Positive Solutions to a Singular Second Order Boundary Value Problem

L. Erbe and A. Peterson
Department of Mathematics, University of Nebraska–Lincoln, Lincoln, NE 68588-0130, USA
E-mail: lerbe2@math.unl.edu, apetersol1@math.unl.edu

J. Weiss
Department of Mathematics and Statistics, University of Nebraska–Kearney, Kearney, NE 68847, USA
E-mail: weissjj@unk.edu

Abstract

In this paper, we establish some criteria for the existence of positive solutions for certain two point boundary value problems for the singular nonlinear second order equation

\[-(ru^{\Delta})^{\Delta} + qu^{\sigma} = \lambda f(t, u^{\sigma})\]

on a time scale \(\mathbb{T}\). As a special case when \(\mathbb{T} = \mathbb{R}\), our results include those of Erbe and Mathsen [11]. Our results are new in a general time scale setting and can be applied to difference and \(q\)-difference equations.

Keywords: Dynamic equation, time scale, positive solution.

Received October 30, 2007; Accepted December 13, 2007
Communicated by Elvan Akin-Bohner
1. Introduction

In this paper we consider the dynamic equation

\[Lu = \lambda f(t, u^\sigma) \]

(1.1)

with the boundary conditions

\[
\begin{align*}
\alpha u(a) - \beta u(\Delta a) &= 0 \\
\gamma u(\sigma^2(b)) + \delta u(\Delta \sigma(b)) &= 0,
\end{align*}
\]

(1.2)

where the operator \(L \) is defined by

\[Lu := -(ru/\Delta a)/\Delta a + qu^\sigma. \]

The domain \(D \) of \(L \) is the set of functions \(u : \mathbb{T} \rightarrow \mathbb{R} \) such that \(u \) is continuous on \([a, \sigma^2(b)]\), \(u^\Delta \) is continuous on \([a, \sigma(b)]\), and \((ru^\Delta)^\Delta\) is rd-continuous on \([a, b]\). Since we shall be interested in the case when \(f \) may have singularities at one or both of the endpoints, we shall assume, either \(f \) is continuous on \((a, b)\times\mathbb{R}\), if \(f \) is singular at \(b \) or \(f \) is continuous on \((a, b)\times\mathbb{R}\) if \(f \) is not singular at \(b \). In addition, we assume \(r > 0 \) is rd-continuous, \(q \geq 0 \) is rd-continuous, \(\alpha, \beta, \gamma, \delta \geq 0 \) and \(\rho := \gamma \beta (\sigma^2(b) - a) + \alpha \gamma + \alpha \delta > 0 \). Special cases of this problem have been studied by many authors (see [8,11] and the references therein). Our concern is to find conditions on \(f \) so that (1.1)-(1.2) has a positive solution for some \(\lambda > 0 \). If \(f \) has a singularity at \(b \), then \(\rho(b) = b \) and in this case we assume throughout this paper that \(\sigma(b) = \sigma^2(b) = b \).

Green’s function for (1.1)–(1.2) is

\[G(t, s) = \frac{1}{c} \begin{cases}
\phi(t)\psi^\sigma(s) & t \leq s \\
\phi^\sigma(s)\psi(t) & \sigma(s) \leq t
\end{cases} \]

(1.3)

where \(\phi \) and \(\psi \) are the solutions of

\[
\begin{align*}
L\phi &= 0, & \phi(a) = \beta, & \phi^\Delta(a) = \alpha \\
L\psi &= 0, & \psi(\sigma^2(b)) = \delta, & \psi^\Delta(\sigma(b)) = -\gamma
\end{align*}
\]

respectively.

Lemma 1.1. We have \(\phi(t) > 0 \) for all \(t \in (a, \sigma^2(b)) \) and \(\phi^\Delta(t) \geq 0 \) for all \(t \in [a, \sigma(b)] \). We have \(\psi(t) > 0 \) and \(\psi^\Delta(t) \leq 0 \) for all \(t \in [a, \sigma^2(b)] \).

Proof. First, notice that

\[
(r(t)\phi^\Delta(t))^\Delta + q(t)\phi^\sigma(t) = 0
\]

and

\[
(r(t)\phi^\Delta(t))^\Delta = q(t)\phi^\sigma(t),
\]

\[
r(t)\phi^\Delta(t) - r(a)\phi^\Delta(a) = \int_a^t q(s)\phi^\sigma(s)\Delta s
\]

\[
\phi^\Delta(t) = \frac{1}{r(t)} \left[r(a)\alpha + \int_a^t q(s)\phi^\sigma(s)\Delta s \right].
\]
Notice that \(\phi(a) = \beta \geq 0 \). We claim that \(\phi(t) > 0 \) on \((a, \sigma^2(b)) \). Now suppose for the purpose of contradiction that \(\phi(t) \leq 0 \) for some \(t \in (a, \sigma^2(b)) \).

Case 1: \(\alpha > 0 \): If \(\alpha > 0 \), then \(\phi'(a) = \alpha > 0 \), so there is \(k \in \mathbb{T}, k > a \) such that \(\phi(t) > \phi(a) \) for all \(t \in (a, k] \). Suppose that \(t_0 > k \) is the smallest point bigger than \(a \) in \(\mathbb{T} \) such that \(\phi(t_0) \leq \phi(a) \).

If \(t_0 \) is left-scattered, then \(\phi'(\rho(t_0)) < 0 \), and hence \(\int_a^{\rho(t_0)} q(s)\phi'(s)\Delta s < 0 \). But then there is a point \(t_1 \in [k, \rho(t_0)) \) such that \(\phi'(t_1) < 0 \). That means that there is \(t_2 \in [k, t_0) \) such that \(\phi(t_2) < 0 \). This contradicts the fact that \(\phi(t) > 0 \) on \([k, t_0) \).

If \(t_0 \) is left-dense, then there is a \(t_1 < t_0 \) with \(\phi'(t_1) < 0 \). Then \(\int_a^{t_0} q(s)\phi'(s)\Delta s < 0 \), and so \(\phi'(t_2) < 0 \) for some \(t_2 \in [a, t_1] \). But then as \(\sigma(t_1) < t_0 \), we get that \(\phi(t_3) < 0 \) for some \(t_3 \in [\sigma(a), t_0) \). This is a contradiction.

Case 2: \(\alpha = 0 \): In this case, \(\phi(a) = \beta > 0 \). Let \(k \) be such that \(\phi(t) > 0 \) on \([a, k] \). Let \(t_0 \) be the smallest point in \(\mathbb{T} \) greater than \(a \) such that \(\phi(t_0) \leq 0 \). Similar to the proof of Case 1, we get a contradiction.

Hence, \(\phi(t) > 0 \) on \((a, \sigma^2(b)) \), and thus \(\phi'(t) > 0 \) on \((a, \sigma^2(b)) \). The second statement in this lemma can be proven similarly.

It follows from Lemma 1.1 that

\[
 c := -r(t) \left[\phi'(t)\psi'(t) - \phi'(t)\psi(t) \right] > 0.
\]

The BVP (1.1)–(1.2) is equivalent to the integral equation

\[
 u(t) = \lambda \int_a^{\sigma(b)} G(t, s) f(s, u(s)) \Delta s,
\]

and so we look for positive fixed points of the operator \(T_\lambda \) defined by:

\[
(T_\lambda u)(t) = \lambda \int_a^{\sigma(b)} G(t, s) f(s, u(s)) \Delta s
\]

for \(t \in [a, \sigma^2(b)] \).

We shall impose some of the following conditions on \(f \) (if \(f \) is not singular at \(b \), then we assume \((a, b) \) is replaced by \((a, b] \) in each of the following):

(H\(_1\)) \(f(t, u) \geq 0 \) for \((t, u) \in (a, b) \times [0, \infty) \).

(H\(_2\)) For each \(M > 0 \) there exists a function \(g_M : (a, b) \to \mathbb{R}^+ \) such that \(f(t, z) \leq g_M(t) \) for \((t, z) \in (a, b) \times [0, M] \) and \(\int_a^{\sigma(b)} G(s, s)g_M(s) \Delta s < \infty \).

(H\(_3\)) For each \(t \in (a, b) \), \(f(t, u) \) is nondecreasing in \(u \).
(H4) There exists a continuous function $p_1 \geq 0, p_1 \not\equiv 0$ on any time scale subinterval of (a, b), such that for each constant $\delta > 0$, there is a $R_\delta > 0$ with $f(t, z) \geq dp_1(t)z$ for $(t, z) \in (a, b) \times (0, R_\delta]$.

(H5) There exists $e > 0$ and a continuous function $p_2 : (a, b) \to \mathbb{R}^+$ such that $f(t, z) \geq ep_2(t)z$ for $(t, z) \in (a, b) \times [0, \infty)$ and $\int_a^{\sigma(b)} G(\sigma(s), s)p_2(s)\Delta s < \infty$.

2. Preliminary Lemmas

First, let E be the Banach space $E := \{ u : [a, \sigma^2(b)] \to \mathbb{R} : u$ is continuous$\}$, where the norm is the sup norm. We define the cone P by $P := \{ u \in E : u(t) \geq 0 \text{ for all } t \in [a, \sigma^2(b)] \}$. Now we state some preliminary lemmas.

Lemma 2.1. Assume (H1) and (H2) hold. Then $T_\lambda : P \to P$ is compact.

Proof. (H1) and (H2) imply that T_λ exists for $u \in P$ and $T_\lambda u(t) \geq 0$. If $\sigma(a) = a$, we define

$t_n := \sup \left\{ t \in \mathbb{T} : a \leq t \leq a + \frac{1}{n} \right\}$.

Note that $t_n > a$. If $\rho(b) = b$, we define

$\tau_n := \inf \left\{ t \in \mathbb{T} : b - \frac{1}{n} \leq t \leq b \right\}$.

Note that $\tau_n < b$. In the case where $\sigma(a) = a$ and $\rho(b) = b$, define

$$f_n(t, x) = \begin{cases}
\min\{f(t, x), f(t_n, x)\} & a < t \leq a + \frac{1}{n} \\
f(t, x) & a + \frac{1}{n} \leq t \leq b - \frac{1}{n} \\
\min\{f(t, x), f(\tau_n, x)\} & b - \frac{1}{n} \leq t < b.
\end{cases}$$

For $\sigma(a) = a$, and $\rho(b) < b$, define

$$f_n(t, x) = \begin{cases}
\min\{f(t, x), f(t_n, x)\} & a < t \leq a + \frac{1}{n} \\
f(t, x) & a + \frac{1}{n} \leq t < b.
\end{cases}$$

And finally, for $\sigma(a) > a$ and $\rho(b) = b$, define

$$f_n(t, x) = \begin{cases}
f(t, x) & a < t \leq b - \frac{1}{n} \\
\min\{f(t, x), f(\tau_n, x)\} & b - \frac{1}{n} \leq t < b.
\end{cases}$$
For $u \in E$, $f_n(t, u^\sigma(t))$ is nonnegative and rd-continuous on (a, b). For each $\lambda > 0$, define an operator T_n by

$$(T_nu)(t) = \lambda \int_a^\sigma(b) G(t, s) f_n(s, u^\sigma(s)) \Delta s,$$

for $t \in [a, \sigma^2(b)]$. Then $(T_nu)(t) \geq 0$ on $[a, \sigma^2(b)]$ by (H_1). If $t, t_0 \in [a, \sigma^2(b)]$, then

$$|T_nu(t) - T_nu(t_0)| \leq \lambda \int_a^\sigma(b) |G(t, s) - G(t_0, s)| f_n(s, u^\sigma(s)) \Delta s$$

which goes to 0 as $t \to t_0$ by continuity of G. Hence $T_nu \in E$. Let $u \in E$ and $\|u\| \leq M$. Then

$$(T_nu)^\Delta(t) = \frac{\lambda}{c} \psi^\Delta(t) \int_a^t \phi^\sigma(s) f_n(s, u^\sigma(s)) \Delta s + \frac{\lambda}{c} \phi^\Delta(t) \int_t^\sigma(b) \psi^\sigma(s) f_n(s, u^\sigma(s)) \Delta s.$$

Hence, $(T_nu)^\Delta(t)$ is continuous and uniformly bounded for $\|u\| \leq M$. Thus, T_n is a compact operator on K by the Ascoli–Arzela theorem. Moreover, $T_n \to T_\lambda$ uniformly as $n \to \infty$ on any bounded subset of K. We show this only for the case $\sigma(a) = a$ and $\rho(b) = b$.

$$(T_nu)^\Delta(t) - T_nu(t_0) \leq \lambda \int_a^{t_0} G(t, s)|f(s, u^\sigma(s)) - f(t_n, u^\sigma(s))| \Delta s
+ \lambda \int_{t_0}^{\sigma(b)} G(t, s)|f(s, u^\sigma(s)) - f(t_n, u^\sigma(s))| \Delta s
\leq 2\lambda \left(\int_a^{t_n} G(t, s)g_M(s) \Delta s + \int_{t_n}^{\sigma(b)} G(t, s)g_M(s) \Delta s \right)
\leq 2\lambda \left(\int_a^{t_n} G(\sigma(s), s)g_M(s) \Delta s + \int_{t_n}^{\sigma(b)} G(\sigma(s), s)g_M(s) \Delta s \right)
\to 0 \text{ as } n \to \infty$$

(note here we use the fact that we assumed when $\rho(b) = b$ it follows that $\sigma(b) = b$). This implies T_λ is compact on K (see [5, Proposition 4.2]).

Lemma 2.2. Let $\lambda > 0$ and (H_1)–(H_3) hold. Suppose further that there exist $w, v \in D$ with $0 \leq w(t) \leq v(t), Lw(t) \leq \lambda f(t, w^\sigma(t)), Lv(t) \geq \lambda f(t, v^\sigma(t))$ on (a, b) (on $(a, b]$ if f is not singular at b) and

$$\alpha w(a) - \beta w^\Delta(a) \leq 0, \quad \gamma w(\sigma^2(b)) + \delta w^\Delta(\sigma(b)) \leq 0 \quad (2.1)$$

$$\alpha v(a) - \beta v^\Delta(a) \geq 0, \quad \gamma v(\sigma^2(b)) + \delta v^\Delta(\sigma(b)) \geq 0. \quad (2.2)$$
Then (1.1)–(1.2) has a solution \(z \in D \) with \(w(t) \leq z(t) \leq v(t) \) on \([a, \sigma^2(b)]\).

Proof. Condition (H3) implies that \(T_\lambda \) is monotone nondecreasing with respect to the cone \(K \). Suppose first that equality holds in all four equations in (2.1)–(2.2). Let \(w_0 = w \) and let \(w_{n+1} = T_\lambda w_n \). Then

\[
w_0(t) = w(t) = \int_a^{\sigma(b)} G(t, s)Lw(s)\Delta s \\
\leq \lambda \int_a^{\sigma(b)} G(t, s)f(s, w^\sigma(s))\Delta s \\
= T_\lambda w(t) = w_1(t)
\]

for \(t \in [a, \sigma^2(b)] \). By induction, the fact that \(T_\lambda \) is monotone nondecreasing gives us that \(w_n(t) \leq w_{n+1}(t) \). Similarly, \(v_{n+1} := T_\lambda v_n \leq v_n \) where \(v_0(t) = v(t) \). Then since \(w \leq v \), we get

\[w = w_0 \leq w_1 \leq \cdots \leq w_n \leq \cdots \leq v \leq v_1 \leq v_0 = v. \]

Now, if equality does not hold, we may modify \(w \) to a function \(\tilde{w} \) as follows: let \(r_1 := -(\alpha w(a) - \beta w^\Delta(a)) \geq 0 \) and \(r_2 := -(\gamma w(\sigma^2(b)) + \delta w^\Delta(\sigma(b))) \geq 0 \), and define \(\tilde{w} := w(t) + c\phi(t) + d\psi(t) \) where \(c \) and \(d \) are chosen below and \(\phi \) and \(\psi \) are defined earlier. Note that \(L\tilde{w}(t) = Lw(t) \). Since we have

\[\alpha \tilde{w}(a) - \beta \tilde{w}^\Delta(a) = -r_1 + d(\alpha\psi(a) - \beta\psi^\Delta(a)), \]

if we set \(d := \frac{r_1}{\alpha\psi(a) - \beta\psi^\Delta(a)} \geq 0 \), then \(\alpha \tilde{w}(a) - \beta \tilde{w}^\Delta(a) = 0 \). Similarly, set \(c := \frac{r_2}{\gamma\phi(\sigma^2(b)) + \delta\phi^\Delta(\sigma(b))} \geq 0 \), then \(\gamma \tilde{w}(\sigma^2(b)) + \delta \tilde{w}^\Delta(\sigma(b)) = 0 \). Note,

\[
\tilde{w}(t) = w(t) + c\phi(t) + d\psi(t) \\
= \int_a^{\sigma(b)} G(t, s)L\tilde{w}(s)\Delta s \\
= \int_a^{\sigma(b)} G(t, s)Lw(s)\Delta s \\
\leq \lambda \int_a^{\sigma(b)} G(t, s)f(s, w^\sigma(s))\Delta s \\
= T_\lambda w(t) = w_1(t).
\]

Since \(c\phi + d\psi \geq 0 \), we will generate the same set of iterates as above. Likewise, with
\[L\tilde{v} = Lv \] and \(\tilde{v} \) modified to satisfy the homogeneous boundary conditions, we get

\[
\tilde{v}(t) = v(t) + \tilde{c}\phi(t) + \tilde{d}\psi(t)
\]
\[
= \int_a^{\sigma(b)} G(t, s)L\tilde{v}(s)\Delta s
\]
\[
= \int_a^{\sigma(b)} G(t, s)Lv(s)\Delta s
\]
\[
\geq \lambda \int_a^{\sigma(b)} G(t, s)f(s, v_{\sigma}(s))\Delta s
\]
\[
= T_{\lambda}v(t) =: v_1(t).
\]

This also gives the same sequence of iterates. Now let \(n \to \infty \) to get

\[
w(t) \leq w^*(t) := \lim_{n \to \infty} w_n(t) \leq v^*(t) := \lim_{n \to \infty} v_n(t) \leq v(t).
\]

By the dominated convergence theorem (see Peterson and Thompson [19] for a more general case), we have \(w^* = T_{\lambda}w^* \) and \(v^* = T_{\lambda}v^* \), so both \(w^* \) and \(v^* \) are solutions to (1.1)–(1.2), with possibly \(w^* = v^* \).

Lemma 2.3. Suppose (H1) and (H2) hold. Let \(p \geq 0 \) be a continuous function with \(p(t) \neq 0 \) on \((a, b) \) (on \((a, b] \) if \(f \) is not singular at \(b \)) and \(\int_a^{\sigma(b)} p(s)\Delta s < \infty \). Then the BVP

\[Ly(t) = p(t) \tag{2.3} \]

\[
\begin{align*}
\alpha y(a) - \beta y_\Delta(a) &= 0 \\
yy(\sigma^2(b)) + \delta y_\Delta(\sigma(b)) &= 0,
\end{align*} \tag{2.4}
\]

has a unique solution \(y \) satisfying

\[
c_1y(t) \leq \psi(t)\phi(t) \leq c_2y(t)
\]

for \(a \leq t \leq \sigma^2(b) \), where \(c_1 \) and \(c_2 \) are positive constants.

Proof. Note that \(y(t) = \int_a^{\sigma(b)} G(t, s)p(s)\Delta s \) solves the BVP (2.3)–(2.4) and is the unique solution, since the homogeneous equation has only the trivial solution. Pick
$t_0 \in (a, b)$ such that $p(t_0) > 0$. Then for $a < t < t_0$ we have

$$y(t) = \int_a^{\sigma(b)} G(t, s)p(s)\Delta s$$

$$= \frac{1}{c} \int_a^t \phi^\sigma(s)\psi(t)p(s)\Delta s + \frac{1}{c} \int_t^{\sigma(b)} \phi(t)\psi^\sigma(s)p(s)\Delta s$$

$$\geq \frac{\psi(t)}{c} \int_a^t \phi^\sigma(s)p(s)\Delta s$$

$$\geq \frac{\phi(t)\psi(t)}{c\psi(a)} \int_{t_0}^{\sigma(b)} \psi^\sigma(s)p(s)\Delta s$$

since ψ is monotone decreasing. Similarly, for $t_0 \leq t < \sigma^2(b),$

$$y(t) = \int_a^{\sigma(b)} G(t, s)p(s)\Delta s$$

$$= \frac{1}{c} \int_a^t \phi^\sigma(s)\psi(t)p(s)\Delta s + \frac{1}{c} \int_t^{\sigma(b)} \phi(t)\psi^\sigma(s)p(s)\Delta s$$

$$\geq \psi(t) \int_a^t \phi^\sigma(s)p(s)\Delta s$$

$$\geq \frac{\phi(t)\psi(t)}{c\phi(\sigma^2(b))} \int_a^{t_0} \phi^\sigma(s)p(s)\Delta s$$

since ϕ is monotone increasing. Define c_2 by

$$\frac{1}{c_2} := \min \left\{ \frac{1}{c\phi(\sigma^2(b))} \int_a^{t_0} \phi^\sigma(s)p(s)\Delta s, \frac{1}{c\psi(a)} \int_{t_0}^{\sigma(b)} \psi^\sigma(s)p(s)\Delta s \right\}.$$

Then $y(t) \geq \frac{\psi(t)\phi(t)}{c_2}$. Also,

$$y(t) = \frac{1}{c} \int_a^t \phi^\sigma(s)\psi(t)p(s)\Delta s + \frac{1}{c} \int_t^{\sigma(b)} \phi(t)\psi^\sigma(s)p(s)\Delta s$$

$$\leq \frac{1}{c} \psi(t) \int_a^t \phi^\sigma(s)p(s)\Delta s + \frac{1}{c} \phi(t)\psi^\sigma(t) \int_t^{\sigma(b)} p(s)\Delta s$$

$$\leq \frac{1}{c} \phi(t)\psi(t) \int_a^t p(s)\Delta s + \frac{1}{c} \phi(t)\psi(t) \int_t^{\sigma(b)} p(s)\Delta s$$

$$= \frac{\phi(t)\psi(t)}{c_1}.$$
where $c_1 := \frac{c}{\int_a^{\sigma(b)} p(s) \Delta s}$. Hence the lemma holds. ■

Lemma 2.4. $0 \leq G(t, s) \leq G(\sigma(s), s)$ for all $a \leq t \leq \sigma^2(b), a \leq s \leq b$.

Proof. From equation (1.3), we have

$$G(t, s) = \frac{1}{c} \begin{cases} \phi(t) \psi^\sigma(s) & t \leq s \\ \phi^\sigma(s) \psi(t) & \sigma(s) \leq t. \end{cases}$$

We have shown $\phi, \psi \geq 0$ in Lemma 1.1, therefore we have $G(t, s) \geq 0$ for all $a \leq t \leq \sigma^2(b), a \leq s \leq b$. Now,

$$G(\sigma(s), s) = \frac{1}{c} \phi(\sigma(s)) \psi(\sigma(s)).$$

Thus, if $t \leq s$, we have

$$G(t, s) = \frac{1}{c} \phi(t) \psi(\sigma(s)) \leq \frac{1}{c} \phi(\sigma(s)) \psi(\sigma(s)) = G(\sigma(s), s).$$

If $t \geq \sigma(s)$, we have

$$G(t, s) = \frac{1}{c} \phi(\sigma(s)) \psi(t) \leq \frac{1}{c} \phi(\sigma(s)) \psi(\sigma(s)) = G(\sigma(s), s).$$

Hence, the statement of the lemma holds. ■

Fix $0 < \xi < 1$ and choose $t_1, t_2 \in \mathbb{T}$ with $a < t_1 < t_2 \leq \sigma(t_2) < \sigma^2(b)$ such that

$$G(t, s) \geq \xi G(\sigma(s), s) \text{ for } t \in [t_1, \sigma(t_2)]. \quad (2.5)$$

We define the interval $I := [t_1, t_2]$ and a cone $K \subseteq C[a, \sigma^2(b)]$ by

$$K := \left\{ u \in C[a, \sigma^2(b)] : u(t) \geq 0, \text{ and } \min_{t \in I} u^\sigma(t) \geq \xi \|u\| \right\},$$

where $\| \cdot \|$ is the sup norm on $C[a, \sigma^2(b)]$.

Lemma 2.5. If (H2) holds, then $T_\lambda(K) \subseteq K$.

Proof. Note that as $G(t, s) \geq 0$ for all $t \in [a, \sigma^2(b)]$ and $s \in [a, b]$, and $f(t, u) \geq 0$ for $t \in (a, b)$ and $u \geq 0$, we get $(T_\lambda u)(t) \geq 0$ for all $t \in [a, \sigma^2(b)]$. Let $t \in I$ and $u \in K$, then...
then
\[
(T_\lambda u)^\sigma(t) = \lambda \int_a^{\sigma(b)} G(\sigma(t), s)f(s, u^\sigma(s)) \Delta s \\
\geq \xi \lambda \int_a^{\sigma(b)} G(\sigma(s), s)f(s, u^\sigma(s)) \Delta s \\
= \xi \max_{t \in [a, \sigma^2(b)]} \lambda \int_a^{\sigma(b)} G(t, s)f(s, u^\sigma(s)) \Delta s \\
= \xi \|T_\lambda u\|.
\]

The proof is complete.

We now state the following fixed-point theorem of cone compression/expansion type due to Krasnolselskii.

Lemma 2.6. Let \(E \) be a Banach space, \(K \subseteq E \) a cone and assume \(\Omega_1, \Omega_2 \) are open subsets of \(E \) with \(0 \in \Omega_1, \Omega_1 \subset \Omega_2 \) and let \(T : K \cap (\Omega_2 \setminus \Omega_1) \rightarrow K \) be a completely continuous operator such that either

(i) \(\|Tu\| \geq \|u\|, u \in K \cap \partial \Omega_1 \) and \(\|Tu\| \leq \|u\|, u \in K \cap \partial \Omega_2 \) or

(ii) \(\|Tu\| \leq \|u\|, u \in K \cap \partial \Omega_1 \) and \(\|Tu\| \geq \|u\|, u \in K \cap \partial \Omega_2 \).

Then \(T \) has a fixed point in \(K \cap (\overline{\Omega_2} \setminus \Omega_1) \).

Lemma 2.7. Assume \((H_1), (H_2)\) and \((H_4)\) hold. Then there exists \(\lambda_0 > 0 \) such that \((1.1)-(1.2)\) has a positive solution \(z \) for \(\lambda = \lambda_0 \).

Proof. Let \(R > 0 \) be fixed. Choose \(\lambda_0 \) such that \(\lambda_0 \int_a^{\sigma(b)} G(\sigma(s), s)g_R(s) \Delta s \leq R \). Then for \(z \in \partial K_R \),
\[
\|T_{\lambda_0}z\| = \lambda_0 \int_a^{\sigma(b)} G(\sigma(s), s)f(s, z^\sigma(s)) \Delta s \\
\leq \lambda_0 \int_a^{\sigma(b)} G(\sigma(s), s)g_R(s) \Delta s \\
\leq R = \|z\|.
\]

Now, fix \(\tau_0 \in I \), and pick \(M > 0 \) sufficiently large so that
\[
\xi \lambda_0 M \int_I G(\tau_0, s)p_1(s) \Delta s \geq 1,
\]
where p_1 is the function in (H4). Now let $r = R_M$ in (H4). So for $0 \leq u \leq r$, we have $f(t, u) \geq Mp_1(t)u$. Then for $z \in \partial K_r$,

\[
(T_{\lambda_0} z)(\tau_0) = \lambda_0 \int_a^{\sigma(b)} G(\tau_0, s) f(s, z^\sigma(s)) \Delta s \\
\geq \lambda_0 M \int_I G(\tau_0, s) p_1(s)z^\sigma(s) \Delta s \\
\geq \lambda_0 M \xi \|z\| \int_I G(\tau_0, s) p_1(s) \Delta s \\
\geq \|z\|.
\]

The proof is complete.

3. Main Results

Theorem 3.1. Assume (H1)–(H4) hold. Then there exists $\lambda_0 > 0$ such that (1.1)–(1.2) has at least one positive solution for $0 < \lambda < \lambda_0$.

Proof. By the previous lemma, there exists $\lambda_0 > 0$ such that (1.1)–(1.2) has a positive solution z for $\lambda = \lambda_0$. Now suppose $0 < \lambda < \lambda_0$. Then $Lz(t) = \lambda_0 f(t, z^\sigma(t)) \geq \lambda f(t, z^\sigma(t))$. Also, $w(t) \equiv 0$ solves $Lw = 0 \leq \lambda f(t, 0)$. Also, both z and $w = 0$ satisfy the boundary conditions. So by Lemma 2.2 there is a nonnegative solution z^* to (1.1)–(1.2). Now, if $\alpha > 0$ or $\beta > 0$, then $z^* > 0$ on (a, t_0).

Claim: $t_0 = \sigma^2(b)$.

If not, $z^*(t_0) = 0 = \lambda \int_a^{\sigma(b)} G(t_0, s) f(s, z^\sigma(s)) \Delta s$. But by (H4), there is $\eta > 0$ such that $f(t, w) \geq p_1(t)w$ for $0 < w \leq \eta, t \in (a, b)$. Define $f_0(t, u) := \min\{f(t, u), f(t, \eta)\}$. Then, $f_0(t, u) \geq p_1(s) \min\{u, \eta\}$. Let $I = [t_1, t_2]$ so that (2.5) holds. If $\min_{s \in I} z^\sigma(s) < \eta$, we have

\[
0 = z^*(t_0) = \lambda \int_a^{\sigma(b)} G(t_0, s) f(s, z^\sigma(s)) \Delta s \\
= \lambda \int_I G(t_0, s) f_0(s, z^\sigma(s)) \Delta s \\
\geq \lambda \int_I G(t_0, s) f_0(s, z^\sigma(s)) \Delta s \\
\geq \lambda \int_I G(t_0, s) p_1(s) \min_{t \in I} z^\sigma(t) \Delta s
\]
\[\geq \lambda \xi \|z^*\| \int_I G(t_0, s)p_1(s)\Delta s \]
\[> 0 \]

which is a contradiction. If \(\min_{s \in I} z^{*\sigma}(s) \geq \eta \), we have

\[0 = z^*(t_0) = \lambda \int_a^b G(t_0, s)f(s, z^{*\sigma}(s))\Delta s \]
\[\geq \lambda \int_I G(t_0, s)f(s, z^{*\sigma}(s))\Delta s \]
\[\geq \lambda \int_I G(t_0, s)f_\eta(s, z^{*\sigma}(s))\Delta s \]
\[\geq \lambda \int_I G(t_0, s)p_1(s)\eta\Delta s \]
\[\geq \lambda \eta \int_I G(t_0, s)p_1(s)\Delta s \]
\[> 0 \]

which is also a contradiction. Hence \(z^*(t) > 0 \) on \((a, \sigma^2(b))\). \(\blacksquare \)

Theorem 3.2. Assume (H1)–(H5) hold. Then there exists \(\lambda^* > 0 \) such that the BVP (1.1)–(1.2) has at least one positive solution for \(0 < \lambda < \lambda^* \) and no positive solution for \(\lambda > \lambda^* \).

Proof. Let \(B \) be the set of all \(\lambda > 0 \) for which the BVP (1.1)–(1.2) has a positive solution in \(D \). Then by Lemma 2.7, we have that \(B \neq \emptyset \) and Theorem 3.1 shows that if \(\lambda_0 \in B \), then \((0, \lambda_0) \subseteq B \). To show \(B \) is bounded, let \(\lambda \in B \) and let \(u_\lambda \) be the corresponding positive solution. By (H5), there exists \(e > 0 \) and a continuous function \(p_2 \) such that \(f(t, z) \geq ep_2(t)z \) for all \((t, z) \in (a, \sigma^2(b)) \times [0, \infty)\) and \(\int_a^{\sigma(b)} G(\sigma(s), s)p_2(s)\Delta s < \infty \). Now let \(y \) be the solution to the BVP (2.3)–(2.4) with \(p(t) = \phi^\sigma(t)\psi^\sigma(t)p_2(t) \). Then by Lemma 2.3, we have \(\phi(t)\psi(t) \leq c_2 y(t) \) and

\[\int_a^{\sigma(b)} y^\sigma(t)Lu_\lambda(t)\Delta t = \lambda \int_a^{\sigma(b)} y^\sigma(t)f(t, u_\lambda^\sigma(t))\Delta t \]
\[\geq e\lambda \int_a^{\sigma(b)} y^\sigma(t)u_\lambda^\sigma(t)p_2(t)\Delta t. \]
On the other hand, by Green’s formula ([3, Theorem 4.94]), we have
\[
\int_{a}^{\sigma(b)} y^{\sigma}(t) L u_\lambda(t) \Delta t = \int_{a}^{\sigma(b)} u_\lambda^{\sigma}(t) L y(t) \Delta t = \int_{a}^{\sigma(b)} u_\lambda^{\sigma}(t) \phi^{\sigma}(t) \psi^{\sigma}(t) p_2(t) \Delta t \leq c_2 \int_{a}^{\sigma(b)} y(t) u_\lambda^{\sigma}(t) p_2(t) \Delta t.
\]
So \(e\lambda \leq c_2 \). Hence \(\lambda \leq \frac{c_2}{e} \). Thus, \(B \) is bounded. Setting \(\lambda^* = \sup B \), we get that for \(0 < \lambda < \lambda^* \) the BVP (1.1)–(1.2) has a positive solution, and for \(\lambda > \lambda^* \) there is no positive solution.

4. Example

Suppose that \(q > 1 \) and \(\mathbb{T} = \left\{ \frac{1}{q^n} : n \in \mathbb{N}_0 \right\} \cup \{0\} \). The singular BVP
\[
-u^{\Delta\Delta} = \lambda f(t, u^{\sigma}), \quad 0 < t < 1/q^2 \tag{4.1}
\]
\[
u(0) = 0 = u(1) \tag{4.2}
\]
satisfies Theorems 3.1 and 3.2, for
\[
f(t, z) = (t(1-t))^{-2+1/(z+1)} h(z),
\]
(note that \(f \) is singular at \(t = 0 \) and \(t = 1 \)), where
\[
h(z) = \begin{cases} \sqrt{z} & 0 \leq z \leq 1 \\ z^2 & z \geq 1. \end{cases}
\]
First, note that \(a = 0, \sigma^2(b) = 1, \alpha = \gamma = 1 \) and \(\beta = \delta = 0 \). Then \(\rho = 1 > 0 \), and Green’s function for (4.1)–(4.2) is
\[
G(t, s) = \begin{cases} t(1 - \sigma(s)) & t \leq s \\ \sigma(s)(1 - t) & \sigma(s) \leq t. \end{cases}
\]
Note that \(f(t, z) \geq 0 \) on \((0, 1) \times [0, \infty) \), and is nondecreasing in \(z \). Thus \((H_1) \) and \((H_3) \) are satisfied. Also,
\[
f(t, z) \leq g_M(t) := M^2(t(1-t))^{-2+1/(M+1)}
\]
for \((t, z) \in (0, 1) \times [0, M]\). Also,

\[
\int_a^{\sigma(b)} G(\sigma(s), s)g_M(s)\Delta s
\]

\[= M^2 \int_0^{1/q} G(\sigma(s), s)[s(1-s)]^{-2+1/(M+1)} \Delta s \]

\[= M^2 \int_0^{1/q} \sigma(s)(1-\sigma(s))[s(1-s)]^{-2+1/(M+1)} \Delta s \]

\[= M^2 \sum_{k=2}^{\infty} \frac{1}{q^{k-1}} \left(1 - \frac{1}{q^{k-1}} \right) \left(\frac{1}{q^k} \left(1 - \frac{1}{q^k} \right) \right)^{-2+1/(M+1)} \left(\frac{q - 1}{q^k} \right) \]

\[= M^2 \sum_{k=2}^{\infty} \left(\frac{q^{k-1} - 1}{q^{2k-2}} \right) \left(\frac{q^k - 1}{q^k} \right)^{-2+1/(M+1)} \left(\frac{q - 1}{q^k} \right) \]

\[= M^2 q^2 \sum_{k=2}^{\infty} \left(\frac{q^{k-1} - 1}{q^{2k}} \right) \left(\frac{q - 1}{q^k} \right) \left(\frac{q^k - 1}{q^k} \right)^{2-1/(M+1)} \]

\[= M^2 q^2 \sum_{k=2}^{\infty} \left(\frac{q^{k-1} - 1}{q^{2k}} \right) \left(\frac{q - 1}{q^k} \right) \left(\frac{q^k - 1}{q^k} \right)^{2} \left(\frac{q^k - 1}{q^{2k}} \right)^{1/(M+1)} \]

\[\leq M^2 q^2 \sum_{k=2}^{\infty} \left(\frac{q^{k-1} - 1}{q^{2k}} \right) \left(\frac{q - 1}{q^k} \right) \left(\frac{q^k - 1}{q^k} \right)^{2} q^{2k} \left(\frac{q^k - 1}{q^{2k}} \right)^{1/(M+1)} \]

\[= M^2 q^2 \sum_{k=2}^{\infty} \left(\frac{q^k}{q^k - 1} \right)^2 \left(\frac{1}{q^k} \right)^{1/(M+1)} \]

Now, as the term \(\left(\frac{q^k}{q^k - 1} \right)^2\) approaches 1 as \(k \to \infty\), there is \(K\) such that for \(k \geq K\), we have \(\left(\frac{q^k}{q^k - 1} \right) < 2\). Therefore, we have:

\[
\int_0^{1/q} G(\sigma(s), s)g_M(s)\Delta s \leq M^2 q^2 \sum_{k=2}^{K} \left(\frac{q^k}{q^k - 1} \right)^2 \left(\frac{1}{q^k} \right)^{1/(M+1)}
\]

\[+ 2M^2 q^2 \sum_{k=K+1}^{\infty} \left(q^{-1/(M+1)} \right)^k \]

\[< \infty \]

since the last term is a convergent geometric series. Thus, \((H_2)\) is satisfied.
Next, we show (H4) holds. To see this, let \(d > 0 \) be given and let \(0 < z \leq R_d \), where \(R_d := \frac{1}{d^2} \). It follows that \(z = \frac{1}{c^2} \) for some \(c \geq d \). Then, for \(t \in (0, 1) \cap \mathbb{T} \),

\[
 f(t, z) = (t(1-t))^{2+1/(z+1)}h(z) \\
= (t(1-t))^{-1}(t(1-t))^{-z/(z+1)}h(z) \\
\geq \frac{1}{t(1-t)}h(z) \\
\geq \frac{1}{t(1-t)\sqrt{z}} \\
= \frac{1}{t(1-t)c} \\
= \frac{1}{t(1-t)} \frac{1}{z^c} \\
\geq d \frac{1}{t(1-t)} \frac{1}{z^c} \\
\geq dp_1(t)z,
\]

where \(p_1(t) := \frac{1}{t(1-t)} \). So (H4) holds.

Finally, we show (H5) holds. First note that

\[
f(t, z) \geq (t(1-t))^{-1}h(z) \geq (t(1-t))^{-1}z = p_2(t)z,
\]

where \(p_2(t) = \frac{1}{t(1-t)} \). Also

\[
\int_a^{\sigma(b)} G(\sigma(s), s)p_2(s)\Delta s = \int_0^{1/q} \sigma(s)(1 - \sigma(s))(s(1-s))^{-1} \Delta s \\
= \sum_{k=2}^{\infty} \frac{1}{q^{k-1}} \left(1 - \frac{1}{q^{k-1}} \right) \left(\frac{1}{q^k} \left(1 - \frac{1}{q^k} \right) \right)^{-1} q - 1 \\
= \sum_{k=2}^{\infty} \frac{q^k(1 - 1/q^{k-1})}{q^{k-1}(1 - 1/q^k)} \left(\frac{q - 1}{q^k} \right)
\]
\[= q(q - 1) \sum_{k=2}^{\infty} \frac{q^{k-1} - 1}{q^k - 1} \frac{q^k - 1}{q^{k-1}} \frac{1}{q^k} \]

\[= q(q - 1) \sum_{k=2}^{\infty} \frac{q^k - q}{q^k - 1} \frac{1}{q^k} \]

\[\leq q(q - 1) \sum_{k=2}^{\infty} q^{-k} \]

\[= 1 < \infty. \]

Thus, (H5) holds.

References

