B′

u = v = 0 on∂B,
(1.1)
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whereB is the unit ball ofRN , B′ = B\{0}, N > max(p, q), p, q > 1, anda, b, h1, h2 ∈
L∞(B) are given nonnegative functions. A positive solution(u, v) of (1.1) is said to be
singular at zero (or just singular) if

lim sup
r→0+

(u(r) + v(r)) = ∞.

Set
l = lim sup

r→0+

(
r

N−p
p−1 u(r) + r

N−q
q−1 v(r)

)
.

If l = ∞, then the solution(u, v) is called strongly singular; while if0 < l < ∞, this
singularity is said to be fundamental.

The problem (1.1) does not have a variational structure and much attention has been
given to the existence of solutions for such systems by using different approaches. The
asymptotic behavior of the solutions was an interesting question to solve, especially
when the solution presents some singularities around the origin. The previous articles
which are treating the question of the existence are numerous, see C. Cid and C. Yarur
[4]; concerning the behavior of the solution near zero and nonexistence of nonnegative
solutions without boundary conditions see M.F. Bidaut–Veron and P. Grillot [3]. Note
that for the system {

−∆u = uα, u > 0 in B′

u = 0 on∂B,
(1.2)

nonnegative singular solutions exist under the conditionα <
N + 2

N − 2
. In such a case,

the solutionu with a singularity at zero satisfies

0 ≤ lim sup
r→0+

|r|N−2u(r) < ∞,

and thus the singularity is of fundamental type. See S.S. Lin [6], P.L. Lions [7], W.M.
Ni and P. Sacks [8].

Our method includes two fundamental cases (the sublinear and superlinear class) as
done by A. Ahammou [1,2] for the system

−∆pu = a(x)|u|α−1u + b(x)|v|β−1v in B
−∆qv = c(x)|u|γ−1u + d(x)|v|δ−1v in B

u = v = 0 on∂B,
(1.3)

where he treated the question of existence in two principal classes:

βγ < (p− 1)(q − 1) and βγ > (p− 1)(q − 1),

by using techniques of the topological degree theory combined with the blow-up method
introduced by B. Gidas and J. Spruck [5]. In this work we suppose thatβγ 6= (p− 1−
α)(q − 1− δ) and we formulate our main results as follows.
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Theorem 1.1 (Sublinear Case).Assume that

βγ < (p− 1− α)(q − 1− δ), α < p− 1, δ < q − 1

and suppose furthermore that

i- γ >
N(p− 1)

N − p
or

ii-
N − p

N(p− 1)
α +

N − q

N(q − 1)
β < 1 and

N − p

N(p− 1)
γ +

N − q

N(q − 1)
δ < 1.

Then, for anyλ ∈ [0,∞[, there exists a nonnegative nontrivial solution(u, v) to the
problem(1.1)such that

lim
r→0+

r
N−p
p−1 u(r) =

(
N − p

p− 1

)−1

λ
1

p−1 .

Theorem 1.2 (Superlinear Case).Assume that

βγ > (p− 1− α)(q − 1− δ), α < p− 1, δ < q − 1,

h1 ≡ h2 ≡ 0 and suppose furthermore that

i- γ >
N(p− 1)

N − p
and

N − p

N(p− 1)
α +

N−p
p−1

γ − q

N(q − 1− δ)
β < 1 or

ii-
N − p

N(p− 1)
α +

N − q

N(q − 1)
β < 1 and

N − p

N(p− 1)
γ +

N − q

N(q − 1)
δ < 1.

Then there exists a positive constantλN,p such that for anyλ ∈ [0, λN,p], the problem
(1.1)has a nonnegative nontrivial solution(u, v) satisfying

lim
r→0+

r
N−p
p−1 u(r) =

(
N − p

p− 1

)−1

λ
1

p−1 .

2 Preliminaries

For all r ∈ [0, 1] let f, g be the functions defined by

f(r, u(r), v(r)) = a(r)uα(r)vβ(r) + h1(r)

g(r, u(r), v(r)) = b(r)uγ(r)vδ(r) + h2(r).

Set
a = sup

r∈[0,1]

a(r), b = sup
r∈[0,1]

b(r)
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h1 = sup
r∈[0,1]

h1(r) andh2 = sup
r∈[0,1]

h2(r).

Since this work is concerned with radial solutions, system (1.1) may be written as
−
(
rN−1|u′|p−2u′

)′
= rN−1f(r, u(r), v(r)), in (0, 1)(

rN−1|v′|q−2v′
)′

= rN−1g(r, u(r), v(r)), in (0, 1)
u(1) = v(1) = 0.

(2.1)

Define the solution operatorS = (S1, S2) by

S1(u, v)(r) =

∫ 1

r

s
1−N
p−1

(
λ1 +

∫ s

0

tN−1f(t, u(t), v(t))dt

) 1
p−1

ds, (2.2)

S2(u, v)(r) =

∫ 1

r

s
1−N
q−1

(
λ2 +

∫ 1

s

tN−1g(t, u(t), v(t))dt

) 1
q−1

ds, (2.3)

whereλ1 andλ2 are nonnegative numbers. Then, a nonnegative fixed point(u, v) of the
operatorS is a nonnegative solution to (2.1).

3 Existence Results and Asymptotic Behavior

3.1 Sublinear Case:βγ < (p− 1− α)(q − 1− δ)

First of all, we show the following result.

Proposition 3.1. Consider the hypothesis of Theorem 1.1. Then, there exists an invari-
ant setA under the operatorS:

S(A) ⊂ A.

Proof. Here we detail the proof under the case -i- of Theorem 1.1; the case -ii- can be
treated similarly. Recall that:

i− γ >
N(p− 1)

N − p
.

Let (λ1, λ2) ∈ ([0,∞[)2, and consider a setA of (C(0, 1])2 such that

A =
{

(u, v) ∈ (C(0, 1])2 : 0 ≤ u ≤ ρlr
p−N
p−1 , 0 ≤ v ≤ ρkr(q−N−p

p−1
γ)(q−1−δ)−1

}
,

whereρ is a positive constant andl, k satisfy

β

p− 1− α
<

l

k
<

q − 1− δ

γ
,

and set

N ′ =
N − p

p− 1
γ.
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Next, we prove thatA is invariant underS. We have from the expression (2.2) ofS1

S1(u, v) =

∫ 1

r

s
1−N
p−1

(
λ1 + ραl+βk

∫ s

0

a(t)tN−
N−p
p−1

α− N′−q
q−1−δ

β−1dt +
h1

N

) 1
p−1

ds.

Now, βγ < (p− 1−α)(q− 1− δ) impliesN − N − p

p− 1
α− N ′ − q

q − 1− δ
β > 0. We obtain

S1(u, v) ≤

(
λ1 +

aραl+βk

N − N−p
p−1

α− N ′−q
q−1

β
+

h1

N

)∫ 1

r

s
1−N
p−1 ds

≤

(
λ1 +

aραl+βk

N − N−p
p−1

α− N ′−q
q−1−δ

β
+

h1

N

) 1
p−1 (

N − p

p− 1

)−1

r
p−N
p−1 .

Let λ1ρ =
1

2

(
N − p

p− 1

)p−1

ρl(p−1). Then we have for anyλ1 ∈
[
0, λ1ρ

]
S1(u, v) ≤

ρl

(
1

2
+

(
aραl+βk−l(p−1)

N − N−p
p−1

α− N ′−q
q−1−δ

β
+

h1

N
ρ−l(p−1)

)(
N − p

p− 1

)−(p−1)
) 1

p−1

r
p−N
p−1 .

Sinceαl + βk − l(p− 1) < 0, we get forρ sufficiently large

S1(u, v) ≤ ρlr
p−N
p−1 . (3.1)

From another side, the condition -i- implies thatN − N − p

p− 1
γ − N ′ − q

q − 1− δ
δ < 0, and

from the expression (2.3) ofS2 we get

S2(u, v) =

∫ 1

r

s
1−N
q−1

(
λ2 + ργl+δk

∫ 1

s

b(t)tN−
N−p
p−1

γ− N′−q
q−1−δ

δ−1dt +
h2

N

) 1
q−1

ds

≤
∫ 1

r

s
1−N
q−1

(
λ2 +

bργl+δk

N−p
p−1

γ + N ′−q
q−1−δ

δ −N
sN−N−p

p−1
γ− N′−q

q−1−δ
δ +

h2

N

) 1
q−1

ds

≤

(
λ2 +

bργl+δk

N−p
p−1

γ + N ′−q
q−1−δ

δ −N
+

h2

N

) 1
q−1 ∫ 1

r

s
q−N′
q−1−δ

−1ds

≤

(
λ2 +

bργl+δk

N−p
p−1

γ + N ′−q
q−1−δ

δ −N
+

h2

N

) 1
q−1 (

N ′ − q

q − 1− δ

)−1

r
q−N′
q−1−δ .
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Let λ2ρ =
1

2

(
N ′ − q

q − 1

)q−1

ρk(q−1). Then we obtain for allλ2 ∈
[
0, λ2ρ

]
S2(u, v) ≤

ρk

(
1

2
+

(
bργl+δk−k(q−1)

N−p
p−1

γ + N ′−q
q−1−δ

δ −N
+

h2

N
ρ−k(q−1)

)(
N ′ − q

q − 1− δ

)−(q−1)
) 1

q−1

r
q−N′
q−1−δ .

Sinceγl + δk − k(q − 1) < 0 and−k(q − 1) < 0, we deduce that forρ large enough

S2(u, v) ≤ ρkr(q−N−p
p−1

γ)(q−1−δ)−1

. (3.2)

In this way, (3.1) and (3.2) justify the invariance ofA underS.

Note that the operatorS may be not compact since it is not necessarily equicontin-
uous. Therefore we have to transferS into another continuous and compact operator
T . We will treat only the case -i- of Theorem 1.1; concerning -ii- the arguments are
analogue.

We now construct the operatorT . Consider the positive numbersρ, l, k as con-
structed in Proposition 3.1, and let(λ1, λ2) ∈ ([0,∞[)2. Let T be an operator defined
on a subsetB of (C[0, 1])2 such that

B =
{

(y, z) ∈ (C[0, 1])2 : 0 ≤ y ≤ ρlrε, 0 ≤ z ≤ ρkr(q−N−p
p−1

γ)(q−1−δ)−1

vρ(r)
}

,

whereε is a positive number andvρ is defined by

vρ(r) =
(
ρ−kr(N−p

p−1
γ−q)(q−1−δ)−1

)1+ε

, r ∈ [0, 1].

We defineT = (T1, T2) by:

T1(y, z)(r) = r
N−p
p−1

+εS1

(
r

p−N
p−1

−εy, v−1
ρ z
)

(r)

and
T2(y, z)(r) = vρ(r)S2

(
r

p−N
p−1

−εy, v−1
ρ z
)

(r),

i.e.,

T1(y, z)(r) = r
N−p
p−1

+ε

∫ 1

r

s
1−N
p−1

(
λ1 +

∫ s

0

tN−1f
(
t, r

p−N
p−1

−εy, v−1
ρ z
)

dt

) 1
p−1

ds (3.3)

and

T2(y, z)(r) = vρ(r)

∫ 1

r

s
1−N
q−1

(
λ2 +

∫ 1

s

tN−1g
(
t, r

p−N
p−1

−εy, v−1
ρ z
)

dt

) 1
q−1

ds. (3.4)

In view of applying Leray–Schauder’s fixed point theorem, the next result will be useful.
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Proposition 3.2. Under the case -i- of Theorem 1.1, we have:

• B is a closed convex bounded subset;

• B is invariant underT ;

• T is a continuous and compact operator onB.

Proof. The first point is evident. From Proposition 3.1,A is invariant underS, so
T (B) ⊂ B.

To prove continuity ofT in B, let (yn, zn) be a sequence converging onB to (y, z).
Then the Lebesgue dominated convergence theorem implies that

lim
n→∞

T (yn, zn) (r) = T (y, z)(r)

for all r ∈ [0, 1]. Moreover, the family{T (yn, zn) , n ≥ 1} ∪ {T (y, z)} is equicontinu-
ous sinceB is closed andT (B) is equicontinuous. Hence, the convergence ofT (yn, zn)
to T (y, z) is uniform with respect toy, z. ThereforeT is a continuous operator.

Now, we prove thatT (B) is a relatively compact subset of(C[0, 1])2. According to
the Ascoli–Arzela theorem, and sinceT (B) is bounded, it remains to prove thatT (B) is
an equicontinuous subset of(C[0, 1])2. Using (3.3) and (3.4), it follows

d

dr
T1(y, z)(r) =

(
N − p

p− 1
+ ε

)
r−1T1(y, z)(r)

− rε−1

(
λ1 +

∫ r

0

tN−1f
(
t, r

p−N
p−1

−εy, v−1
ρ z
)

dt

) 1
p−1

,

d

dr
T2(y, z)(r) =

N ′ − q

q − 1− δ
(1 + ε)r−1T2(y, z)(r)

− ρ−k(1+ε)r
N′−q
q−1−δ

(1+ε)+ 1−N
q−1

(
λ2 +

∫ 1

r

g(t, t
p−N
p−1

−εy, v−1
ρ z)dt

) 1
q−1

.

SinceB is invariant underT , we deduce that∣∣∣∣ d

dr
T1(y, z)(r)

∣∣∣∣ ≤ (N − p

p− 1
+ ε

)
ρlrε−1 +

N − p

p− 1
ρlrε−1∣∣∣∣ d

dr
T2(y, z)(r)

∣∣∣∣ ≤ N ′ − q

q − 1− δ
(1 + ε)ρ−kεr

N′−q
q−1−δ

ε−1 +
N ′ − q

q − 1− δ
ρ−kεr

N′−q
q−1−δ

ε−1,

and for a suitableε > 0, we get∣∣∣∣ d

dr
T1(y, z)(r)

∣∣∣∣ ≤ C1 and

∣∣∣∣ d

dr
T2(y, z)(r)

∣∣∣∣ ≤ C2

uniformly with respect toy andz. Then, the setT (B) is equicontinuous, and conse-
quently it is a compact operator.
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Now, we are ready to prove the first main result.

Proof of Theorem 1.1.By Proposition 3.2, we deduce by Leray–Schauder’s fixed point
theorem that, for all(λ1, λ2) ∈ ([0,∞[)2, the operatorT has a fixed point(y, z) in B.

Furthermore,(y, z) is a fixed point ofT if and only if (u, v) =
(
r

p−N
p−1

−εy, v−1
α z
)

is a

fixed point ofS. Hence we derive that(u, v) ∈ A such that

u(r) =

∫ 1

r

s
1−N
p−1

(
λ1 +

∫ s

0

tN−1
(
a(t)uαvβ + h1(t)

)
dt

) 1
p−1

ds

and

v(r) =

∫ 1

r

s
1−N
q−1

(
λ2 +

∫ 1

s

tN−1
(
b(t)uγvδ + h2(t)

)
dt

) 1
q−1

ds

with (λ1, λ2) ∈ ([0,∞[)2, and the Theorem 1.1 follows. We may use similar arguments
to show the result for the case -ii-. Concerning the asymptotic behavior ofu, we apply
the L’Hôpital rule to the expression ofu. Then for allλ1 ∈ [0,∞[, we have

lim
r→0+

r
N−p
p−1 u(r) =

(
N − p

p− 1

)−1

lim
r→0+

−u′(r)

r
1−N
p−1

=

(
N − p

p− 1

)−1

lim
r→0+

(
λ1 +

∫ r

0

tN−1
(
a(t)uαvβ + h1(t)

)
dt

) 1
p−1

=

(
N − p

p− 1

)−1

λ
1

p−1

1 .

This completes the proof.

3.2 Superlinear Case:βγ > (p− 1− α)(q − 1− δ)

Proof of Theorem 1.2.In this proof, we study only the case -i- of Theorem 1.2 because
the arguments are the same for the case -ii-. Recall thath1 ≡ h2 ≡ 0 and

i− γ >
N(p− 1)

N − p
and

N − p

N(p− 1)
α +

N ′ − q

N(q − 1− δ)
β < 1.

Now, we construct nonnegative functions by monotone iterations under the operator
S. Let λ1, λ2, λ1,0, λ2,0, % be nonnegative numbers and(u1, v1) = (λ1,0u0,p, λ2,0v0,q),
where

λ1,0 = 2
1

p−1

(
N − p

p− 1

)−1

λ
1

p−1

1 , λ2,0 = 2
1

q−1

(
N ′ − q

q − 1− δ

)−1

λ
1

q−1

2 ,

u0,p(r) = r
p−N
p−1 − 1, v0,q(r) = r

q−N′
q−1−δ − 1
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and

N ′ =
N − p

p− 1
γ,

and let(un, vn)n∈N∗ be the sequence defined by

(un+1, vn+1) = S (un, vn) . (3.5)

Then we obtain

S1

(
%lr

p−N
p−1 , %kr

q−N′
q−1−δ

)
=

∫ 1

r

s
1−N
p−1

(
λ1 + %αl+βk

∫ s

0

a(t)tN−
N−p
p−1

α− N′−q
q−1−δ

β−1dt

) 1
p−1

ds.

From -i- we haveN − N − p

p− 1
α− N ′ − q

q − 1− δ
β > 0. Then

S1

(
%lr

p−N
p−1 , %kr

q−N′
q−1−δ

)
≤

(
λ1 +

a%αl+βk

N − N−p
p−1

α− N ′−q
q−1

β

)∫ 1

r

s
1−N
p−1 ds

≤

(
λ1 +

a%αl+βk

N − N−p
p−1

α− N ′−q
q−1−δ

β

) 1
p−1 (

N − p

p− 1

)−1

r
p−N
p−1 .

Let λ′1% =
1

2

(
N − p

p− 1

)p−1

%l(p−1). Then we have for anyλ1 ∈
[
0, λ′1%

]

S1

(
%lr

p−N
p−1 , %kr

q−N′
q−1−δ

)

≤ %l

(
1

2
+

(
a%αl+βk−l(p−1)

N − N−p
p−1

α− N ′

q−1−δ
β

)(
N − p

p− 1

)−(p−1)
) 1

p−1

r
p−N
p−1 .

Moreover, if we choosel andk such that

β

p− 1− α
>

l

k
>

q − 1− δ

γ

and for% sufficiently small, then we obtain

S1

(
%lr

p−N
p−1 , %kr(q−N−p

p−1
γ)(q−1−δ)−1

)
≤ %lr

p−N
p−1 . (3.6)
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From the hypothesis -i- we haveN−N − p

p− 1
γ− N ′ − q

q − 1− δ
δ < 0, and by (2.3) we obtain

S2

(
%lr

p−N
p−1 , %kr

q−N′
q−1−δ

)
=

∫ 1

r

s
1−N
q−1

(
λ2 + %γl+δk

∫ 1

s

b(t)tN−N ′− N′−q
q−1−δ

δ−1dt

) 1
q−1

ds

≤
∫ 1

r

s
1−N
q−1

(
λ2 +

b%γl+δk

N ′ + N ′−q
q−1−δ

δ −N
sN−N ′− N′−q

q−1−δ
δ

) 1
q−1

ds

≤

(
λ2 +

b%γl+δk

N ′ + N ′−q
q−1−δ

δ −N

) 1
q−1 ∫ 1

r

s(q−1−δ)−1(1+δ−N ′)ds

≤

(
λ2 +

b%γl+δk

N ′ + N ′−q
q−1−δ

δ −N

) 1
q−1 (

N ′ − q

q − 1− δ

)−1

r
q−N′
q−1−δ .

Let λ̃2% =
1

2

(
N ′ − q

q − 1− δ

)q−1

%k(q−1). Then we obtain for anyλ2 ∈
[
0, λ̃2%

]
S2

(
%lr

p−N
p−1 , %kr

q−N′
q−1−δ

)

≤ %k

(
1

2
+

(
b%γl+δk−k(q−1)

N ′ + N ′−q
q−1−δ

δ −N

)(
N ′ − q

q − 1− δ

)−(q−1)
) 1

q−1

r
q−N′
q−1−δ .

Sinceγl + δk − k(q − 1) > 0, for % small enough, we deduce that

S2

(
%lr

p−N
p−1 , %kr(q−N−p

p−1
γ)(q−1−δ)−1

)
≤ %kr(q−N−p

p−1
γ)(q−1−δ)−1

. (3.7)

Moreover, for all(λ1, λ2) ∈ [0, λ′1%]× [0, λ̃2%], we have

u1(r) = 2
1

p−1

(
N − p

p− 1

)−1

λ
1

p−1

1 u0,p(r) ≤ %lr
p−N
p−1

v1(r) = 2
1

q−1

(
N−p
p−1

γ − q

q − 1− δ

)−1

λ
1

q−1

2 v0,q(r) ≤ %kr(q−N−p
p−1

γ)(q−1−δ)−1

.

(3.8)

Thus, from (3.6), (3.7), (3.8) and using the monotony of the operatorS, we deduce

S1(u1, v1) ≤ %lr
p−N
p−1

S2(u1, v1) ≤ %kr(q−N−p
p−1

γ)(q−1−δ)−1

,
(3.9)

and by iteration we derive

un+1 = S1(un, vn) ≤ %lr
p−N
p−1

vn+1 = S2(un, vn) ≤ %kr(q−N−p
p−1

γ)(q−1−δ)−1 ∀n ∈ N∗. (3.10)
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Now, from (3.10) the sequence(yn, zn)n =

(
r

N−p
p−1 un , r

N−p
p−1 γ−q

q−1 vn

)
n

is bounded. So

there exists a subsequence(ynk
, znk

)k converging to(y, z) =

(
r

N−p
p−1 u , r

N−p
p−1 γ−q

q−1 v

)
in

(C[0, 1])2. That is to say, there exists a subsequence(unk
, vnk

)k which converges to
(u, v) in (C[0, 1])2 ask →∞, and satisfies

unk+1
(r) =

∫ 1

r

s
1−N
p−1

(
λ1 +

∫ s

0

tN−1f (t, unk
(t), vnk

(t)) dt

) 1
p−1

ds

and

vnk+1
(r) =

∫ 1

r

s
1−N
q−1

(
λ2 +

∫ 1

s

tN−1g (t, unk
(t), vnk

(t)) dt

) 1
q−1

ds,

and by the Lebesgue dominated convergence theorem, this becomes

u(r) =

∫ 1

r

s
1−N
p−1

(
λ1 +

∫ s

0

tN−1a(t)uαvβdt

) 1
p−1

ds

and

v(r) =

∫ 1

r

s
1−N
q−1

(
λ2 +

∫ 1

s

tN−1b(t)uγvδdt

) 1
q−1

ds

with (λ1, λ2) ∈ [0, λ′1%] × [0, λ̃2%]. Hence,(u, v) is a nonnegative nontrivial solution
to the problem (2.1). We may proceed similarly about the case -ii- of Theorem 1.2.
Similarly as in the proof of Theorem 1.1, we apply the L’Hôpital rule to deduce

∀λ1 ∈ [0, λ′1%] : lim
r→0+

r
N−p
p−1 u(r) =

(
N − p

p− 1

)−1

λ
1

p−1

1 .

This concludes the proof.

3.3 Asymptotic Behavior of Solutions

In this subsection, we present two results describing the solution’s singularity which
may be strong or fundamentally singular under some sufficient conditions.

Theorem 3.3.Assume that the hypotheses of Theorem 1.1 or Theorem 1.2 hold, and let
(u, v) be a nonnegative nontrivial solution to the system(2.1)such that

lim
r→0+

r
N−p
p−1 u(r) 6= 0.

Suppose that the functionr 7→ b(r) does not vanish near zero and assume furthermore
that

N − p

N(p− 1)
γ +

N − q

N(q − 1)
δ > 1.

Then, the solution(u, v) has a strong singularity.
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Proof. Consider the solution(u, v) of the problem (2.1). Then the functionv can be
written as

v(r) =

∫ 1

r

s
1−N
q−1

(
λ2 +

∫ 1

s

tN−1
(
b(t)uγvδ + h2(t)

)
dt

) 1
q−1

ds, r ∈ (0, 1],

with λ2 ≥ 0. Using the L’Ĥopital rule we get

lim inf
r→0+

r
N−q
q−1 v(r) ≥

(
N − q

q − 1

)−1(∫ 1

0

tN−1b(t)uγ(t)vδ(t)dt

) 1
q−1

.

Since lim
r→0+

r
N−p
p−1 u(r) > 0 and lim

r→0+
r

N−q
q−1 v(r) > 0, there exist positive constantsK1 and

K2 such that forr near zero

u(r) ≥ K1r
p−N
p−1 and v(r) ≥ K2r

q−N
q−1 .

Then, forε small enough, we get∫ ε

0

tN−1b(t)uγ(t)vδ(t)dt ≥ K3

∫ ε

0

tN−
N−p
p−1

γ−N−q
q−1

δ−1dt = ∞

becauseN − N − p

p− 1
γ − N − q

q − 1
δ < 0. Hence,(u, v) is strongly singular.

Theorem 3.4.Assume that the hypotheses of Theorem 1.1 or Theorem 1.2 hold, and let
(u, v) be a nonnegative nontrivial solution to(2.1)such that

lim
r→0+

r
N−p
p−1 u(r) < ∞. (3.11)

Suppose that the functionr 7→ a(r) does not vanish near zero,α < p− 1, and

βγ − αδ <
N(p− 1)

N − p
(β − δ). (3.12)

Then, the solution(u, v) has a fundamental singularity.

Before presenting the proof of this theorem, the following lemma will be useful. It

describes the monotonicity of the functionr 7→ rηu(r) on (0,
1

2
) for someη > 0.

Lemma 3.5. If u is a nonnegative function inC2(0, 1) satisfying

−
(
rN−1|u′(r)|p−2u′(r)

)′ ≥ 0 and u′ ≤ 0 ∀r ∈ (0, 1),

then there exists a positive exponentη = ηN,p such that the functionr 7→ rηu(r) is

nondecreasing on(0,
1

2
).
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Proof. Consider a nonnegative functionu such that

−
(
rN−1|u′(r)|p−2u′(r)

)′ ≥ 0 and u′(r) ≤ 0 ∀r ∈ (0, 1) (3.13)

and letr ∈ (0,
1

2
) ands ∈ [r, 2r]. Integrating (3.13) on[r, s], we get

−sN−1|u′(s)|p−2u′(s) ≥ −rN−1|u′(r)|p−2u′(r),

and sinceu′ is nonpositive on(0, 1], we derive

−u′(s) ≥
(
rN−1|u′(r)|p−1

) 1
p−1 s

1−N
p−1

which we integrate once more on[r, 2r] to obtain

u(r)− u(2r) ≥
(

p−N

p− 1

)−1 (
rN−1|u′(r)|p−1

) 1
p−1

[
(2r)

p−N
p−1 − r

p−N
p−1

]
.

Thus

u(r) ≥
(

N − p

p− 1

)−1 [
1− 2

p−N
p−1

]
r|u′(r)|.

In this way we get

(rηu(r))′ ≥ 0 ∀r ∈
(

0,
1

2

)
,

whereη =

(
N − p

p− 1

)[
1− 2

p−N
p−1

]−1

. Therefore, the proof is complete.

Proof of Theorem 3.3.If the problem (2.1) has a solution(u, v) satisfying

lim
r→0+

r
N−p
p−1 u(r) < ∞,

then we have for allr ∈ (0, 1]

u(r) =

∫ 1

r

s
1−N
p−1

(
λ1 +

∫ s

0

tN−1
(
a(t)uαvβ + h1(t)

)
dt

) 1
p−1

ds (3.14)

v(r) =

∫ 1

r

s
1−N
q−1

(
λ2 +

∫ 1

s

tN−1
(
b(t)uγvδ + h2(t)

)
dt

) 1
q−1

ds, (3.15)

whereλ1, λ2 are nonnegative numbers. Since the functionr 7→ a(r) does not vanish

near zero and if we choose0 < r <
1

4
, then we obtain from (3.14) that

u(r) ≥ K

∫ 2r

r

s
1−N
p−1

(∫ s

s
2

tN−1uα(t)vβ(t)dt

) 1
p−1

ds
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with K > 0, and sincev is nonincreasing, we get

u(r) ≥ K

∫ 2r

r

s
1−N
p−1 u

α
p−1 (s)v

β
p−1 (s)

(∫ s

s
2

tN−1dt

) 1
p−1

ds

≥ Ku
α

p−1 (2r)v
β

p−1 (2r)

∫ 2r

r

s
1−N
p−1

(∫ s

s
2

tN−1dt

) 1
p−1

ds.

Thus
u(r) ≥ Kr

p
p−1 u

α
p−1 (2r)v

β
p−1 (2r). (3.16)

Multiplying (3.16) byr
N−p
p−1 , we obtain

r
N−p
p−1 u(r) ≥ Kr(p−1)−1(N−N−p

p−1
α)
(
r

N−p
p−1 u(2r)

) α
p−1

v
β

p−1 (2r),

and using Lemma 3.5, we get

r
N−p
p−1

−η [(2r)ηu(2r)] ≥ Kr(p−1)−1(N−N−p
p−1

α)
(
r

N−p
p−1 u(2r)

) α
p−1

v
β

p−1 (2r),

whereη is the positive number which has been constructed in Lemma 3.5. Thus

2η
(
r

N−p
p−1 u(2r)

)1− α
p−1 ≥ Kr(p−1)−1(N−N−p

p−1
α)v

β
p−1 (2r), (3.17)

whereK > 0. Usingα < p− 1 and (3.11), this becomes

v(r) ≤ Kr
1
β (N−p

p−1
α−N), 0 < r <

1

2
. (3.18)

From another side, since the functionr 7→ −rN−1|u′|p−2u′ is nondecreasing andu′ is
nonpositive,

u(r) ≤ K0r
p−N
p−1 ∀r ∈ (0, 1], (3.19)

with K0 = −u′(1)
p− 1

N − p
> 0. Now, we use the expression (3.15) ofv and we apply

the L’Hôpital rule to obtain

lim
r→0+

r
N−q
q−1 v(r) =

(
N − q

q − 1

)−1

lim
r→0+

−v′(r)

r
1−N
q−1

≤
(

N − q

q − 1

)−1(
λ2 +

∫ 1

0

tN−1
(
cuγvδ + h2

)
dt

) 1
q−1

. (3.20)
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Consequently, by using inequalities (3.18) and (3.19) in (3.20), we have

lim
r→0+

r
N−q
q−1 v(r) ≤

(
N − q

q − 1

)−1
(

λ′2 + cK

∫ 1
2

0

tN−
N−p
p−1

γ−(N−N−p
p−1

α) δ
β
−1dt +

h2

N

) 1
q−1

=

(
N − q

q − 1

)−1
λ′2 +

cK

N − N−p
p−1

γ −
(
N − N−p

p−1
α
)

δ
β

+
h2

N

 1
q−1

< ∞

because (3.12) holds. Therefore, the solution(u, v) of the system (2.1) is fundamentally
singular.

4 Nonexistence Results

In this section, we prove nonexistence of nonnegative nontrivial radially solutions to the
system 

−
(
rN−1|u′|p−2u′

)′
= rN−1

(
a(r)uαvβ + h1(r)

)
, in (0, 1)(

rN−1|v′|q−2v′
)′

= rN−1
(
b(r)uγvδ + h2(r)

)
, in (0, 1)

u(1) = v(1) = 0,

(4.1)

wherea, b, h1, h2 are nonnegative continuous functions defined on[0, 1] in R. The fol-
lowing is the main result of this section.

Theorem 4.1. Consider thatr 7→ a(r) does not vanish near zero,inf
r∈[0,1]

b(r) > 0, and

suppose that
sup

r∈[0,1]

h2(r) > 0, (4.2)

α < p− 1 and
N − p

N(p− 1)
α +

N − q

N(q − 1)
β > 1. (4.3)

Then the problem(4.1)has no radial positive solutions such that

lim
r→0+

r
N−p
p−1 u(r) < ∞. (4.4)

Proof. Suppose that the system (4.1) has a solution(u, v) satisfying the condition (4.4).
Then we obtain for allr ∈ (0, 1]

u(r) =

∫ 1

r

s
1−N
p−1

(
λ1 +

∫ s

0

tN−1
(
a(t)uαvβ + h1(t)

)
dt

) 1
p−1

ds (4.5)

v(r) =

∫ 1

r

s
1−N
q−1

(
λ2 +

∫ 1

s

tN−1
(
b(t)uγvδ + h2(t)

)
dt

) 1
q−1

ds, (4.6)
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whereλ1, λ2 are nonnegative numbers. Since the functionr 7→ a(r) does not vanish
near zero, we obtain from (4.5)

u(r) ≥ K

∫ 2r

r

s
1−N
p−1

(∫ s

s
2

tN−1uα(t)vβ(t)dt

) 1
p−1

ds

with K > 0. Sincev is nonincreasing, we get

u(r) ≥ K

∫ 2r

r

s
1−N
p−1 u

α
p−1 (s)v

β
p−1 (s)

(∫ s

s
2

tN−1dt

) 1
p−1

ds

≥ Ku
α

p−1 (2r)v
β

p−1 (2r)

∫ 2r

r

s
1−N
p−1

(∫ s

s
2

tN−1dt

) 1
p−1

ds

and
u(r) ≥ Kr

p
p−1 u

α
p−1 (2r)v

β
p−1 (2r).

By multiplying the last inequality byr
N−p
p−1 , we obtain

r
N−p
p−1 u(r) ≥ Kr(p−1)−1(N−N−p

p−1
α−N−q

q−1
β)
(
r

N−p
p−1 u(2r)

) α
p−1
(
r

N−q
q−1 v(2r)

) β
p−1

,

and using Lemma 3.5, we get

r
N−p
p−1

−η ((2r)ηu(2r)) ≥ Kr(p−1)−1(N−N−p
p−1

α−N−q
q−1

β)
(
r

N−p
p−1 u(2r)

) α
p−1
(
r

N−q
q−1 v(2r)

) β
p−1

,

whereη is the positive number which has been constructed in Lemma 3.5. Thus

2η
(
r

N−p
p−1 u(2r)

)1− α
p−1 ≥ Kr(p−1)−1(N−N−p

p−1
α−N−q

q−1
β)
(
r

N−q
q−1 v(2r)

) β
p−1

(4.7)

with K > 0. Since (4.3) and (4.4) hold, we get from (4.7) that

lim
r→0+

r
N−q
q−1 v(r) = 0.

Now, we use expression (4.6) ofv to apply the L’Ĥopital rule

0 = lim
r→0+

r
N−q
q−1 v(r)

=

(
N − q

q − 1

)−1

lim
r→0+

−v′(r)

r
1−N
q−1

=

(
N − q

q − 1

)−1(
λ2 +

∫ 1

0

tN−1
(
b(t)uγvδ + h2(t)

)
dt

) 1
q−1

(4.8)

which contradicts the hypothesis (4.2). Therefore, the conclusion follows.

Remark4.2. If we suppose thath2 ≡ 0, then we may deduce from (4.6) and (4.8)
that v ≡ 0. So the expressions (4.5) and (4.8) imply that the system (4.1) has only
two solutions: (0, 0) and (u, 0), whereu ≥ 0 on B′, and thus the singularity is of
fundamental type.
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