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Abstract
In this study, we introduce a new method for investigation of the delay differ-

ence equation

∆αx(t) + p(t)x(t− τ) = 0 for t ∈ [t0,∞) ,

wherep ∈ C
(
[t0,∞) , R+

)
, α, τ ∈ R+ and∆α denotes the forward difference

operator defined as∆αx(t) = x(t + α)− x(t).
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1 Introduction

In a number of recent papers, oscillatory behavior of the equation

∆αx(t) + p(t)x(t− τ) = 0, (1.1)

wheret0 ≤ t ∈ R, p ∈ C
(
[t0,∞) , R+

0

)
, α, τ ∈ R+ and

∆αx(t) = x(t + α)− x(t),

has been investigated. To the best of our knowledge, most of these papers depend on
integral conditions to test oscillatory behavior of (1.1). We refer readers to [1–11]. Our
aim is to make a discrete approach. Namely, we build new tests which do not depend

on integral conditions. To do this, we assumeδ :=
τ

α
∈ N.

We call a function a solution of (1.1) if this function satisfies (1.1) identically for
t ≥ t0. We call a solution of (1.1) oscillatory if it has arbitrary large zeros, otherwise we
call this solution nonoscillatory. Also, we are not interested in trivial solutions of (1.1).
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2 Main Results

Before stating our results, we introduce the functions

c1 : [t0, t0 + α) → R+
0

t → c1(t) := lim inf
n→∞

pn(t)

and
c2 : [t0, t0 + α) → R+

0

t → c2(t) := lim sup
n→∞

pn(t),

where
pn(t) := p(t + nα).

Now, we can give our results.

Theorem 2.1.Assume that

c1(t) > 0 and c1(t) + c2(t) > 1 for all t ∈ [t0, t0 + α) . (2.1)

Then every solution of(1.1) is oscillatory.

Proof. For contrary assume that (1.1) has an eventually positive solutionx. The case
where (1.1) has an eventually negative solution is similar and omitted. So there exists
t1 ≥ t0 such thatx(t) > 0 for all t ≥ t1. Then fixt2 ≥ t1 + α and set

N1 :=

⌊
t2 − t0

α

⌋
,

whereb·c denotes the lowest integer function. Clearly there existss ∈ [t0, t0 + α) such
that

t2 = s + N1α

holds. Now define the sequence{xn} by

xn := x(s + nα) for n ∈ N,

and soxn > 0 for all n ≥ N1. In view of (2.1), we haveε > 0 andN2 ≥ N1 such that
c1(s) > ε andpn(s) ≥ c1(s)− ε > 0 for all n ≥ N2. Then from (1.1), we have

∆αx(s + nα) = −pn(s)x(s + (n− δ)α) for all n ≥ N3 := max {N1 + δ,N2}

or
∆xn = −pn(s)xn−δ < 0 for all n ≥ N3, (2.2)

where∆ is the usual forward difference operator with

∆xn = xn+1 − xn.
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From (2.2),{xn} is decreasing for alln ≥ N3. Then

xn > pn(s)xn−δ > [c1(s)− ε] xn−1 for all n ≥ N3. (2.3)

On the other hand, considering (2.2)

0 > ∆xn + pn(s)xn−δ > xn+1 + [pn(s)− 1] xn (2.4)

for all n ≥ N3. Thus from (2.3) and (2.4)

[c1(s)− ε + pn(s)− 1] xn < 0 for all n ≥ N3,

that is,
[c1(s)− ε + pn(s)− 1] < 0 for all n ≥ N3

and takinglim sup on both sides of the above inequality forn →∞, we see that

c1(s) + c2(s) ≤ 1 + ε.

Sinceε > 0 is arbitrary, we obtain

c1(s) + c2(s) ≤ 1,

which contradicts with (2.1) and completes the proof.

Now, we have the following example.

Example 2.2.Assume thatα, ε ∈ R+ andn ∈ N. Then every solution of the difference
equation

∆αx(t) + (1 + ε) x(t− αn) = 0

is oscillatory on[t0,∞). Clearly (2.1) holds and so Theorem 2.1 can be applied. Note
that all the criteria depending on integral conditions depend on the delay but in this
criteria we only need thelim inf andlim sup values of the coefficient.

Theorem 2.3.Assume that

c1(t) >
δδ

(δ + 1)δ+1
for all t ∈ [t0, t0 + α) . (2.5)

Then every solution of(1.1) is oscillatory.

Proof. For contrary assume that (1.1) has an eventually positive solution. Since the
equation is linear, the case where (1.1) has an eventually negative solution is omitted.
Say this solution isx, so there existst1 ≥ t0 such thatx(t) > 0 for all t ≥ t1. Fix
t2 ≥ t1 + α and set

N1 :=

⌊
t2 − t0

α

⌋
.
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There existss ∈ [t0, t0 + α) such thatt2 = s + N1α holds. Now define

rn :=
x(s + nα)

x(s + (n + 1)α)
for n ∈ N. (2.6)

From (1.1) we have

x(s + (n + 1)α) = x(s + nα)− pn(s)x(s + (n− δ)α)

or
x(s + (n + 1)α)

x(s + nα)
= 1− pn(s)

x(s + (n− δ)α)

x(s + nα)
,

for all n ∈ N. Considering (2.6), we get

1

rn

≤ 1− pn(s)
δ∏

i=1

rn−i for all n ≥ N1 + δ. (2.7)

From (2.5) there isN2 with pn(s) > 0 for all n ≥ N2. SetN3 := max {N1 + δ,N2},
it follows from (2.7) thatrn > 1 for all n ≥ N3. Also rn is bounded from above,
otherwise (2.6) and (2.7) impliesrn < 0 for all sufficiently largen. Setκ := lim inf

n→∞
rn.

Then from (2.7) we get

lim sup
n→∞

1

rn

=
1

κ
≤ 1− lim inf

n→∞
pn(s)

δ∏
i=1

rn−i. (2.8)

Since

lim inf
n→∞

pn(s)
δ∏

i=1

rn−i ≥
(
lim inf
n→∞

pn(s)
) δ∏

i=1

[
lim inf
n→∞

rn−i

]
≥ c1(s)κ

δ,

we have
1

κ
≤ 1− c1(s)κ

δ

or

h(κ) :=
κ− 1

κδ+1
≥ c1(s). (2.9)

One can show that

max
κ≥1

h(κ) =
δδ

(δ + 1)δ+1

and hence by (2.9) we obtain

δδ

(δ + 1)δ+1
≥ c1(s),

which is a contradiction to (2.5). Therefore the proof is completed.
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We give the following example.

Example 2.4.Consider the difference equation

∆πx(t) + (|sin(t)|+ ε) x(t− πn) = 0,

whereε >
ππ

(π + 1)(π+1)
andn ∈ N. Clearly,

c1(t) = lim inf
n→∞

(|sin(t + nπ)|+ ε) = |sin(t)|+ ε >
ππ

(π + 1)(π+1)

for all t ∈ [t0, t0 + π). Therefore, (2.5) holds and by Theorem 2.3, we see that all
solutions are oscillatory on[t0,∞).

The following theorem improves the above one.

Theorem 2.5.Assume that

lim inf
n→∞

n−1∑
i=n−δ

pi(t) > 0 for all t ∈ [t0, t0 + α) . (2.10)

Furthermore if

c3(t) := lim inf
n→∞

inf
λ∈Γ(t)

{
1

λ

n−1∏
i=n−δ

1

1− λpi(t)

}
> 1 for all t ∈ [t0, t0 + α) , (2.11)

where
Γ(t) := {λ > 0 : 1− λpn(t) > 0 for all large n} ,

then every solution of(1.1) is oscillatory on[t0,∞).

Proof. As usual assume for contrary thatx is an eventually positive solution of (1.1)
andx(t) > 0 for all t ≥ t1. Set

N1 :=

⌊
t2 − t0

α

⌋
,

wheret2 ≥ t1 + α. Then we haves ∈ [t0, t0 + α) such thatt2 = s + N1α. Now set

xn := x(s + nα) for n ∈ N.

Thenxn > 0 for all n ≥ N1. From (1.1)

∆xn = −pn(s)xn−δ < 0 for all n ≥ N1 + δ. (2.12)
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Thusxn is decreasing. Define the setΛ (see [7]) by

Λ := {λ > 0 : ∆xn + λpn(s)xn ≤ 0 for all largen} . (2.13)

Since1 ∈ Λ, Λ 6= ∅. And one can easily show thatΛ ⊂ Γ(s). Considering (2.10), set

κ :=
1

6
lim inf
n→∞

n−1∑
i=n−δ

pi(s) > 0.

Then there existsN2 ≥ N1 such that

n−1∑
i=n−δ

pi(s) > 3κ for all n ≥ N2.

Thus there exists an increasing divergent sequence{sn} on [N2,∞) such that

n−1∑
i=sn−δ

pi(s) > κ and
sn−1∑
i=n

pi(s) > κ

with sn ≥ n for all n ≥ N2. Therefore by (2.12) we get

xn > xn − xsn = −
sn−1∑
i=n

∆xi =
sn−1∑
i=n

pi(s)xi−δ ≥ xsn−δ

sn−1∑
i=n

pi(s) > κxsn−δ

> κ [xsn−δ − xn+1] = −κ
n∑

i=sn−δ

∆xi = κ
n∑

i=sn−δ

pi(s)xi−δ > κ2xn−δ,

which implies

xn−δ

xn

<
1

κ2
for all n ≥ N2.

Hence

xn − xn−δ =
n−1∑

i=n−δ

∆xi = −
n−1∑

i=n−δ

pi(s)xi−δ ≤ −xn−δ

n−1∑
i=n−δ

pi(s) ≤ −2κxn−δ

for all n ≥ N2. Thus
2κxn−δ ≥ xn−δ

and

∆xn = −pn(s)xn−δ > − 1

2κ
xn−δ ≥ − 1

2κ3
xn−δ,
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which implies
1

2κ3
6∈ Λ. ThereforeΛ ⊂ R is a bounded interval. From (2.11), there

exist a constantc > 1 andN3 ≥ N2 such that

inf
λ∈Γ(s)

{
1

λ

n−1∏
i=n−δ

1

1− λpi(s)

}
≥ c (2.14)

for all n ≥ N3. Let σ :=
c + 1

2
sup Λ. Sinceσ ∈ Λ ⊂ Γ(s), we have

∆xn + σpn(s)xn ≤ 0 for all n ≥ N3. (2.15)

Set
rn :=

xn

xn+1

for all n ≥ N3.

Then from (2.15), we see that

rn ≥
1

1− σpn(s)
for all n ≥ N3,

which yields

xn−δ

xn

=
n−1∏

i=n−δ

ri ≥
n−1∏

i=n−δ

1

1− σpi(s)
=

(
1

σ

n−1∏
i=n−δ

1

1− σpi(s)

)
σ ≥ cσ (2.16)

for all n ≥ N3 + δ. Then from (2.12) and (2.16), we get

∆xn + cσpn(s)xn ≤ 0 for all n ≥ N3 + δ,

which impliescσ ∈ Λ. Sincecσ =
c(c + 1)

2
sup Λ > sup Λ, this leads to a contradic-

tion. Therefore the proof is completed.

Corollary 2.6. If

c4(t) := lim inf
n→∞

n−1∑
i=n−δ

pi(t) >

(
δ

δ + 1

)δ+1

for all t ∈ [t0, t0 + α)

holds, then every solution of(1.1) is oscillatory on[t0,∞).

Proof. By the arithmetic and geometric mean inequalities, we have

c3(t) ≥
(

δ + 1

δ

)δ+1

c4(t) > 1 for all t ∈ [t0, t0 + α) ,

which implies (2.10) and (2.11) holds. Therefore the claim follows by Theorem 2.5.

Remark2.7. Sincec4(t) ≥ δc1(t) for all t ∈ [t0, t0 + α), Corollary 2.6 improves Theo-
rem 2.3.

Remark2.8. Our assumptions also guarantee that there are no positive solutions of in-
equalities of the form

∆αx(t) + p(t)x(t− τ) ≤ 0.
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