A Note on Retarded Ouyang Integral Inequalities

Fu-Hsiang Wong

National Taipei Education University
Department of Mathematics
134, Ho-Ping E. Rd, Sec2, Taipei 10659, Taiwan, Republic of China
wong@tea.ntue.edu.tw

Cheh-Chih Yeh

Lunghwa University of Science and Technology
Department of Information Management
Kueishan Taoyuan, 333 Taiwan, Republic of China
ccyeh@mail.lhu.edu.tw, chehchihyeh@yahoo.com.tw

Abstract

In this note, we generalize two retarded Ouyang integral inequalities. One of these inequalities says: under suitable assumptions of functions w, α, h, f, g and p on $[0, \infty)$, if

$$w^{2}(t) \leq h^{2}(t) + 2 \int_{0}^{\alpha(t)} \left\{ f(s)w(s) \left[w(s) + \int_{0}^{s} g(r)w(r)dr \right] + p(s)w(s) \right\} ds,$$

then

$$w(t) \leq \Big[h(t) + \int_0^{\alpha(t)} p(s) ds\Big] \exp\Big\{\int_0^{\alpha(t)} \Big[f(s) + \Big(\int_0^s g(r) dr\Big) ds\Big]\Big\}, \quad t \geq 0.$$

AMS Subject Classifications: 26D15.

Keywords: Ouyang integral inequality, retarded.

1 Introduction and Preliminaries

This paper is inspired by a paper of Xu and Xia [2]. In [2], Xu and Xia established two retarded Ouyang integral inequalities. In this note, we generalize these two results to more general cases. For other related result, we refer to [1].

For convenience, we assume throughout this paper that the following conditions hold:

(a) $w, f, h, g, p \in C([0, \infty), [0, \infty))$ with h increasing;

(b)
$$\alpha \in C^1([0,\infty),[0,\infty))$$
, $\alpha(t) \leq t$ and $\alpha'(t) \geq 0$ on $[0,\infty)$.

In order to discuss our main results, we need the following two lemmas.

Lemma 1.1. *If*

$$w(t) \le h(t) + \int_0^{\alpha(t)} f(s)w(s)ds, \quad t \in [0, \infty), \tag{1.1}$$

then

$$w(t) \le h(t) \exp \int_0^{\alpha(t)} f(s) ds, \quad t \in [0, \infty).$$
 (1.2)

Proof. For any $\varepsilon > 0$ and any fixed T > 0, it follows from (1.1) that

$$w(t) \le h(T) + \varepsilon + \int_0^{\alpha(t)} f(s)w(s)ds =: k(t), \quad 0 \le t \le T.$$

Clearly, k(t) is increasing and

$$k'(t) = \alpha'(t)f(\alpha(t))w(\alpha(t))$$

$$\leq \alpha'(t)f(\alpha(t))k(\alpha(t)) \leq \alpha'(t)f(\alpha(t))k(t),$$

 $0 \le t \le T$, which implies

$$\frac{k'(t)}{k(t)} \le \alpha'(t)f(\alpha(t)), \quad 0 \le t \le T.$$

Integrating it from 0 to $t \in [0, T]$, we obtain

$$\ln \frac{k(t)}{h(T) + \varepsilon} \le \int_0^t \alpha'(s) f(\alpha(s)) ds = \int_0^{\alpha(t)} f(u) du,$$

which implies

$$k(t) \le [\varepsilon + h(T)] \exp \int_0^{\alpha(t)} f(u) du.$$

Taking t = T, we get

$$k(T) \le [\varepsilon + h(T)] \exp \int_0^{\alpha(T)} f(u) du.$$

Letting $\varepsilon \to 0^+$ and noting T arbitrary, we obtain the desired result (1.2).

Lemma 1.2. *If*

$$w(t) \le h(t) + \int_0^{\alpha(t)} f(s) \int_0^s g(r)w(r)drds, \quad t \ge 0,$$
 (1.3)

then

$$w(t) \le h(t) \exp \int_0^{\alpha(t)} f(s) \int_0^s g(r) dr ds, \quad t \ge 0.$$
 (1.4)

Proof. For any $\varepsilon > 0$ and any fixed T > 0, it follows from (1.3) that

$$w(t) \le h(T) + \varepsilon + \int_0^{\alpha(t)} f(s) \int_0^s g(r)w(r)drds =: k(t), \quad 0 \le t \le T.$$

Clearly, k(t) is increasing and

$$k'(t) = \alpha'(t)f(\alpha(t)) \int_0^{\alpha(t)} g(r)w(r)dr$$

$$\leq \alpha'(t)f(\alpha(t)) \int_0^{\alpha(t)} g(r)k(r)dr$$

$$\leq k(t)\alpha'(t)f(\alpha(t)) \int_0^{\alpha(t)} g(r)dr,$$

 $0 \le t \le T$, which implies

$$\frac{k'(t)}{k(t)} \le \alpha'(t) f(\alpha(t)) \int_0^{\alpha(t)} g(r) dr, \quad 0 \le t \le T.$$

Integrating it from 0 to $t \in [0, T]$, we obtain

$$\ln \frac{k(t)}{k(0)} = \ln \frac{k(t)}{\varepsilon + h(T)} \le \int_0^{\alpha(t)} f(s) \int_0^s g(r) dr ds.$$

Letting t = T, we get

$$k(T) \le (\varepsilon + h(T)) \exp \int_0^{\alpha(T)} f(s) \int_0^s g(r) dr ds.$$

Letting $\varepsilon \to 0^+$ and noting T > 0 arbitrary, we obtain the desired result (1.4).

2 Main Results

We now can state and prove our main results.

Theorem 2.1. If

$$w^{2}(t) \leq h^{2}(t) + 2 \int_{0}^{\alpha(t)} \left[f(s)w(s) \int_{0}^{s} g(r)w(r)dr + p(s)w(s) \right] ds, \qquad (2.1)$$

then

$$w(t) \le \left[h(t) + \int_0^{\alpha(t)} p(s)ds\right] \exp\left[\int_0^{\alpha(t)} f(s) \left(\int_0^s g(r)dr\right)ds\right]$$
(2.2)

for $t \in [0, \infty)$.

Proof. For any $\varepsilon > 0$ and any fixed T > 0, it follows from (2.1) that, for $0 \le t \le T$,

$$w^{2}(t) \leq h^{2}(t) + \varepsilon + 2 \int_{0}^{\alpha(t)} \left[f(s)w(s) \int_{0}^{s} g(r)w(r)dr + p(s)w(s) \right] ds =: k(t).$$

Clearly, $w(t) \leq \sqrt{k(t)}$, k(t) is increasing and

$$k'(t) = 2\alpha'(t) \Big[f(\alpha(t))w(\alpha(t)) \int_0^{\alpha(t)} g(r)w(r)dr + p(\alpha(t))w(\alpha(t)) \Big]$$

$$\leq 2\sqrt{k(t)}\alpha'(t) \Big[f(\alpha(t)) \int_0^{\alpha(t)} g(r)w(r)dr + p(\alpha(t)) \Big]$$

for $0 \le t \le T$. This implies

$$\sqrt{k(t)} \le \sqrt{k(0)} + \int_0^{\alpha(t)} f(s) \int_0^s g(r)w(r)dr + \int_0^{\alpha(t)} p(s)ds.$$

This and Lemma 1.2 imply

$$\sqrt{k(t)} \le \left[\sqrt{k(0)} + \int_0^{\alpha(t)} p(s)ds\right] \exp\left[\int_0^{\alpha(t)} f(s) \int_0^s g(r)drds\right]$$

for $0 \le t \le T$. Letting t = T, we obtain

$$\sqrt{k(T)} \le \left[\sqrt{\varepsilon + h^2(T)} + \int_0^{\alpha(T)} p(s)ds\right] \exp\left[\int_0^{\alpha(T)} f(s) \int_0^s g(r)drds\right].$$

Letting $\varepsilon \to 0^+$ and noting T > 0 arbitrary, we obtain the desired result (2.2).

Taking f(s) = 0 or g(s) = 0 in (2.1), we have the following.

Corollary 2.2. If

$$w^{2}(t) \leq h^{2}(t) + 2 \int_{0}^{\alpha(t)} p(s)w(s)ds, \quad t \geq 0,$$

then

$$w(t) \le h(t) + \int_0^{\alpha(t)} p(s)ds, \quad t \ge 0.$$

Theorem 2.3. If

$$w^{2}(t) \leq h^{2}(t) + 2\int_{0}^{\alpha(t)} \left\{ f(s)w(s) \left[w(s) + \int_{0}^{s} g(r)w(r)dr \right] + p(s)w(s) \right\} ds, \quad (2.3)$$

then

$$w(t) \le \left[h(t) + \int_0^{\alpha(t)} p(s)ds\right] \exp\left\{\int_0^{\alpha(t)} \left[f(s) + \left(\int_0^s g(r)dr\right)ds\right]\right\}, \quad t \ge 0. \quad (2.4)$$

Proof. For any $\varepsilon > 0$ and any fixed T > 0, it follows from (2.3) that

$$w^{2}(t) \leq h^{2}(T) + \varepsilon + 2 \int_{0}^{\alpha(t)} \left\{ f(s)w(s) \left[w(s) + \int_{0}^{s} g(r)w(r)dr \right] + p(s)w(s) \right\} ds$$

=: $k(t)$, $0 < t < T$.

Clearly, k(t) is increasing, k(t)>0 and $w(t)\leq \sqrt{k(t)}$ on [0,T]. Differentiating k(t) with respect to t and using $\alpha(t)\leq t$, we obtain

$$k'(t) = 2\alpha'(t) \Big\{ f(\alpha(t)) w(\alpha(t)) \Big[w(\alpha(t)) + \int_0^{\alpha(t)} g(r) w(r) dr \Big] + p(\alpha(t)) w(\alpha(t)) \Big\}$$

$$\leq 2\sqrt{k(t)} \alpha'(t) \Big\{ f(\alpha(t)) \Big[w(\alpha(t)) + \int_0^{\alpha(t)} g(r) w(r) dr \Big] + p(\alpha(t)) \Big\},$$

which implies

$$\sqrt{k(t)} \leq \sqrt{\varepsilon + h^2(T)} + \int_0^{\alpha(t)} p(s)ds + \int_0^{\alpha(t)} f(s) \Big[w(s) + \int_0^s g(r)w(r)dr \Big] ds$$

$$\leq \sqrt{\varepsilon + h^2(T)} + \int_0^{\alpha(t)} p(s)ds + \int_0^{\alpha(t)} \Big[f(s) + \int_0^s g(r)dr \Big] \sqrt{k(s)} ds,$$

 $0 \le t \le T$. This and Lemma 1.2 imply for $0 \le t \le T$,

$$w(t) \le \sqrt{k(t)} \le \left[\sqrt{\varepsilon + h^2(T)} + \int_0^{\alpha(t)} p(s)ds\right] \exp\left\{\int_0^{\alpha(t)} \left[f(s) + \int_0^s g(r)dr\right]ds\right\}.$$

Taking t = T, we get

$$w(T) \le \left[\sqrt{\varepsilon + h^2(T)} + \int_0^{\alpha(T)} p(s)ds\right] \exp\Big\{\int_0^{\alpha(T)} \left[f(s) + \int_0^s g(r)dr\right]ds\Big\}.$$

Letting $\varepsilon \to 0^+$ and noting T > 0 arbitrary, we obtain the desired result (2.4).

Taking g(t) = 0 in Theorem 2.3, we obtain the following.

Corollary 2.4. If

$$w^{2}(t) \leq h^{2}(t) + 2 \int_{0}^{\alpha(t)} \left[f(s)w^{2}(s) + p(s)w(s) \right] ds, \quad t \geq 0,$$

then

$$w(t) \le \left\{ h(t) + \int_0^{\alpha(t)} p(s)ds \right\} \exp\left\{ \int_0^{\alpha(t)} f(s)ds \right\}, \quad t \ge 0.$$

Remark 2.5. Taking h(t) = c (constant) in Theorems 2.1 and 2.3, we obtain the results in [2].

References

- [1] Olivia Lipovan. A retarded Gronwall-like inequality and its applications. *J. Math. Anal. Appl.*, 252(1):389–401, 2000.
- [2] Yan Cong Xu and Guo Fang Xia. A retarded integral inequality and its applications. *Qufu Shifan Daxue Xuebao Ziran Kexue Ban*, 31(1):15–18, 2005.