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Abstract

We present new oscillation criteria for the second order nonlinear neutral delay
differential equation

(
a (t) (y (t) + p (t) y (t − τ))′)′ + q (t) |y (σ (t))|α−1 y (σ (t)) = 0,

where t ≥ t0, τ, and α are positive constants and the functions p, q, a, σ ∈
C ([t0, ∞) , R) . Our results generalize and improve some known results for oscilla-
tion of second order neutral delay differential equations. Our results are illustrated
with an example.
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1. Introduction

Consider the second order nonlinear neutral delay differential equation

(
a (t) (y (t) + p (t) y (t − τ))′

)′ + q (t) |y (σ (t))|α−1 y (σ (t)) = 0, (1.1)

where t ≥ t0, τ, and α are positive constants, p, q, a, σ ∈ C ([t0, ∞) , R).
Throughout this paper, we assume that (a) 0 ≤ p (t) ≤ 1, q (t) ≥ 0, a (t) > 0, α >

0; (b) σ (t) ≤ t, σ ′ (t) > 0, lim
t→∞ σ (t) = ∞; (c)

∫ ∞

t0

dt

a (t)
= ∞.

Second order neutral delay differential equations have applications in problems deal-
ing with vibrating masses attached to an elastic bar and in some variational problems
(see Hale [10]).

Our attention is restricted to those solutions of equation (1.1) that satisfy
sup {|y (t)| : t ≥ T } > 0. We make a standing hypothesis that (1.1) does possess such
solutions. By a solution of equation (1.1) we mean a function y ∈ C ([θ, ∞) , R) ,

θ = min {t0 − τ, σ (t0)} in the sense that both y (t) + p (t) y (t − τ) and a (t) (y (t) +
p (t) y (t − τ))′ are continuously differentiable for t ≥ t0 and y (t) satisfies equation
(1.1) on [t0, ∞). For further questions concerning existence and uniqueness of solutions
of neutral delay differential equations see Hale [10].

A solution of equation (1.1) is said to be oscillatory if it has arbitrarily large zeros, and
otherwise it is nonoscillatory. The equation itself is called oscillatory if all its solutions
are oscillatory.

In the last few decades, there has been increasing interest in obtaining sufficient
conditions for the oscillation and nonoscillation of solutions of different classes of second
order neutral delay differential equations, see for example [2, 6, 7, 9] and the references
quoted therein. For oscillation of various functional differential equations we refer the
reader to the monographs [1, 7, 9, 20].

In particular, much work has been done on the following particular cases of (1.1):

y′′ (t) + q (t) y (t) = 0, (1.2)

(
r (t) y′ (t)

)′ + q (t) y (t) = 0, (1.3)

y′′ (t) + q (t) y (t − σ) = 0, (1.4)

(y (t) + p (t) y (t − τ))′′ + q (t) y (t − σ) = 0. (1.5)

An important tool in the study of the oscillatory behavior of solutions of these equations
is the averaging technique which goes back as far as the classical result of Wintner [25]
where it was proved that (1.2) is oscillatory if

lim
t→∞

1

t

∫ t

t0

∫ s

t0

q (v) dvds = ∞. (1.6)
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Hartman [11] proved that the limit in (1.6) cannot be replaced by the limit supremum
and proved that the condition

−∞ < lim inf
t→∞

1

t

∫ t

t0

∫ s

t0

q (v) dvds < lim sup
t→∞

1

t

∫ t

t0

∫ s

t0

q (v) dvds ≤ ∞, (1.7)

implies that every solution of (1.2) oscillates.
Kamenev [12] improved Wintner’s result by proving that the condition

lim
t→∞

1

tn

∫ t

t0

(t − s)n q (s) ds = ∞, (1.8)

for some integer n > 1 is sufficient for the oscillation of (1.2).
Yan [26] proved that if

lim sup
t→∞

1

tn

∫ t

t0

(t − s)n q (s) ds < ∞,

for some integern > 1 and there exists a functionφ on [t0, ∞) satisfying
∫ ∞

t0

φ2+ (t) dt =
∞ where φ+ (t) = max{φ (t) , 0} and

lim sup
t→∞

1

tn

∫ t

t0

(t − s)n q (s) ds > sup
u≥t0

φ (u) , (1.9)

then every solution of equation (1.2) oscillates.
Philos [18] further improved Kamenev’s result by proving the following: Suppose

there exist continuous functions H, h : D ≡ {(t, s) : t ≥ s ≥ t0} → R such that

H (t, t) = 0, t ≥ t0,

H (t, s) > 0, t > s ≥ t0,

and H has a continuous and nonpositive partial derivative on D with respect to the second
variable and satisfies

−∂H (t, s)

∂s
= h (t, s)

√
H (t, s) ≥ 0. (1.10)

Further, suppose that

lim
t→∞

1

H (t, t0)

∫ t

t0

[
H (t, s) q (s) − 1

4
h2 (t, s)

]
ds = ∞. (1.11)

Then every solution of equation (1.2) oscillates.

We note, however, that when q (t) = γ

t2
, (1.2) reduces to the well-known Euler–

Cauchy equation

u′′ (t) + γ

t2
u (t) = 0, t ≥ 1, (1.12)
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to which none of the above mentioned oscillation criteria is applicable. In fact, the

Euler–Cauchy equation (1.12) is oscillatory if γ >
1

4
, and nonoscillatory if γ ≤ 1

4
,

see [13]. For further results on the oscillation of superlinear and sublinear equations, we
refer the reader to the papers [3–5, 23].

For oscillation of equation (1.3), Leighton [15] proved that if∫ ∞

t0

dt

r (t)
= ∞ and

∫ ∞

t0

q (t) dt = ∞, (1.13)

then every solution of equation (1.3) oscillates.
Willett [24] used the transformation

τ =
(∫ ∞

t

ds

r (s)

)−1

, u (t) = τ−1 (y (t)) ,

to establish a new version of Leighton’s criterion and obtained the following oscillation
result: If ∫ ∞

t0

dt

r (t)
= ∞ and

∫ ∞

t0

q (t)

(∫ ∞

t

ds

r (s)

)2

dt = ∞, (1.14)

then every solution of (1.3) oscillates.
We note, however, that the oscillation criteria of Leighton and Willett are not appli-

cable to the equation (
t2u′ (t)

)′ + γ u (t) = 0, t > 0, (1.15)

where γ is a positive constant. Kong [13], Li [16], Li and Yeh [17], Rogovchenko [19],
and Yu [27] used the generalized Riccati technique and have given several sufficient
conditions for oscillation of (1.3) which can be applied to (1.15); in fact every solution

of (1.15) oscillates if γ >
1

4
, see [17, 18].

In [22], Waltman extended Leighton’s criterion to equation (1.4) and showed that
(1.4) is oscillatory if q (t) ≥ 0 and∫ ∞

t0

q (s) ds = ∞.

But, Travis [21] showed that Leighton’s criterion is not enough to ensure the oscillation
of equation (1.4). Hence, the oscillation analysis of the delay differential equations is
more complicated than that of ordinary differential equations.

There has recently been an increased interest in the studying of the oscillation of
second order neutral delay differential equations. The results of Waltman and Travis
have been extended to neutral delay differential equations by Grammatikopoulos, Ladas
and Meimaridou [8]. They proved that if

0 ≤ p (t) ≤ 1, q (t) ≥ 0,
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and ∫ ∞

t0

q (s) [1 − p (s − σ)] ds = ∞,

then equation (1.5) is oscillatory.
In this paper, we use the generalized Riccati transformation technique to establish

some new sufficient conditions for the oscillation of equation (1.1). To the best of our
knowledge nothing is known regarding the qualitative behavior of equation (1.1). The
relevance of our results becomes clear in an example that we give in Section 2. In
the sequel, when we write a functional inequality we will assume that it holds for all
sufficiently large values of t .

2. Main Results

In this section, we will establish some new oscillation criteria for the oscillation of
equation (1.1), which extend and improve some known results. Throughout this section,
for any function φ ∈ C1 ([t0, ∞)) , we define

Q (t) := q (t) (1 − p (σ (t)))α , k (t) = N2
1 a (σ (t))

α2σ
′
(t)

∫ σ(t)

t1

a (σ (s))

σ
′
(s) � (s) a2 (s)

ds,

for some constant N1 and t1 ≥ t0, and

� (t) = exp

(
−2

∫ t

φ (ζ ) dζ

)
, β (t) = φ (t)

(
1 − a (t)

k (t)

)
,

ψ (t) = � (t)

(
Q (t) + 1

k (t)
(a (t) φ (t))2 − (a (t) φ (t))

′
)

.

Theorem 2.1. Suppose there exists a negative function φ ∈ C1 ([t0, ∞)), such that

(
�′ (t) a (σ (t))

σ ′ (t)

)′
≤ 0, for t ≥ t0, (2.1)

and

lim inf
t→∞

∫ t

t0

� (s) Q (s) ds > 0, (2.2)

and there exists continuous functions H, h : D → R such that

(i) H (t, t) = 0, for t ≥ t0,

(ii) H (t, s) > 0, for t > s ≥ t0,

(iii) H has a continuous and nonpositive partial derivative on D with respect to the
second variable.
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Assume there exists a function υ ∈ C1 ([t0, ∞) , (0, ∞)) and T ≥ t0 such that

− ∂

∂s
[H(t, s)υ(s)] + 2H (t, s) υ (s) φ (s)

(
1 − a (s)

k (s)

)
= h (t, s)

√
H (t, s) υ (s).

Further assume for all sufficiently large T ,

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s) ψ (s) − 1

4
� (s) k (s) h2 (t, s)

]
ds = ∞. (2.3)

Then equation (1.1) is oscillatory for all α > 1.

Proof. Suppose to the contrary that equation (1.1) possesses a nonoscillatory solution y

on an interval [t0, ∞). Without loss of generality, we shall assume that y (t) > 0 for all
t ≥ t0. Let

z (t) = y (t) + p (t) y (t − τ) . (2.4)

Then in view of condition (a), we see that z (t) > 0,
(
a (t) z′ (t)

)′ ≤ 0 for t ≥ t1 ≥ t0.
Therefore a (t) z′ (t) is a decreasing function of t , in view of Ruan [20, Theorem 1], we
have immediately that z′ (t) ≥ 0 for t ≥ t1. Consequently,

z (t) > 0, z′ (t) ≥ 0,
(
a (t) z′ (t)

)′ ≤ 0, for t ≥ t1. (2.5)

Now, observe that from (1.1), we have(
a (t) z′ (t)

)′ + q (t) yα (σ (t)) = 0, (2.6)

Now using (2.4) and (2.5), we get

y (t) = z (t) − p (t) y (t − τ)

= z (t) − p (t) (z (t − τ) − p (t − τ) y (t − 2τ))

≥ z (t) − p (t) z (t − τ) ≥ z (t) (1 − p(t)). (2.7)

Using (2.6), (2.7) and using the definition of the function Q (t), we have(
a (t) z′ (t)

)′ + Q (t) zα (σ (t)) ≤ 0, t ≥ t1. (2.8)

We now define the function

w (t) = � (t) a (t)

(
z′ (t)

zα (σ (t))
+ φ (t)

)
. (2.9)

This and (2.8) imply for t ≥ t1 that

w′ (t) ≤ −2φ (t) w (t)

+ � (t)

{
−Q (t) + (a (t) φ (t))′ − αa (t) σ ′ (t) z′ (t) z′ (σ (t))

zα+1 (σ (t))

}
. (2.10)
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From (2.5), and assumption (b), we get

a (σ (t)) z′ (σ (t)) ≥ a (t) z′ (t) ,

From this and (2.10), we get for t ≥ t1

w′ (t) ≤ −2φ (t) w (t)

+ � (t)

{
−Q (t) + (a (t) φ (t))′ − ασ ′ (t)

a (σ (t))

(
a (t) z′ (t)
zγ (σ (t))

)2
}

, (2.11)

where γ = α + 1

2
. Also, from (2.5), and assumption (b), we can write (2.11) in the form

w′ (t) ≤ � (t)

{
−Q (t) − 2a (t) φ2 (t)

+ (a (t) φ (t))′ − 2φ (t) a (t) z′ (t)
zα (σ (t))

− ασ ′ (t)
a (σ (t))

(
a (t) z′ (t)

zγ (t)

)2
}

. (2.12)

Integrating (2.12) from t1 to t (t > t1), we get

� (t)
a (t) z′(t)
zα (σ (t))

≤ C −
∫ t

t1

�(s)Q (s) ds +
∫ t

t1

�′ (s) a (s) z′(s)
zα (σ (s))

ds

−
∫ t

t1

ασ ′ (s) � (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds, (2.13)

where C = w (t1) − a (t1) � (t1) φ (t1) . Since lim
t→∞ σ (t) = ∞, for t sufficiently

large σ (t) > t1, a (s) z′ (s) ≤ a (σ (s)) z′ (σ (s)). Then by Bonnet’s theorem, since
�′ (t) a (σ (t))

σ ′ (t)
is nonincreasing, for a fixed t ≥ t1, there exists ξ ∈ [t1, t] such that

∫ t

t1

�′ (s) a (s) z′ (s)
zα (σ (s))

ds ≤
∫ t

t1

�′ (s) a (σ (s))

σ ′ (s)
z′ (σ (s)) σ

′
(s)

zα (σ (s))
ds

= �′ (t1) a (σ (t1))

σ ′ (t1)

∫ ξ

t1

z′ (σ (s)) σ ′ (s)
zα (σ (s))

ds

= �′ (t1) a (σ (t1))

σ ′ (t1)

∫ z(σ (ξ))

z(σ (t1))

u−αdu

= �′ (t1) a (σ (t1))

(1 − α) σ ′ (t1)
(
z1−α (σ (ξ)) − z1−α (σ (t1))

)

<
a (σ (t1)) �′ (t1) z1−α (σ (t1))

(α − 1) σ ′ (t1)
= M. (2.14)
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Thus, for t ≥ t1, we find from (2.13), that

� (t)
a (t) z′ (t)
zα (σ (t))

≤ L −
∫ t

t1

� (s) Q (s) ds

−
∫ t

t1

ασ ′ (s) � (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds,

where L = C + M > 0 and hence, since � (t)
a (t) z′ (t)
zα (σ (t))

> 0, we have

∫ t

t1

ασ ′ (s) � (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds

≤ L − � (t)
a (t) z′ (t)
zα (σ (t))

−
∫ t

t1

� (s) Q (s) ds

< L −
∫ t

t1

� (s) Q (s) ds. (2.15)

From (2.2) and (2.15), we have that the integral

∫ t

t1

ασ ′ (s) � (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds,

converges as t → ∞. Thus, there exists a positive constant N such that

∫ t

t1

ασ ′ (s) � (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds ≤ N, for all t ≥ t1. (2.16)

By Schwarz’s inequality, we get

∣∣∣∣
∫ t

t1

z′(s)
zγ (s)

ds

∣∣∣∣
2

=
∣∣∣∣∣
∫ t

t1

√
a(σ (s))

ασ ′(s)�(s)a2 (s)

√
ασ ′(s)�(s)

a(σ (s))

a(s)z′(s)
zγ (s)

ds

∣∣∣∣∣
2

≤
∫ t

t1

a (σ (s))

ασ ′ (s) � (s) a2 (s)
ds

(∫ t

t1

ασ ′ (s) � (s)

a (σ (s))

(
a (s) z′ (s)

zγ (s)

)2

ds

)

≤ N

∫ t

t1

a (σ (s))

ασ ′ (s) � (s) a2 (s)
ds.

Hence, for t ≥ t1

∣∣z1−γ (t) − z1−γ (t1)
∣∣ ≤ (γ − 1) N

1
2

(∫ t

t1

a (σ (s))

ασ ′ (s) � (s) a2 (s)
ds

) 1
2

.
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Therefore there exists a constant N1 and t2 > t1 such that

∣∣z1−γ (t)
∣∣ ≤ N1

(∫ t

t1

a (σ (s))

ασ ′ (s) � (s) a2 (s)
ds

) 1
2

, for t ≥ t2.

Since lim
t→∞ σ (t) = ∞, we can assume that there exists a T ≥ t2 such that σ (t) ≥ t1 for

all t ≥ T . Hence

∣∣z1−γ (σ (t))
∣∣ ≤ N1

(∫ σ(t)

t1

a (σ (s))

ασ ′ (s) � (s) a2 (s)
ds

) 1
2

, for t ≥ T ,

or

∣∣zγ (σ (t))
∣∣ ≤ ∣∣zα (σ (t))

∣∣ N1

(∫ σ(t)

t1

a (σ (s))

ασ
′
(s) � (s) a2 (s)

ds

) 1
2

, for t ≥ T . (2.17)

From (2.17), (2.11) and the definition of k (t), we get, for t ≥ T

w′ (t) ≤ −2φ (t) w (t) + � (t)

{
−Q (t) + (a (t) φ (t))′ − 1

k (t)

(
a (t) z′ (t)
zα (σ (t))

)2
}

.

Equation (2.9) yields

w′ (t) ≤ −2φ (t) w (t)

+ � (t)

{
−Q (t) + (a (t) φ (t))′ − 1

k (t)

(
w (t)

� (t)
− a (t) φ (t)

)2
}

= −ψ (t) − 2φ (t)

(
1 − a (t)

k (t)

)
w (t) − 1

k (t) � (t)
w2 (t) . (2.18)

Multiplying both sides of (2.18) by H (t, s) υ (s) and integrating from T to t , we have,
for all t ≥ T ≥ t1,

∫ t

T

H (t, s) υ (s) ψ (s) ds

≤ −
∫ t

T

H (t, s) υ (s) w′ (s) ds − 2
∫ t

T

H (t, s) υ (s) φ (s)

(
1 − a (s)

k (s)

)
w (s) ds
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−
∫ t

T

H (t, s) υ (s)

k (s) � (s)
w2 (s) ds

= H (t, T ) υ (T ) w (T )

−
∫ t

T

[
− ∂

∂s
(H (t, s) υ (s)) + 2H (t, s) υ (s) φ (s)

(
1 − a (s)

k (s)

)]
w (s) ds

−
∫ t

T

H (t, s) υ (s)

k (s) � (s)
w2 (s) ds

= H (t, T ) υ (T ) w (T )

−
∫ t

T

[√
H (t, s) υ (s)

k (s) � (s)
w (s) + 1

2

√
� (s) k (s)h (t, s)

]2

ds

+ 1

4

∫ t

T

� (s) k (s) h2 (t, s) ds.

Hence∫ t

T

[
H (t, s) υ (s) ψ (s) − 1

4
� (s) k (s) h2 (t, s)

]
ds

≤ H (t, T ) υ (T ) w (T ) −
∫ t

T

[√
H(t, s)υ(s)

k(s)�(s)
w(s) + 1

2

√
�(s)k(s)h(t, s)

]2

ds.

(2.19)

By this equation, we have, for t ≥ T∫ t

T

[
H (t, s) υ (s) ψ (s) − 1

4
� (s) k (s) h2 (t, s)

]
ds

≤ H (t, T ) υ (T ) |w (T )| . (2.20)

It follows from (2.20) that

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s) ψ (s) − 1

4
� (s) k (s) h2 (t, s)

]
ds

≤ υ (T ) |ψ (T )| ,
which contradicts assumption (2.3). Therefore, equation (1.1) is oscillatory. �

Remark 2.2. The conclusion of Theorem 2.1 remains valid if assumption (2.3) is re-
placed by the two conditions

lim sup
t→∞

1

H (t, T )

∫ t

T

H (t, s) υ (s) ψ (s) ds = ∞,
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lim sup
t→∞

1

H (t, T )

∫ t

T

� (s) k (s) h2 (t, s) ds < ∞.

Remark 2.3. With the appropriate choice of the functions H, υ and h, we can deduce
from Theorem 2.1 a number of oscillation criteria for equation (1.1). Consider, for
example,

H (t, s) = (t − s)n , (t, s) ∈ D, v (s) = s,

where n is an integer greater than one. Then H is continuous on D and satisfies

H (t, t) = 0, for t ≥ t0,

H (t, s) > 0, for t > s ≥ t0.

Moreover, H has a continuous and nonpositive partial derivative on D with respect to
the second variable. Clearly, the function

h (t, s) = (t − s)(n−2)/2

√
s

[(n + 1) s − t + 2s (t − s) β (s)] , t ≥ s ≥ t0,

is continuous and satisfies for t ≥ s ≥ t0

− ∂

∂s
(H (t, s) υ (s)) + 2H (t, s) υ (s) β (s) = h (t, s)

√
H (t, s) υ (s).

Therefore, by Theorem 2.1, we get the following oscillation criterion.

Corollary 2.4. Let assumptions (2.1) and (2.2) hold. If for all sufficiently large T ,

lim sup
t→∞

1

tn

∫ t

T

[A (t, s) − B (t, s)] ds = ∞,

where

A (t, s) = (t − s)n sψ (s) ,

B (t, s) = 1

4
� (s) k (s)

(t − s)n−2

s
[(n + 1) s − t + 2s (t − s) β (s)]2 ,

for some integer n > 1, then the equation (1.1) is oscillatory for all α > 1.

Theorem 2.5. Let assumptions (2.1) and (2.2) hold, the functions H, h, υ be defined
as in Theorem 2.1, and suppose that

0 < inf
s≥t0

[
lim inf
t→∞

H (t, s)

H (t, t0)

]
≤ ∞. (2.21)

If there exists a function ϕ ∈ C1 ([t0, ∞) , R) such that

lim sup
t→∞

1

H (t, T )

∫ t

T

� (s) k (s) h2 (t, s) ds < ∞, (2.22)
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lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s) ψ (s) − 1

4
� (s) k (s) h2 (t, s)

]
ds ≥ ϕ (T ) ,

(2.23)

lim sup
t→∞

∫ t

T

ϕ2+ (s)

υ (s) � (s) k (s)
ds = ∞, (2.24)

where ϕ+ (s) = max {ϕ (t) , 0}, then equation (1.1) is oscillatory for all α > 1.

Proof. As in Theorem 2.1, without loss of generality we may assume that there exists
a solution x of equation (1.1) such that x (t) > 0 on [t1, ∞) for some t1 ≥ t0. Again
defining the function w as in Theorem 1, we arrive at (2.19) which yields for t > T ≥ t1,

1

H (t, T )

∫ t

T

[
H (t, s) υ (s) ψ (s) − 1

4
� (s) k (s) h2 (t, s)

]
ds

≤ υ (T ) w (T ) − 1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) � (s)
w (s) + 1

2

√
� (s) k (s)h (t, s)

]2

ds.

Thus,

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s) ψ (s) − 1

4
� (s) k (s) h2 (t, s)

]
ds

≤ υ (T ) w (T )

− lim inf
t→∞

1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) � (s)
w (s) + 1

2

√
� (s) k (s)h (t, s)

]2

ds.

From (2.23), we have

υ (T ) w (T ) ≥ ϕ (T )

+ lim inf
t→∞

1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) � (s)
w (s) + 1

2

√
� (s) k (s)h (t, s)

]2

ds.

Then, for T ≥ t1,

υ (T ) w (T ) ≥ ϕ (T ) (2.25)

and

lim inf
t→∞

1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) � (s)
w (s) + 1

2

√
� (s) k (s)h (t, s)

]2

ds < ∞.
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Thus

lim inf
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)υ(s)

k (s) � (s)
w2(s) + √

H(t, s)υ(s)w(s)h(t, s)

]
ds

≤ lim inf
t→∞

1

H (t, T )

∫ t

T

[√
H (t, s) υ (s)

k (s) � (s)
w (s) + 1

2

√
� (s) k (s)h (t, s)

]2

ds

< ∞. (2.26)

Define

u (t) = 1

H (t, T )

∫ t

T

H (t, s) υ (s)

k (s) � (s)
w2 (s) ds,

and

v (t) = 1

H (t, T )

∫ t

T

√
H (t, s) υ (s)w (s) h (t, s) ds,

for t ≥ t1. Then (2.26) implies that

lim inf
t→∞ [u (t) + v (t)] < ∞. (2.27)

Now, we claim that ∫ ∞

T

υ (s) w2 (s)

k (s) � (s)
ds < ∞. (2.28)

Suppose to the contrary that ∫ ∞

T

υ (s) w2 (s)

k (s) � (s)
ds = ∞. (2.29)

By (2.21), there is a positive constant M1 such that

inf
s≥t0

[
lim inf
t→∞

H (t, s)

H (t, t0)

]
> M1 > 0. (2.30)

Let M2 be any arbitrary positive number. It follows from (2.29) that there exists a t2 > T

such that ∫ t

T

υ (s) w2 (s)

k (s) � (s)
ds ≥ M2

M1
, for all t ≥ t2.

Consequently, for all t ≥ t2,

u (t) = 1

H (t, T )

∫ t

T

H (t, s) d

[∫ s

T

υ (ζ ) w2 (ζ )

k (ζ ) � (ζ )
dζ

]
,

= 1

H (t, T )

∫ t

T

[
−∂H (t, s)

∂s

] [∫ s

T

υ (ζ ) w2 (ζ )

k (ζ ) � (ζ )
dζ

]
ds,

≥ 1

H (t, T )

∫ t

t2

[
−∂H (t, s)

∂s

] [∫ s

T

υ (ζ ) w2 (ζ )

k (ζ ) � (ζ )
dζ

]
ds,

≥ M2

M1

1

H (t, T )

∫ t

t2

[
−∂H (t, s)

∂s

]
ds = M2

M1

H (t, t2)

H (t, T )
.
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By (2.30), we have
H (t, s)

H (t, t0)
≥ M1, for all t ≥ T ,

so that
u (t) ≥ M2, for all t ≥ T .

Since M2 is an arbitrary constant, we conclude that

lim
t→∞ u (t) = ∞. (2.31)

Consider a sequence {tn}∞n=1 ∈ (t1, ∞) , tn → ∞ as n → ∞ such that

lim
n→∞ [u (tn) + v (tn)] = lim inf

t→∞ [u (t) + v (t)] .

By (2.27), there exists a number M such that

u (tn) + v (tn) ≤ M, for n = 1, 2, . . . . (2.32)

It follows from (2.31) that
lim

n→∞ u (tn) = ∞. (2.33)

Thus, (2.32) yields
lim

n→∞ v (tn) = −∞. (2.34)

It follows from (2.33) and (2.34) that for large values of n,

v (tn)

u (tn)
< ε − 1 < 0, (2.35)

where ε ∈ (0, 1). Thus, by (2.34) and (2.35), we conclude that

lim
n→∞

v (tn)

u (tn)
v (tn) = ∞. (2.36)

On the other hand, by the Schwarz inequality, we get

v2 (tn) =
{

1

H (tn, T )

∫ tn

T

√
H (tn, s) υ (s)w (s) h (tn, s) ds

}2

≤
{

1

H (tn, T )

∫ tn

T

H (tn, s) υ (s)

k (s) � (s)
w2 (s) ds

}
{

1

H (tn, T )

∫ tn

T

k (s) � (s) h2 (tn, s) ds

}

≤ u (tn)

{
1

H (tn, T )

∫ tn

T

k (s) � (s) h2 (tn, s) ds

}
,
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for any positive integer n. Consequently for n large enough,

v2 (tn)

u (tn)
≤ 1

H (tn, T )

∫ tn

T

k (s) � (s) h2 (tn, s) ds.

By (2.36), we have

lim
n→∞

1

H (tn, T )

∫ tn

T

k (s) � (s) h2 (tn, s) ds = ∞.

Consequently,

lim sup
t→∞

1

H (t, T )

∫ t

T

k (s) � (s) h2 (t, s) ds = ∞,

which contradicts assumption (2.22). Therefore, (2.29) fails to hold and we have proved
that (2.28) holds. Hence, by (2.25),∫ ∞

T

ϕ2+ (s)

υ (s) � (s) k (s)
ds ≤

∫ ∞

T

υ (s) w2 (s)

� (s) k (s)
ds < ∞,

which contradicts (2.24). This completes our proof. �

Corollary 2.6. Let assumptions (2.1) and (2.2) hold, the functions H, h, υ be defined
as in Theorem 2.1, and let (2.21) hold. If there exists a function ϕ ∈ C1 ([t0, ∞) , R)

such that (2.24) and

lim inf
t→∞

1

H (t, T )

∫ t

T

H (t, s) ψ (s) ds < ∞, (2.37)

lim inf
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s) ψ (s) − 1

4
� (s) k (s) h2 (t, s)

]
ds ≥ ϕ (T ) , (2.38)

where ϕ+ (s) = max {ϕ (t) , 0}, then equation (1.1) is oscillatory for all α > 1.

Remark 2.7. If we take
H (t, s) = (t − s)n ,

where n is an integer with n > 1 as in Remark 2.3,

v (s) = 1, h (t, s) = (t − s)
n−2

2 (n + 2 (t − s) β (s)) ,

then the following oscillation criterion can be obtained from Theorem 2.5.

Corollary 2.8. Let assumptions (2.1) and (2.2) hold. If

lim sup
t→∞

1

tn

∫ t

T

L(t, s)ds < ∞,
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lim sup
t→∞

1

tn

∫ t

T

[
(t − s)n ψ(s) − 1

4
L(t, s)

]
ds ≥ ϕ (T ) ,

where
L(t, s) := � (s) k (s) (t − s)n−2 (n + 2 (t − s) β (s))2

for some integer n > 1, and (2.24) holds, then equation (1.1) is oscillatory for all α > 1.

Remark 2.9. When we choose φ (t) = 0 in the above results, we get another result for
the oscillation of equation (1.1) for all α > 0.

Corollary 2.10. Suppose that there exist continuous functions H, h : D → R such that

(i) H (t, t) = 0, for t ≥ t0,

(ii) H (t, s) > 0, for t > s ≥ t0,

(iii) H has a continuous and nonpositive partial derivative on D with respect to the
second variable.

Suppose there exists a function υ ∈ C1 ([t0, ∞) , (0, ∞)) , T ≥ t0 such that, for some
t1 ≥ t0, σ (t) ≥ t1 for t ≥ T and

− ∂

∂s
(H (t, s) υ (s)) = h (t, s)

√
H (t, s) υ (s).

If

lim inf
t→∞

∫ t

t0

Q (s) ds > 0,

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s) υ (s) Q (s) − 1

4
k (s) h2 (t, s)

]
ds = ∞,

then equation (1.1) is oscillatory for all α > 0.

Example 2.11. Consider the following second order neutral delay differential equation,
for t ≥ 3, α > 0,(

1√
t

[
y(t) + 1√

t − 1
y(t − 1)

]′)′
+ tα+1 (2 + cos t)

(t − 2)α

∣∣∣∣y
(

t

3

)∣∣∣∣
α

sgn y

(
t

3

)
= 0.

(2.39)

Let us take H (t, s) = (t − s)2 and v (t) = 1

t
. Then t1 = t0 = 3, T = 9,

h (t, s) = t

s
√

s
+ 1√

s
, Q (t) = tα+1 (2 + cos t))

(t − 2)α

(
1 −

√
3√

t − 3

)α

,

and

k (t) =
√

3N2
1

α2

(
2t − 81√

t

)
.



Oscillation of Second Order Neutral Delay Differential Equations 69

Now, we can prove that

lim
t→∞

1

4H (t, T )

∫ t

T

k (s) h2 (t, s) ds

= lim
t→∞

√
3N2

1

4α2 (t − 9)2

∫ t

9

(
2s − 81√

s

) (
t

s
√

s
+ 1√

s

)2

ds

= N2
1

15
√

3α2
< ∞,

lim
t→∞

1

H (t, T )

∫ t

T

H (t, s) υ (s) Q (s) ds

= lim
t→∞

1

(t − 9)2

∫ t

9

(t − s)2

s

sα+1 (2 + cos (s))

(s − 2)α

(
1 −

√
3√

s − 3

)α

ds

= ∞.

Then all the hypotheses of Corollary 2.10 are satisfied. Hence equation (2.39) is oscilla-
tory for α > 0. Note that none of the above mentioned oscillation criteria can be applied
to (2.39).

References

[1] Ravi P. Agarwal, Said R. Grace, and Donal O’Regan, Oscillation theory for dif-
ference and functional differential equations, Kluwer Academic Publishers, Dor-
drecht, 2000.

[2] D.D. Baı̆nov and D.P. Mishev, Oscillation theory for neutral differential equations
with delay, Adam Hilger Ltd., Bristol, 1991.

[3] G.J. Butler, Integral averages and the oscillation of second order ordinary differen-
tial equations, SIAM J. Math. Anal., 11(1):190–200, 1980.

[4] W.J. Coles,An oscillation criterion for the second order differential equations, Proc.
Amer. Math. Soc., 19:755–759, 1968.

[5] W.J. Coles, Oscillation criteria for nonlinear second order equations, Ann. Mat.
Pura Appl. (4), 82:123–133, 1969.

[6] Jozef Džurina and Božena Mihalíková, Oscillation criteria for second order neutral
differential equations, Math. Bohem., 125(2):145–153, 2000.

[7] L.H. Erbe, Qingkai Kong, and B.G. Zhang, Oscillation theory for functional-
differential equations, volume 190 of Monographs and Textbooks in Pure and
Applied Mathematics, Marcel Dekker Inc., New York, 1995.

[8] M.K. Grammatikopoulos, G. Ladas, and A. Meimaridou, Oscillations of second
order neutral delay differential equations, Rad. Mat., 1(2):267–274, 1985.



70 L. Erbe, T.S. Hassan and A. Peterson
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