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Abstract
We investigate the global period-doubling bifurcations of solutions of the equa-
tion
Tnt1 = f(Tp,Tpn-1), n=0,1,...
where the functionf satisfies certain monotonicity conditions. We also obtain
a global asymptotic result for competitive systems of difference equations in the

plane in the nonhyperbolic case when the considered system has an infinite number
of equilibrium points located along the graph of a nonincreasing function.
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1 Introduction and Preliminaries

Theperiod-two trichotomyf difference equations was discovered in [3] in the study of

the equation
Tn—1

Tpni1 =P+ n=0,1,..., (1.2)

n

wherep > 0 andz_q, zy > 0, and can be stated as the following result:
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Theorem 1.1. The following period-two trichotomy result holds for Eg.1)

p <1 = there exist unbounded solutions
p =1 = every solution converges to a period-two solution
p > 1 = every solution converges to the equilibrium.

Recently, this result, which is not global, has been improved in the sense that the
statement “there exist unbounded solutions” was replaced by the statement that “every
solution in the complement of the global stable manifold of the unique equilibrium is
unbounded”, see [18]. A similar phenomenon was discovered for some special cases of
second-order linear fractional difference equations of the form

_ a+ ﬂmn + VLn-1
A+ Bx,+ Cxpy’

Tt n=0,1,... (1.2)
where the parameters and the initial conditions are nonnegative, in [8] and [9]. Precisely,
it has been observed for some special cases of Eq. (1.2) that for the values on one side
of the critical curve the positive equilibrium is a global attractor, while on the opposite
side of the critical curve all solutions that start in the complement of the global stable
manifold of the positive equilibrium are unbounded, while for the values on the critical
curve there is an infinite number of period-two solutions and every solution converges
to the period-two solution, see [3, 8,9, 14].

Theorem 1.1, with the above mentioned globalization has a flavor of a bifurcation
result. In this paper we will show that Theorem 1.1 is indeed a special case of a global
bifurcation result, actually period-doubling bifurcation for the general difference equa-
tion of the form

Tpr1 = f(xp,zn_1), m=0,1,... (1.3)

where the functiory satisfies certain monotonicity conditions.

Related nonlinear, second order, rational difference equations were investigated in
numerous papers and in the monographs [12] and [13]. The study of these equations is
quite challenging and is in rapid development. The only bifurcation results obtained for
Eq. (1.3) are period-doubling bifurcation of Selgrade and Roberds [22] and Naimark—
Sacker bifurcation [10, 16]. Both results are local as they guarantee the existence and
stability of a bifurcating periodic solution in a neighborhood of the critical value(s) of
the parameter(s). In particular, a period-doubling bifurcation which is discussed in this
paper, typically occurs in a system of nonlinear difference equations when varying the
parameter(s) causes an eigenvalue of the characteristic equation of a linearized equation
evaluated at an equilibrium to pass through. In that case, typically the equilibrium
loses stability and a stable cycle of period two appears. Continued parameter changes
may result in a cascade of period-doubling bifurcations and the onset of chaos. Hale
and Kocak [10] describe such cascades for the Henon map leading to the Henon strange
attractor. See also [2] and [21]. In [22] a general bifurcation theorem which may be used
to verify the occurrence of period-doubling and to determine the direction of bifurcation
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for any differentiable one parameter family of two-dimensional difference equations,
has been established. This result is a local result and gives the existence and stability of
prime period-two solution in some neighborhood of critical value of parameter.

In this paper we will obtain the global bifurcation result for Eq. (1.3) whésat-
isfies certain monotonicity conditions, which will guarantee the existence and stability
of prime period-two solution at a critical value of the parameter. In order to achieve
this goal we obtain some global asymptotic result for the competitive system of dif-
ference equations in the plane in the nonhyperbolic case when the considered system
has an infinite number of the equilibrium points located along the graph of nonincreas-
ing function. Our bifurcation results are motivated by the above mentioned period-two
trichotomy results.

The rest of Section 1 introduces some preliminary results. Section 2 gives the con-
ditions for the existence of unbounded solutions of Eq. (1.3). Section 3 presents some
new results for nonhyperbolic dynamics of competitive discrete dynamical systems in a
plane. Section 4 presents our major result on the global period-doubling bifurcation of
Eq. (1.3).

Let I be an interval of real numbers and lete C'[I x I,I]. Letz € I be an
equilibrium point of the difference equation (1.3), thatis- f(z, 7).

Let

of of

s = %(f,i) and t= %(f,f)

denote the partial derivatives ¢fu, v) evaluated at an equilibriumof Eq. (1.3). Then
the equation
Yni1 = SYn +tYn_1, n=0,1,... (1.4)

is called thdinearized equationassociated with Eq. (1.3) about the equilibrium point

Z.
Theorem 1.2. (Linearized Stability)

(a) If both roots of the quadratic equation
M —sA—t=0 (1.5)

lie in the open unit disk\| < 1, then the equilibriunz of Eq. (1.3)is locally
asymptotically stable.

(b) If at least one of the roots of E{L.5) has absolute value greater than one, then
the equilibriumz of Eq.(1.3)is unstable.

(c) A necessary and sufficient condition for both roots of ([#c) to lie in the open
unit disk|\| < 1, is
ls|] <1—t<2. (1.6)

In this case the locally asymptotically stable equilibrigrs also called asink.
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(d) A necessary and sufficient condition for both roots of @dp) to have absolute
value greater than one is

[t| >1 and |s| <|1—t|.
In this caser is called arepeller.

(e) A necessary and sufficient condition for one root of @cp) to have absolute
value greater than one and for the other to have absolute value less than one is

24+ 4t>0 and |s| > |1 —t|.
In this case the unstable equilibriumis called asaddle point

Definition 1.3. ([2]) Let 7 be a map oiR* and letp be an equilibrium point or periodic
point for 7. The orbit of a may that starts ak, is the sef{ 7" (xo) }.>,, whereZ™" is
then-th iterate of7. Thebasin of attraction of p, denoted a#,, is the set of points
x € R* such that7"(x) — T%(p)| — 0, ask — oo, that s,

B, ={xcR*: |T*(x)-T*({p)| — 0, ask — oo},
where| | denotes any norm iR?.

Definition 1.4. ( [16]) Consider the difference equation
X1 = f(x,), n=0,1,..., 1.7)

wherex,, is in R* andf : D — D is continuous, wher® c R*. We call a nonconstant
continuous functiod : R* — R an invariant for the system (1.7) if

I(xp41) = I(f(x,,)) = I(x,), foreveryn=0,1,... .

The first result is an important characterization of the global behavior of solutions
of Eq. (1.3) whenf satisfies specific monotonicity conditions, which was established
recently in [4,5].

Theorem 1.5. Consider Eq(1.3)and assume that: I x I — I, I C Ris a function
which is decreasing in first variable and increasing in second variable. Then for every
solution {xz, }>> , of Eq.(1.3) the subsequencegs,,}>, and {za,.1}:°> _, of even

and odd indexed terms of the solution do exactly one of the following:
(i) They are both monotonically increasing;
(i) They are both monotonically decreasing;

(i) Eventually (that is forn > N), one of them is monotonically increasing and the
other is monotonically decreasing.
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An immediate consequence of Theorem 1.5 is that every bounded solution of (1.3),
where f satisfies the monotonicity conditions of theorem, converges to either an equi-
librium or period-two solution. In the case where all solutions of Eq. (1.3) are bounded
the most important problem is to find the basins of attraction of the equilibrium and
the period-two solutions. This problem was answered in a satisfactory way for some
special cases of second-order linear fractional difference equation (1.2) in a series of
papers [14, 17, 18]. In these papers it was also observed that there exist the critical
values of the parameters involved which belong to the critical curve such that for the
values on one side of the critical curve the positive equilibrium is a global attractor
while on the opposite side of the critical curve all solutions are attracted to the pair of
a period-two solutions with the exception of the global stable manifold of the positive
equilibrium. In other words we have observed certain period-two bifurcation. This phe-
nomenon was explained for Eq. (1.3) whgdecreases in first and increases in second
variable, see [15].

Next we present a result on the convergence to the equilibrium of Eqg. (1.3).

Theorem 1.6. Consider Eq.(1.3) and assume thaf is a continuous function which
is nonincreasing in first variable and nondecreasing in second variable. Assume there
exist number§ < L < U such that

fU,L) > L (1.8)

and
f(L,U)<U (1.9)

are satisfied. ThefiL, U] is an invariant interval for solutions of Eq1.3), that is, if
xr_1,x9 € [L, U], thenz,, € [L,U] for all n > 0. If, in addition, the only solution of the
system

fm,M)=m and f(M,m)= M, (1.10)

ism = M, then every solutiogz, }>° , of Eq.(1.3) which eventually enterd., U],
satisfies

lim z, =7,
n—oo

whereZ is a unique equilibrium of Eq1.3)in [L, U].

Proof. Takexz_,,z, € [L,U]. By using the monotonicity of and (1.8) and (1.9) we
obtain

x1 = f(xo,21) < f(L,U) <U
and

x1 = f(xo,2-1) > f(U, L) > L.

An induction argument implies that, € [L,U] for all n > 0. Thus the functionf
satisfies all conditions of Theorem 1.4.5 in [13] which completes the proof of theorem.
O
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2 Existence of Unbounded Solutions

In this section we present some results on the existence of unbounded solutions of
Eq. (1.3).

Theorem 2.1. Assume that is the unique equilibrium of Eq1.3). Assume that
fiIxI—1T

is a continuous function which is nonincreasing in first variable and nondecreasing in
second variable, where C R is an interval. Assume there exist numb&rg/ € I such
that0 < L <7 < U such that

UL <L (2.1)

and
f(L,U)>U (2.2)

are satisfied, where at least one inequality is strictzlf < L andx, > U, then the
corresponding solutiofx,, }.> _, satisfies

Top1 <L and z9,>U n=0,1,....
If, in addition, Eq.(1.3) has no prime period-two solution then

lim x5, = 0.
Proof. Assume thatr_; < L andzy, > L. Then by using the monotonicity gf and
conditions (2.1) and (2.2) we obtain

z1 = f(wo,x-1) < flzo, L) < f(U,L) <L

and
T2 = f(xlvxo) > f($1,U) > f(L7 U) > U.

By using induction we complete the proof of first statement of the theorem. If, in addi-
tion, we assume that Eg. (1.3) has no prime period-two solution then both subsequences
{zan}o2 o and{za,41}00 _, must be either increasing @, }o° , is eventually an in-
creasing sequence afds, 1}:°, is eventually a decreasing sequence. Otherwise, in
view of Theorem 1.5, we conclude that eitHet,, }.°, and{z2,.1};- _, are both de-
creasing or thafz., }o, is eventually a decreasing sequence éng,_,}.-, is even-
tually an increasing sequence. In this case both subsequences will have finite limits and
the solution will converge to prime period-two solution, which is a contradiction.
Consequently,

lim 29,1 =¢>0 and lim x5, =P < cc.

n—oo n—oo

Clearly, P = oo because otherwisgr,, }>2. ; will converge to prime period-two solu-
tion, which is a contradiction. O]
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Now we present two applications of Theorems 1.6 and 2.1 to two special cases of
Eq. (1.2) for which the period-two trichotomy was discovered.

Example 2.2. Consider Eq. (1.1) ( [3,13]) whepe > 0 andx_y,zy > 0. Conditions
(2.1) and (2.2) become

L U
fU L) =p+5 <L and f(LU)=p+F >U.

. . e 1
respectively. These conditions are satisfied if we chdose 1 andU = 109 where

p
p < 1. In addition, as is well-known Eq. (1.1) has a prime period-two solution if and
only if p = 1.

O
Example 2.3. Consider the equation ( [8, 13])
p + qTn—1

Tnt1 1 I T, n 07 9 ) ( 3)
wherep, ¢ > 0 andz_1, zy > 0. Conditions (2.1) and (2.2) become

p+qlL p+qU

L)= <L L = >
fU.L) = < Loand f(LU) =572 > U

respectively. These conditions are satisfied if we chdoseg—1 andU = ¢g— qu;l

whereq > 1. In addition, as is well-known Eq. (2.3) has a prime period-two solution if
and only ifg = 1.

0
Example 2.4. Consider Eq. (1.1) whene > 1. Conditions (1.8) and (1.9) become
L
UL =p+e>L and f(LU)=p+ o <U
2
respectively. These conditions are satisfied if we chdosep andU > System

p—1
(1.10) is clearly satisfied and so every solution that startd.jii/] converges to the
equilibriump + 1. It has been also shown in [3] that this interval is also an attractive set
which means that every solution enters this interval in finite number of steps. [

Example 2.5. Consider Eq. (2.3) wherg < 1. Conditions (1.8) and (1.9) become

p+qL p+qU
U.L) = > ] d L.U) = < U
J ( ) ) U = an f( ) ) 1 =

respectively. These conditions are satisfiedficr 0 andU = 1L. System (1.10) is

clearly satisfied and so every solution that startglirl/] converges to the equilibrium
7. It has been also shown in [8] that this interval is also an attractive set which means
that every solution enters this interval in finite number of steps. 0J
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Remark2.6. Observe that the conditions (1.8) and (1.9) are almost opposite of condi-
tions (2.1) and (2.2). The borderline case is

fL,U)=0, f(UL)=L (2.4)

which is equivalent to the existence of a prime period-two solution.

In fact, one can show that in the special case of Eq. (1.2), the conditions (1.8) and
(1.9) are exactly opposite of the conditions (2.1) and (2.2) with the condition (2.4) as the
borderline case. An interesting feature of Eq. (1.2) is that whenever (1.8) and (1.9) are
separated from (2.1) and (2.2) with the condition (2.4), Eq. (1.2) possesses an infinite
number of period-two solutions. In addition, all special cases of Eq. (1.2) with this
property generate maps for which the second iterate is competitive. In the next section
we will address the behavior of competitive systems in the plane with an infinite number
of the equilibrium points.

Thus, we conclude that in the case of Eq. (1.2) the borderline case between the
global attractivity of an equilibrium and the existence of unbounded solutions is the
existence of period-two solution(s). This fact is illustrated by the well-known examples
of equations (1.1) and (2.3), which exhibit the period-two trichotomy, see [3, 8, 14,17].

3 Nonhyperbolic Dynamics of Competitive Discrete Dy-
namical Systems

In this section we present the attractivity results for a competitive discrete dynamical
system of the form
Tny1 = f(ZTn,Yn)
(3.1)
Yn+1 = g(x'flvyn)7 n:0717”'

where f andg are continuous functions aniz, y) is nondecreasing im and nonin-
creasing iny andg(z, y) is nonincreasing im and nondecreasing inin some domain
A. Along with system (3.1) we consider the corresponding mhagefined as

(1)- (i)
y 9(z,y)
Here we give some basic notions about competitive maps in plane.

Competitive systems of the form (3.1) were studied by many authors such as Clark
and Kulenowt [6], Hirsch and Smith [11], Kulenogiand Merino [17], Kulenow and
Nurkanovt [20], Smith [23—-26] and others. All known results, with the exception

of [6], are dealing with hyperbolic dynamics. The results presented here are results that
hold in nonhyperbolic case.
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We define a partial ordex on R? so that the positive cone is the fourth quadrant,
i.e. this partial order is defined by:

1 2 1 2
x x r LT
=< o = 3.2
( yl ) - ( y2 ) { yl 2 y2. ( )
Two pointsx,y € R? are calledelatedif x < y ory < x. Otherwise they are called

unrelated A linearly ordered sets a set where each two points are related.
A map7 is calledcompetitivef the following holds:

()=()-7(5)7(3) oo

A map 7 strongly competitivef 7 (x*,y') — T (2%, y*) is in the interior of the fourth
quadrant whenever:', y') < (22, 3?).

For eachv = (v',v%) € RZ, defineQ;(v) for i = 1,..,4 to be the usual four
quadrants based at and numbered in a counterclockwise direction, e@.(v) =
{(z,y) € RY : v' < x,0® < y}. ForS C R? let S° denote the interior of. For
standard definitions of attracting fixed point, saddle point, stable manifold, see [16]
and [21].

Theorem 3.1. Consider a competitive map : R — R,R C R? whereR has a
nonempty interior. Assume that the equilibrium pointg§’ dbrm a linearly-ordered set
E = {(hi(t), ha(t)) : t € I C R}, whereh, and h, are continuous functions on the
interval I. If E is a bounded set anBp is the smallest rectangle that contaifs then
Bg is an invariant and attracting set fof . Then the trajectory of a point, ¢ E
consists of unrelated points.

Proof. We will use the “triangulation principle” visualized in Figure 3.1. Take two
points onE such thatP, is intersection of vertical line trough andE, P, is intersection
of horizontal line throughP? andE. Then

P,=T(P,) 2 T(P) X T(F,) = P..
Continuing this process we obtain that
P, XT"(P)=< P, forall n>0.
Furthermore, we can prove that
T(P) <sw P,
whereA <gsy B means that the poird is southwest of poinB. Indeed, since

by 2T(P) 2P,
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Figure 3.1:

Figure 3.2:
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we must have
P, <7T(P), and T(P), <P,

with at least one of these inequalities strict. See Figure 3.2. Thus
[T (P)a; T(P)y] C [P, By,

where
[A,B]={x€e R*: A<x =B}

denotes the interval betweehand B with respect to the orderingg. Geometrically,
[A, B] is a box with north-west vertex at and south-east vertex &t

Similarly, we can prove thal *(P) <gw 7 (P), and thus the orbi{7"(P)} is
linearly ordered set witkC sy and so is convergent t8* € F. O

If we additionally assume that two regions separatedlare invariant, then we can
get the stronger conclusion and define the map that assign to each point duitsde
limiting value in E.

Corollary 3.2. If we additionally assume that the regioAs = {(z,y) : © > hy(t),y >
ho(t)} \ FandH, = {(x,y) : © < hi(t),y < ho(t)} \ E are invariant, then

Jim THP)=T*(P), PcR\E.
Thus, we define a map
T R\E - E

where
T*(P) = lim T"(P).

k—oo

Remark3.3. Denote byH,, the following set
H,=H,NI[P, Pl

See Figure 3.3. Then the proof of Theorem 3.1 can be visualized as follows: the se-
quenceH - (py is a sequence of nested compact sets which diameter approaches zero.
Thus by principle of nested sets the limiting set is a point.

Theorem 3.4. Consider a strongly competitive continuous nlap R — R, R C R?,
whereR has a nonempty interior. Assume tliat and H; are invariant. Then the limit
7™ is a continuous function of initial poin® € R \ E.

Proof. If 7" is not continuous aP € R \ E, then there exists a sequence of points
{P,} that converges t@ such that{ 7*(P;)} does not converge t6*(P). By passing

to a subsequence if necessary, we may assume théP(&)is a subset of one of the
four quadrant,(P), ¢ = 1,...,4, and (b){ P} is monotone with respect t& if
{P:} C Q2 U Q, or{P.} is monotone with respect to sy if {P,} C Q; U Qs.
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Figure 3.3:

Consider first the case wheP,} C Q,(P) and{ P} is monotone with respect to
<. The sequencé&T (P;)} converges to a poir@ since it is bounded above 1% (P),
where@) < 7*(P). In view of Theorem 3.1 and [19] there exists an invariant manifold
W(Q) that is an increasing curve that starts at the p@inand which fork = 1,2,. ..
is located between the invariant manifofd(7 ™ (Fy)) andW (7 *(P)). In particular,P;
is aboveW(Q) for k = 1,2,... and P is belowW(Q). SinceP, — P, we conclude
that P € W(Q), which is impossible.

The case whefiP,} C Q4(P) has a similar proof.

If now {F,} C Q,(P), consider the sequencé®'"} and{ P>} obtained by pro-
jecting the points of the sequenf®, } onto the horizontal and vertical lines through
Clearly {Pk(l)} and{Pk(z)} converge taP, and by the first part of the proof, we know
T7+(P\") — T*(P) ask — oo for ¢ = 1,2. We also have that’(P*) < T7(P) <
T7(PM). By taking limit ask — co we getT’(P,) — T*(P). O

Remark3.5. Now we will prove the existence of a continuous invariant for a competitive
map7. We will use the technique of Clark, Thomas, and Wilken from [27]. The key
fact in the application of this result to Eg. (1.3) is that the second iterate

TQ(U’U) = (f(v,u), f(f(v7u)vv))'

of the map
T (u,v) = (v, f(v,u)) (3.4)

that corresponds to Eq. (1.3) is a competitive map, see [18].
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Theorem 3.6. Suppose thaf is a continuous map with domai@ c R? such that
T2 is a strongly competitive map. Assume that for e&ck D, the orbit{(7°)*(P)}
converges. Set
P* = lim (T2)(P)

and letS = {P* : P € D} be the set of all limiting points. Finally, suppose that the
map7Z ™ : D — S defined by *(P) = P* is continuous.

Then each paif P*, T'(P*)} constitutes a period-two solution far. Furthermore,
if ¢ is any continuous map froito R which is constant on period-two solutions, then
extends to a continuous invariahfor both72 and7 defined simply by (P) := i(P).

Proof. The mapl = i o 7* will be a continuous invariant fof > and7 provided it is

continuous and constant on orbitsDf Being the composition of continuous mags,
certainly satisfies the first requirement. To see tha& constant on orbits of , take

any P € D and anyP’ € O7 (the orbit of 7). There is a positive integen such that
P'=T™(P). Thus, we may expredg ') as

I(P) = I(T™(P)) = (i o T)(T™(P)) = i( lim T2 ™(P)).

k—o0

Depending on the parity ofi, klim T2™(P) is equal to eitheP* (m even) orT (P*)
(m odd). Finally,i(P*) = (7 (P*)) since: is constant on period-two solutions by
hypothesis. Thug is constant on orbits o, and consequently, on orbits @F since
OT(P) D) OTQ(P). L]

An application of Theorems 3.4 and 3.6 to Eq. (1.3) whereatisfies the mono-
tonicity conditions of Theorem 1.6 leads to the following result.

Corollary 3.7. Consider Eq(1.3) and assume thaf is a continuous function which

iS nonincreasing in first variable and nondecreasing in second variable. Assume that
conditions of Theorem 3.6 are satisfied for the associated (@& If Eq. (1.3) pos-
sesses an infinite number of period-two solutions which belong to the graph of a con-
tinuous nonincreasing functiofl, then every solution of Ed1.3) belongs to a contin-
uous invariant curve and converges to the limiting period-two soluofx_+, xy)) =
(P((x_1,20)), ¥ ((x_1,x0))). In addition, the limiting period-two solutioR ((z_1, o))
depends continuously on the initial poiat_;, zo).

The next two examples illustrates Theorems 3.4 and 3.6.

Example 3.8. The following system was considered in [6]:

Tn
Tpi1 =
+1 1 +yn
(3.5)
Yn+1 = In , n=0,1,...
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where g,y > 0. System (3.5) has an infinite number of equilibrium points. In
fact, both positive semiaxes consist of equilibrium points which are all nonhyperbolic.
Clearly, z,+1 < &, yny1 < y, for everyn and so botKz, }>> , and{y,}>>, are con-
vergent to some equilibrium point on one of the axis. As we have shown in [6] system
(3.5), has two functionally dependent invariants:

Yn +1

and ‘](:Em yn) =Yn — [(xo, yo)xn‘

The invariant/(z,, y,) is actually a line that intersects an axis at an equilibrium point.
Indeed,J (x,,, y,) = J(xo, yo) implies that

Yn — Yo = [(%, yo)(% - $0)

which is an equation of the line throudhy, 1,). So in this case we have an explicit
expression for the invariant whose existence was proved in Theorem 3.6. Furthermore,
Theorem 3.4 implies that the limits ¢f,,, y,,) are continuous functions of initial point
(x0,%0). An additional feature of system (3.5) is the existence of explicit solution. In-
deed by using the discrete Riccati equation, the explicit solution of (3.5) was found
in [6] to be:

1

TS A 1 (e 1A Dyijan L AT
(3.6)
yn = m, lf A:]_,
ZL‘O—I—l

where A = 1/1(xo,y0) =

T Thus, if A < 1, which is equivalent ta:y < yq,

0
then(z,,y,) — (0, (vo — x0)/(yo + 1)) @asn — oo. If A > 1, which is equivalent to
xo > Yo, then(z,, y,) — ((xo — yo)/(yo + 1),0) asn — oo. Finally, if A = 1, which
is equivalent tacy = yo, then(z,, y,) — (0,0) asn — oc. O

Example 3.9. Consider the system of difference equations

blmn b2yn
D — ' = — TL:O,l’... 37
1+x,+ 1y, Y+t 3.7

Tn = )
+1 1 + Collp, + Yn

where the parametebs, b, ¢, andc, are positive real numbers and the initial conditions
xo andy, are arbitrary nonnegative numbers.

Global behavior of (3.7) was considered in [7], and global behavior of related sys-
tems was considered in [20]. Here we give an application of Theorems 3.4, and 3.6.
System (3.7) has always an equilibrium poigt = (0,0) and it also has additional
equilibrium points for values of parameters for which two liies= = + c;y = b; — 1
and/, := cox + y = by — 1 intersect each other or the boundary of the first quadrant.
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The exceptional case when these lines coincide has not been addressed in the literature.
Consider the case whéhnand/, coincide, which is equivalent to the condition

1 by —1
cco =1, c = .
1C2 1 by — 1

Under condition (3.8), system (3.7) has an infinite number of equilibrium points which
are exactly all the points on the segment of the lipevhich belong to the closure

of the first quadrant together with the origin. Furthermore, it can be shown that the
square[0,b; — 1] x [0,by — 1] is invariant and attracting set for the map generated
by the system (3.7). Whelh > 1,b, > 1 the zero equilibrium is a repeller and all
conditions of Theorems 3.4, and 3.6 are satisfied and so every solution of (3.8) converges
to its corresponding equilibrium point along the corresponding invariant set consisting
of unrelated points. O

(3.8)

Remark3.1Q Theorems 3.1, 3.4, and 3.6 can be applied in a similar fashion to systems
of the form

L,
Tn I
H 1 + dl (xm yn)
(3.9)
Yot = —— n=0,1,...

1+ do(zn, yn)’
where the initial conditions are nonnegative numbers and the funetioms),i = 1,2
are defined fow, v > 0 and satisfy the following conditions:

di(u,v) > 0,dy(u,v) =0 = v =0,
u

————— s increasing in u
1+ dy(u,v)

d;(u, ) is increasing in v,

and

day(u,v) > 0,dy(u,v) =0 = u =0,

(%
1+ do(u,v)
Another example where Theorems 3.4, and 3.6 apply is Eq. (1.1) pwith, which

is discussed in great detail in [27]. Actually, Theorems 3.4, and 3.6 are motivated by
results in [27]. Similar, application of Theorems 3.4, and 3.6 is Eq. (2.3) discussed in
Example 2.3.

Example 3.11.Consider Eq. (2.3). Set

dy(u,v) is increasing in u, is increasing in v.

Uy, = Tp—y and v, =z, forn=0,1,...
and write EqQ. (2.3) as the first order system

Unp4+1 = Un

D+ quy
1+wv,

Upgl = ,n=0,1,....
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Let 7" be the function o0, o) x [0, o) defined by:
T(u,v) = (U,p+ qu) :

v+1

The second iterate df is given by

P+qu

Ta(s): ;12wu+m

l+p+qu+v

Clearly, 7% is a competitive map. The period-two solutions of Eq. (2.3) are the fixed
points of 7%, By straightforward checking we can see that the fixed poini&afhich

are not fixed points of exist if and only if¢ = 1, in which case there exist an infinite
number of fixed points that belong to the hyperbela= p in the first quadrant. In this
case all conditions of Theorems 3.1, 3.4, and 3.6 are satisfied and the conclusions of
these results apply. This means that the prime period-two solutions of Eq. (2.3), which
belong to the hyperbolay = p in the first quadrant, attract all initial points_;, z) in

the plane of initial conditions, along some continuous invariant curves. In addition, the
period-two solution(®((x_1, o)), ¥((z_1,x0))) depends continuously on the initial
point (z_1, o). The same conclusion holds for Eq. (1.1), wite= 1 and was obtained

in [27]. In addition, Wilken, Thomas, and Clark showed in [28] that the invariants for
Eq. (1.1), withp = 1 can not be rational functions. O

Example 3.12.Consider the equation

PTn—1
1+ Tp + Tp—1 ’
wherep > 1 andz_q,zy > 0, which was studied in [13]. Eq. (3.10) has the zero

equilibrium and the positive equilibriurfp — 1)/2 as well as an infinite number of
period-two solutions. ., ®, ¥, &, U, ... which satisfyd + ¥ = 1. Set

n=01,... (3.10)

Tptl1 =

Up = Tp—y and v, =z, forn=0,1,...
and write Eq. (3.10) as the first order system
Up+1 = Un

Pun

—  n=0,1,....
1+ u, + v,

Un4+1 =

Let 7" be the function on0, co) x [0, o) defined by:

T(u,v) = (U, L) :
I+u+w
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The second iterate df is given by
pu

1+u+v
T2(5): +(p1—)(1+u+v)

(1+u+v)(1+v)+pu

Straightforward checking shows th&t is a competitive map. The period-two solutions

of Eq. (3.10) are the fixed points @f*. The fixed points ofl”®> which are not fixed
points of T" exist if and only ifp > 1, in which case there exist an infinite number of
fixed points on the segment of line+ v = p — 1 that belongs to the closure of the
first quadrant. Furthermore, an immediate checking shows that the gquare 1]* is
invariant and attracting set for the mép In this case all conditions of Theorems 3.1,
3.4, and 3.6 are satisfied and the conclusions of these theorems hold. This means that
the prime period-two solutions of Eq. (3.10), which belong to the segment of the line
x +y = p — 1in the closure of the first quadrant, attract all initial poifits, zo) in

the plane of initial conditions, along some continuous invariant curves. In addition, the
period-two solution(®((x_1,x0)), ¥((x_1,x))) depends continuously on the initial
point (z_1, o). O

Remark3.13 The conclusion of Example 3.11 can be extended to the following equa-
tion

gy = LG Tt (3.11)

1+y,

wherep, ¢, andr are positive, and = ¢+ 1. Related results about the global attractivity
of period-two solutions of Eq. (1.3) based on hard analysis were obtained in [1]. These
results are not applicable to competitive discrete dynamical systems but give the same
conclusion in the case of three equations that exhibit period-two trichotomy (1.1), (2.3),
and (3.11). The results from [1] however does not provide additional information about
invariants and continuous dependence on initial conditions of the attracting period-two
solutions of equations (1.1), (2.3), and (3.11). Furthermore, the global dynamics of
equations (1.1), (2.3), and (3.11) in the case of existence of unbounded solutions, was

described in [18].

4 Global Bifurcation Result
By combining Theorem 1.5 and Remark 3.5 with some results from [17] we have the
following global period-doubling bifurcation result.

Theorem 4.1.LetZ = [a, o), and letA be a connected subsetRf. Given a family
of difference equations

Tpt1 = fa(xnaxnfl% T—-1,%0 GI, TLIO,L... (41)
with £, (x,y) continuous orf x Z, suppose that for each € A,
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ai. fo(z,y) is strictly decreasing inc and strictly increasing iny in the interior of
I x1T.

as. fo(z,y)is smooth inyand(z,y)
as. There is an interior equilibriunx,, which varies continuously in.
ay. Letn, andry, be the roots of the characteristic equation
N — Dy fa(Za, Ta)N — Dafa(Za,To) =0, (4.2)

of (4.1) at 7,,, ordered as injn,| < |v.|. There exists a continuous function
I': A — R such that

i. If I'(a) <0,then—1< v, <0<7n,<L.
ji. If I'(a) =0,then—1=v, <0<n, <1.
jii. If I'(a) > 0, theny, < —1<0<n, <1

as. T, IS the unique interior equilibrium of4.1)

ag. For «in the parametric regioqa : I'(a) < 0} U {a : I'(a) > 0} there are no
prime period-two solutions. There exists a prime period-two solution farthe
parametric region{c : I'(a) = 0}.

a;. For a in the parametric regionf« : I'(a) < 0} all solutions of Eq.(4.1) are
bounded.

Then the equilibriun,, is globally asymptotically stable fer in the parametric region

{a : T'(a) < 0}. For « in the parametric region{a : I'(a) = 0}, every solution

of EqQ. (4.1) converges to period-two solution (not necessarily prime) in the sense of
Corollary 3.7. Fora in the parametric regionfa : I'(a) > 0}, every solution of

Eq. (4.1)is unbounded except for the solutions that belong to the closure of the global
stable manifold of the equilibrium. The global stable manifold of the equilibrium is a
curve which is the graph of a continuous and increasing function.

Proof. The proof of Theorem follows from Theorem 1.5, Remark 3.5 and the result
for competitive maps in a plane established in [17] and used in [14] in all special case
of Eq. (1.2) that allow the existence of unbounded solutions. The new feature in this
theorem is the convergence to period-two solution described in Corollary 3.7. [J

Example 4.2. Combining Examples 2.2 and 2.4 with Theorem 4.1 we obtain the fol-
lowing global bifurcation result for Eq. (1.1):

p <1 = every solution off the global stable manifold of the equilibrium is unbounded
p =1 = every solution converges to a period-two solution

p > 1 = every solution converges to the equilibrium.
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Convergence to the period-two solution in Theorem 4.1 ang fer1 in Example
4.2 isin the sense of Corollary 3.7. In this cd8@) = 1 — p. A necessary and sufficient
condition for the existence of a period-two solutiorpis= 1. This result was obtained
in [3] and represents the first period-two trichotomy result. 0J

Example 4.3. Combining Examples 2.3, 2.5, Theorem 4.1, and Corollary 3.7 we obtain
the following global bifurcation result for Eq. (2.3):

g <1 = every solution off the global stable manifold of the equilibrium is unbounded
g =1 = every solution converges to a period-two solution
g > 1 = every solution converges to the equilibrium.

Convergence to the period-two solution fpe= 1 is in the sense of Corollary 3.7.
In this casd’(¢q) = 1 — ¢q. A necessary and sufficient condition for the existence of a
period-two solution of Eq. (2.3) ig = 1. This result was obtained in [8]. O
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