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Abstract

We wish to examine the dynamics of solutions of dynamic equation on time scales
as the time scales change. Toward this end, we examine the standard topologies on
the space of time scales and show that the Fell topology is desirable.
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1. Introduction

In his 1988 dissertation [7], S. Hilger developed the calculus on times scales. A thorough
introduction is contained in [1]. A time scale is a nonempty closed subset of R. A
derivative, called the �-derivative, is defined for a function f whose domain is a time
scale T and is denoted f �(t) at any t ∈ T (t < sup T ). f �(t) is designed to mimic
the standard right-hand derivative f ′(t) when there exists a strictly decreasing sequence
convergent to t in T and a scaled difference operator otherwise. In particular, f �(t) =
f ′(t) on R and f �(t) = �f (t) on Z. While the �-derivative is a “forward” operator,
an analogous “backwards” operator exists called the ∇-derivative.

1This paper is based on the talk “Some remarks and questions on solution spaces of dynamic equations”
at the Conference in Honor of Allan Peterson in Novacella, Italy on July 29, 2007 on the occasion of Allan
Peterson’s 65th birthday.
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As for differential and difference equations, we are interested in equations with �-
derivatives, called dynamic equations. Given a dynamic equation, say the initial value
problem

x� = f (t, x), x(t0) = x0, (1.1)

the solution inherently depends on the time scale. Broadly, we would like to examine
how the solution of (1.1) depends on the time scale that is its domain. A few things are
known.

B. Garay, S. Hilger, and P. Kloeden showed in [4] that uniqueness of solutions of
the initial value problem near a given compact time scale—guaranteed by a Lipschitz
condition—implies the continuous dependence of the solutions over compact time scales.
Nonuniqueness is not considered there; this is arguably the more interesting situation.

In [2] and [9], we considered a particular (logistic) initial value problem:

x� = 4x
(3

4 − x
)
, x(0) = x0

on R+ as well as on the Eulerian time scales µZ+ (see [5]) for 0 < µ ≤ 1.
By definition of x�(t), for every t ∈ µZ+,

x(t+µ)−x(t)
µ

= 4x(t)
(3

4 − x(t)
)
.

Hence,

x(t + µ) = 4µx(t)
(3

4 − x(t)
) + x(t)

= 4µx(t)
(

3µ+1
4µ

− x(t)
)

and the solution is found by iterating

Lµ(x) = 4µx
(

3µ+1
4µ

− x
)

.

starting from x(0) = x0.
Note that when µ = 1, Lµ(x) = 4x (1 − x) and µZ = Z. On the other hand, as

µ → 0, the solutions tend towards the solution of the logistic differential equation on
R+.

The dynamics of the quadratic polynomial Lµ is easily understood. How the dynam-
ics changes as the time scale changes (i.e., as µ varies between 0 and 1) is interesting.

Theorem 1.1. Lµ is topologically conjugate to some Qc(x) = x2+c, where every value
of µ ∈ (0, 1] corresponds exactly to one value of c ∈ [−2, 1/4

)
, µ = 1 corresponds to

c = −2, and c → 1/4 as µ → 0.

The proof is a standard computation. The real interval
[−2, 1/4

]
is the real part of

the Mandelbrot set for the family Qc. Hence, passing through the time scales µZ from
difference equation when µ = 1 toward differential equation as µ → 0, we see all of
the interesting dynamics of real quadratic polynomials and all of their bifurcations!
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In the real case, the bifurcation sequence from c = 1/4 to c = −2 for Qc is unique
up to cancellation of inverses, i.e., without going “back and forth" along the interval[−2, 1/4

]
. That is, there is a unique reduced bifurcation sequence.

In the complex case, the bifurcation sequence from c = 1/4 to c = −2 for Qc is far
from unique. For example, one could follow a path looping half-around the Mandelbrot
set staying in the region of Cantor sets and one-sided shifts (horseshoes). If we take
a path inside the Mandelbrot set, which is simply connected, then the matter is again
uniquely determined.

In this example, we have realized the domain of the solutions on eulerian time scales
as a parameter of a family of dynamical systems. We do not know what happens when
non-Eulerian time scales (i.e., not µZ) are allowed. We have also not had to worry about
nonunique solutions.

This suggests the following approach. For any given initial value problem, treat the
time scales as a parameter. Let A denote the set of all time scales and let B denote the
set of all solutions of the initial value problem on all possible time scales. Consider the
canonical projection:

B�π

A

That is, an element of B, a solution f : T → R, projects to its domain, T. What can we
say about this projection, especially when there are nonunique solutions? Under what
conditions is there unique lifting? Can we follow two different paths from the same
starting point (a solution on the initial time scale) to different solutions following the
same path of time scales? Can a loop in CL(R) lift to a path that is not a loop? How
can this approach help us to understand the changes in dynamics of solutions caused by
changes in their time scales? In order to make sense of these questions, we must first
discuss the topologies on these sets.

2. Topologies on Sets of Closed Subsets

Given a topological space X, researchers in hyperspace theory use the following notation:

CL(X) = { A ⊂ X | A �= ∅ and A is closed in X }
and

2X = { A ∈ CL(X) | A is compact } .

Other authors use exp X and expc X, respectively. We are especially interested in the set
of time scales, CL(R), and the sets of functions on time scales.

There are several well-known topologies in use in hyperspace theory. Among these
are the Hausdorff metric topology (for a metric space) introduced in [6] and the Vi-
etoris topology introduced in [12]. See [8] for a good introduction to these hyperspace
topologies.
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Following a suggestion of N. Esty, we propose an alternative topology, the Fell
topology, introduced in [3]. The Fell topology seems to be more appropriate for time
scales.

Let X be a metrizable space and let d be a bounded metric on X. For example, for
X = R, d will denote the truncated metric d(x, y) = min{1, |y − x|}. Let us consider
these topologies on CL(X).

Definition 2.1. The Hausdorff metric on CL(X) with respect to d is defined by, for all
S, T ∈ CL(X),

Hd(S, T) = sup

{
sup
s∈S

d(s, T), sup
t∈T

d(S, t)

}

= sup

{
sup
s∈S

inf
t∈T

d(s, t), sup
t∈T

inf
s∈S

d(s, t)

}
.

We denote the resulting topology by τ(Hd).

We use the following notation to define the Vietoris and Fell topologies.

Definition 2.2. For any E ⊂ X, let

E− = {A ∈ CL(X)|A ∩ E �= ∅}
and

E+ = {A ∈ CL(X)|A ⊂ E} = {A ∈ CL(X)|A ∩ (X − E) = ∅}.
In the literature, it is said that every A ∈ E− “hits” E and every A ∈ E+ “misses”

X − E; E− is a “hit” set and E+ is a “miss” set. Note that E+ ⊂ E− for every E.
Call a subset of X cocompact if its complement is compact. We next define the

Vietoris and Fell topologies.

Definition 2.3.

(a) A subbasis for the lower Vietoris topology, τ(V −), consists of sets of the form U−
for all open subsets U of X.

(b) A subbasis for the upper Vietoris topology, τ(V +), consists of sets of the form U+
for all open subsets U of X.

(c) A subbasis for the upper Fell topology, τ(F+), consists of sets of the form U+ for
all cocompact subsets U of X.

(d) The Vietoris topology is the join of the lower and upper Vietoris toplogies: τ(V ) =
τ(V −) ∨ τ(V +).

(e) The Fell topology is the join of the lower Vietoris and upper Fell toplogies: τ(F ) =
τ(V −) ∨ τ(F+).
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TheVietoris and Fell topologies are known as hit-and-miss topologies. The following
examples show that the Hausdorff and Vietoris topologies are not completely satisfactory
on the space of time scales, CL(R). Recall that, on R, we let d be the truncated metric.

Example 2.4. For n ≥ 0, Hd([0, n], R+) = 1. Hence, {[0, n]} does not converge to R+
in the Hausdorff topology.

Example 2.5. Z+1/n does not converge to Z as n → ∞ in the Vietoris topology since,
for each n > 1, Z + 1/n /∈ U+ where

U =
∞⋃

k=1

(
k − 1

k
, k + 1

k

)
.

Notice that U+ in Example 2.5 is Vietoris-open but not Fell-open since U is not
cocompact. Let us further compare these three topologies on CL(X).

Theorem 2.6. Let X be a topological space.

(a) In general, the Vietoris topology is not metrizable.

(b) If X is compact metrizable, then the Hausdorff, Vietoris, and Fell topologies agree
on CL(X).

(c) CL(X) is compact in the Fell topology.

Proof. Regarding (a), for a T1 space X, τ(Hd) = τ(V ) if and only if X is compact
(see [8]). See [11] for (b); also see Theorem 2.7 below. Fell proved (c) in [3]. �

Theorem 2.7. Let X be a topological space.

(a) If X is metrizable, then, in general, the Hausdorff and Vietoris topologies are not
comparable on CL(X).

(b) The Vietoris topology is always finer and, generally, strictly finer than the Fell
topology.

(c) If X is metrizable, then the Hausdorff topology is always finer and, generally,
strictly finer than the Fell topology.

Proof.

(a) We show that they are not comparable on CL(R).

Let B ∈ τ(Hd) be the open ball B1/3(N). From [8], we know that a basis for the
Vietoris topology consists of sets of the form

〈U1, . . . , Un〉 = {A ∈ CL(X)|A ⊂ U1∪. . . Un and A∩Ui �= ∅ for i = 1, . . . , n},
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where U1, . . . , Un is any finite collection of open subsets of R. Assume that
V = 〈U1, U2, . . . , Un〉 is a basic open set in τ(V ) containing N. There exists k such
that i, j ∈ Uk ∩ N with i �= j . Let N1 = N − {i} ∈ V . Since Hd(N, N1) = 2/3,
N1 /∈ B. Hence V �⊂ B. Therefore τ(Hd) �⊂ τ(V ). Let

U =
∞⋃

k=1

(
k − 1

k
, k + 1

k

)
.

Then N ∈ U+ = 〈U〉 ∈ τ(V ). No open ball Bε(N) is a subset of 〈U〉 since
the diameters of the intervals about k in U tend to 0 as k → ∞. Therefore,
τ(V ) �⊂ τ(Hd).

(b) Since cocompact sets are open, the Fell topology is coarser (i.e., weaker) than the
Vietoris topology: τ(F ) ⊂ τ(V ). In CL(R), U+ for U = (0, 1), is Vietoris-open,
but not Fell-open, since U is not cocompact.

(c) τ(Hd) �⊂ τ(F ) on CL(R) since, otherwise, τ(Hd) ⊂ τ(F ) ⊂ τ(V ).

S. Naimpally has shown in [10] that τ(Hd) is also a hit-and-miss topology. In fact,
the Hausdorff topology is the discrete-hit-and-far-miss topology (see [11]): τ(Hd) =
τ(Ld)∨τ(δ+), the join of the lower discrete and the upper far topologies. Since τ(V −) ⊂
τ(Ld) and τ(F+) ⊂ τ(δ+), the result follows. (This result is surprisingly difficult to
prove directly from a metric definition.) �

In particular, in the lattice of topologies on CL(R),

• τ(Hd) �⊂ τ(V ) and τ(V ) �⊂ τ(Hd);

• τ(F ) ⊂ τ(V ) and τ(V ) �⊂ τ(F ); and

• τ(F ) ⊂ τ(Hd) and τ(Hd) �⊂ τ(F ).

3. Convergence in CL(R) with the Fell Topology

Under the Fell topology on CL(R+), we wish to show that

[0, n] → R+ as n → ∞ and Z + 1

n
→ Z as n → ∞.

In fact, we wish to prove that convergence under the Fell topology works as we would
have it.

Definition 3.1. Let {Tn} be a sequence in CL(R) and let t ∈ R.

(a) t is a sequential limit point of {Tn} if there exists a sequence {tn} such that, for all
n ∈ N, tn ∈ Tn and tn → t in R as n → ∞.
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(b) t is a subsequential limit point of {Tn} if t is a sequential limit point of a subsequence
{Tni

}.
(c) Set T equal to the set set of all sequential limit points of {Tn} and T

′ equal to the
set set of all subsequential limit points of {Tn}.

We say that tn converges to a sequential limit t “through the Tn’s.” Similarly, tni
converges

to a subsequential limit t “through the Tni
’s.” Clearly, T ⊂ T

′.

Lemma 3.2. The sequential limit set T is closed, i.e., T ∈ CL(R).

Proof. If a sequence {si} in T converges to t , then, for every i, there exist sequences
{ti,n} converging to si through the Tn’s and the sequence {tn,n} converges to t through
the Tn’s. �

The interesting situation appears to be when the sequential and subsequential limit
sets of a given sequence in CL(R) are equal: T = T

′.

Conjecture 3.3. Tn → S as n → ∞ in CL(R) if and only if S = T = T
′.

Assuming the validity of this conjecture, is the Fell topology unique with respect to
this property or in any sense optimal?
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