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1. Introduction

Consider the second order differential equation

(
a(t)|x′(t)|α sgn x′(t)

)′ + b(t)|x(t)|β sgn x(t) = 0, (1.1)

where α, β are two positive constants, α �= β, a, b are positive continuous functions for
t ≥ 0 such that

Ia =
∫ ∞

0

(
1

a(t)

)1/α

dt = ∞, Ib =
∫ ∞

0
b(t) dt < ∞.

The prototype of (1.1) is the Emden–Fowler equation

x′′(t) + b(t)|x(t)|β sgn x(t) = 0, β > 0, β �= 1. (1.2)

Equation (1.1) is usually called the generalized Emden–Fowler equation and both equa-
tions have been widely investigated in the literature. Recent developments in the asymp-
totic behavior are in [4, 8, 9, 12, 14, 18, 20, 22, 25]. Other contributions can be found in
the monographs [1, 2, 10, 17, 21] and references therein.

Some of the quoted papers deal with a classification of nonoscillatory solutions,
based on suitable integral criteria. In particular, in [12, 20, 22], nonoscillatory solutions
are classified as subdominant, intermediate or dominant solutions, according to their
asymptotic behavior (see below for the definition). Nevertheless, the existence of the
intermediate solutions is a difficult problem, see, e.g., [2, page 241], as well as their
possible coexistence with different types of nonoscillatory solutions, see, e.g., [14, page
213]. Such a problem has been completely resolved in [4] for the half-linear equation,
i.e. (1.1) with α = β, which reads as(

a(t)|x′(t)|α sgn x′(t)
)′ + b(t)|x(t)|α sgn x(t) = 0. (1.3)

Our aim is to extend these recent results to the case α �= β, especially as it concerns
the existence or nonexistence of the intermediate solutions. Our results generalize the
well-known results, stated for (1.2), by Moore and Nehari for the superlinear case and
Belohorec for the sublinear one (see, e.g., [24, Theorems 6.3, 6.4]). Our approach is
based on a comparison with the half-linear case and on some integral inequalities and
it is completely different from those used in papers by Moore–Nehari and Belohorec,
in which the nonexistence of intermediate solutions of (1.2) is obtained using some
asymptotic estimates for nonoscillatory solutions of (1.2).

We also discuss some analogies and discrepancies between the continuous and the
discrete case. In particular, we will show that some recent nonoscillation criteria, stated
for the differential equation (1.1), cannot be carried over verbatim to the difference
equation

�
(
an|�xn|α sgn �xn

) + bn|xn+1|β sgn xn+1 = 0, (1.4)
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where α, β are two positive constants, α �= β, {an},{bn} are positive real sequences for
n ≥ 0 such that

Ya =
∞∑

n=0

(
1

an

)1/α

= ∞, Yb =
∞∑

n=0

bn < ∞.

Some notations are in order. Let λ, µ be two positive numbers and define

A(t) =
(

1

a(t)

)1/α

, (1.5)

Jλ =
∫ ∞

0
A(t)

(∫ ∞

t

b(s)ds

)1/λ

, Kµ =
∫ ∞

0
b(t)

(∫ t

0
A (σ) dσ

)µ

dt.

2. Preliminaries

Throughout this paper we shall consider only the solutions of (1.1) which exist on some
ray [τ, ∞), where τ ≥ 0 may depend on the particular solution. As usual, a solution
x of (1.1) is said to be nonoscillatory if x(t) �= 0 for large t and oscillatory otherwise.
The equation (1.1) is called nonoscillatory if all its solutions are nonoscillatory. This
terminology holds also for (1.3), but, in such a case, some stronger results hold. In
particular, any solution of (1.3) is defined in the whole half-line and the existence of a
nonoscillatory solution implies the nonoscillation of (1.3) (see, e.g., [10]).

For any solution x of (1.1), denote by x[1] the quasiderivative of x, i.e., the function

x[1](t) = a(t)|x′(t)|α sgn x′(t). (2.1)

Since Ia = ∞, it is easy to verify that any nonoscillatory solution x of (1.1) is eventually
monotone and verifies

x(t)x[1](t) > 0 for large t;
we denote this property by saying that x is of class M

+. Thus any nonoscillatory
solution x is either eventually positive increasing such that x[1] is positive decreasing,
or x is eventually negative decreasing such that x[1] is negative decreasing, and we can
divide the class M

+ of all nonoscillatory solutions into the three subclasses:

M
+
∞,� = {

x ∈ M
+ : |x(∞)| = ∞, x[1](∞) = �x, 0 < |�x | < ∞}

,

M
+
∞,0 = {

x ∈ M
+ : |x(∞)| = ∞, x[1](∞) = 0

}
,

M
+
�,0 = {

x ∈ M
+ : x(∞) = �x, x

[1](∞) = 0, 0 < |�x | < ∞}
.

Following [22], solutions in M
+
∞,�,M

+
∞,0,M

+
�,0 are called dominant solutions, intermedi-

ate solutions and subdominant solutions, respectively. Indeed, if x ∈ M
+
∞,�, y ∈ M

+
∞,0,

z ∈ M
+
�,0, then we have

|x(t)| > |y(t)| > |z(t)| for large t.
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Concerning the existence of solutions in the classes M
+
∞,� and M

+
�,0, the following holds.

Theorem 2.1. i1) Equation (1.1) has solutions in the class M
+
�,0 if and only if

Jα =
∫ ∞

0
A(t)

(∫ ∞

t

b(s)ds

)1/α

< ∞.

i2) Equation (1.1) has solutions in the class M
+
∞,� if and only if

Kβ =
∫ ∞

0
b(t)

(∫ t

0
A (σ) dσ

)β

dt < ∞.

Proof. The assertion follows from [11] (see also, e.g., [2, Theorems 3.13.11, 3.13.12]
or [23, Theorems 4.3, 4.4]). �

Remark 2.2. The above classification of nonoscillatory solutions is valid also when
α = β, i.e. in the half-linear case. In particular, Theorem 2.1 continues to hold for
(1.3), but, clearly, in such a case, in claim i2) the existence in M

+
∞,� depends on the

convergence of Kα, instead of Kβ (see, e.g., [4]).

The existence of intermediate solutions for (1.1) is a more difficult problem, since
for these solutions we do not have sharp upper or lower bounds. Nevertheless, such
a problem has been completely solved in the half-linear case ([4]). In particular, the
following result has been proved.

Theorem 2.3. ([4, Theorems 6 and 7]) Assume (1.3) is nonoscillatory. Then for (1.3)
we have M+

∞,0 = ∅ if and only if Jα < ∞ and Kα < ∞.

We close this section by recalling some useful relations on the change of integration
for double integrals, which play an important tool in the asymptotic theory of differential
equations.

In view of the Fubini theorem, we have J1 = K1. In general, the following holds.

Lemma 2.4. i1) If λ ≥ 1 and Jλ < ∞, then Kλ < ∞.

i2) If λ ≤ 1 and Kλ < ∞, then Jλ < ∞.

i3) If λ < µ and Kµ < ∞, then Jλ < ∞.

i4) If λ > µ and Jλ < ∞, then Kµ < ∞.

Proof. Claims i1), i2) are proved in [9, Corollary 1] and claims i3), i4) in [8, Lemmas 1,
2]. �

In virtue of claims i3), i4) in Lemma 2.4, the possible cases of the mutual behavior
of the integrals Jα, Kβ (α �= β) are the following four:

C1) Jα = ∞, Kβ = ∞;
C2) Jα = ∞, Kβ < ∞ and α > β;
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C3) Jα < ∞, Kβ = ∞ and α < β;
C4) Jα < ∞, Kβ < ∞.

3. An Existence Result

If the case C1) occurs, then (1.1) is oscillatory (see, e.g., [21, Theorems 11.3, 11.4]).
Clearly, this fact is not true in the half-linear case, as the Euler equation illustrates, see,
e.g., [10, Theorem 1.4.4].

In virtue of Theorem 2.1, if any of the case Ci), i = 2, 3, 4, holds, then the class M
+

is nonempty. It is well known that, when the case C2) holds, then (1.1) has intermediate
solutions (see, e.g., [22, Theorem 1.3] if a ≡ 1, or [20, Theorem 2.4]). In order to
study the existence of these solutions in case C3), the following uniqueness result for
subdominant solutions is useful and makes Theorem 2.1-i1) more complete.

Theorem 3.1. Assume Jα < ∞. Then for any L �= 0 there exists a unique solution x of
(1.1) satisfying the boundary conditions

x(∞) = L, x[1](∞) = 0. (3.1)

Proof. Without loss of generality, assume L > 0. Put

h1 =



(1/2)β−1Lβ−1 if β ≤ 1,

Lβ−1 if β > 1
(3.2)

and

h2 =



(1/2)(1−α)β/α L(1−α)β/α if α ≤ 1,

L(1−α)β/α if α > 1.

(3.3)

Choose t0 ≥ 0 large so that∫ ∞

t0

A(t)

(∫ ∞

t

b(σ )dσ

)1/α

dt <
1

2
L1−(β/α) (3.4)

and

h = β

α
h1h2

∫ ∞

t0

A(s)

(∫ ∞

s

b(σ )dσ

)1/α

ds < 1, (3.5)

where A(t) is defined by (1.5). Set

� = {
u ∈ C[t0, ∞), L/2 ≤ u(t) ≤ L

}
and consider the operator T given by

T (u)(t) = L −
∫ ∞

t

A(s)

(∫ ∞

s

b(σ )uβ(σ )dσ

)1/α

ds.
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In view of (3.4), for any u ∈ � we have

∫ ∞

t0

A(s)

(∫ ∞

s

b(σ )uβ(σ )dσ

)1/α

ds ≤ Lβ/α

∫ ∞

t0

A(s)

(∫ ∞

s

b(σ )dσ

)1/α

ds ≤ L

2

and so T (u)(t) ≥ L/2. Since T (u)(t) ≤ L, we obtain T (�) ⊂ �.
Let BC be the metric space of bounded continuous functions on [t0, ∞) with distance

given by d(f, g) = sup
t∈[t0,∞)

|f (t) − g(t)|. Now we prove that T is a contraction in �

with respect to d. From the mean value theorem we have for M, N > 0 and q > 0

|Mq − Nq | ≤ q|M − N | max
{
Nq−1, Mq−1} . (3.6)

So for u, v ∈ �, in view of (3.2), we obtain for σ ≥ t0

|uβ(σ ) − vβ(σ )| ≤ βh1|u(σ) − v(σ )|. (3.7)

For any w ∈ � we have

1

2β
Lβ

∫ ∞

s

b(σ )dσ ≤
∫ ∞

s

b(σ )wβ(σ ) dσ ≤ Lβ

∫ ∞

s

b(σ )dσ

and so, from (3.3) we obtain for s ≥ t0

(∫ ∞

s

b(σ )wβ(σ ) dσ

)(1−α)/α

≤ h2

(∫ ∞

s

b(σ )dσ

)(1−α)/α

. (3.8)

Applying again the inequality (3.6) with

M =
∫ ∞

s

b(σ )uβ(σ ) dσ, N =
∫ ∞

s

b(σ )vβ(σ ) dσ, q = 1/α

and, taking into account (3.8), we get for s ≥ t0

∣∣∣∣∣
(∫ ∞

s

b(σ )uβ(σ )dσ

)1/α

−
(∫ ∞

s

b(σ )vβ(σ )dσ

)1/α
∣∣∣∣∣

(3.9)

≤ 1

α
h2

(∫ ∞

s

b(σ )dσ

)(1−α)/α ∫ ∞

s

b(σ )|uβ(σ ) − vβ(σ )| dσ.
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Thus, in view of (3.5), (3.7) and (3.9), we have

|T (u)(t) − T (v)(t)|

≤
∫ ∞

t

A(s)

∣∣∣∣∣
(∫ ∞

s

b(σ )uβ(σ )dσ

)1/α

−
(∫ ∞

s

b(σ )vβ(σ )dσ

)1/α
∣∣∣∣∣ ds

≤ 1

α
h2

∫ ∞

t

A(s)

(∫ ∞

s

b(σ )dσ

)(1−α)/α (∫ ∞

s

b(σ )|uβ(σ ) − vβ(σ )| dσ

)
ds

≤ β

α
h1h2

∫ ∞

t

A(s)

(∫ ∞

s

b(σ )dσ

)(1−α)/α (∫ ∞

s

b(σ )|u(σ) − v(σ )| dσ

)
ds

≤ h d(u, v).

Hence the operator T is a contraction in �. Since T (�) ⊂ �, by applying the contraction
theorem, we obtain the existence of a unique fixed point of T in �. It is easy to verify that
every eventually positive solution x of (1.1) satisfying (3.1) belongs to � (by choosing
a suitable large t0) and satisfies the equation x = T (x). So the proof is complete. �

In order to prove the existence of intermediate solutions, the following nonoscillation
criterion, which extends to (1.1) a result stated for (1.2) by Kiguradze ( [16]), plays a
crucial role.

Theorem 3.2. ( [21, Theorem 14.3]) Assume β > α and let the functions a, b be
absolutely continuous on every finite interval. If Ia = ∞ and there exists ε > 0 such
that the function

b(t)A−1/α(t)

(∫ t

0
A(σ)dσ

)δ+ε

is nonincreasing for large t, (3.10)

where

δ = 1 + αβ + 2α

α + 1
,

then (1.1) is nonoscillatory.

From Theorems 2.1, 3.1 and 3.2 the following result follows.

Theorem 3.3. Assume Jα < ∞ and Kβ = ∞, i.e. the case C3) occurs, and let the
functions a, b be absolutely continuous on every finite interval. If there exists ε > 0
such that (3.10) is satisfied, then (1.1) has solutions in the class M

+
∞,0.

Proof. In virtue of Theorem 3.1, the class M
+
�,0 is one parametric family of solutions

with the parameter different from zero. By Theorem 2.1 we have M
+
∞,� = ∅. Applying

Theorem 3.2, all solutions of (1.1) are nonoscillatory and, consequently, M
+
∞,0 �= ∅. �
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4. Some Nonexistence Results

As we showed in Section 3, the intermediate solutions exist in cases C2) and C3). In
this section we investigate these solutions in case C4). By Theorem 2.3, in case C4)

intermediate solutions do not exists if α = β. Using a comparison method, we can
extend this result to (1.1).

Theorem 4.1. Equation (1.1) does not have solutions in the class M
+
∞,0 if any of the

following conditions is satisfied:

i1) Kβ < ∞, β ≥ α, 0 < α ≤ 1;
i2) Jα < ∞, α ≥ β, α ≥ 1.

Proof. Let x be a solution of (1.1) in the class M
+
∞,0.

Claim i1). Since Kβ < ∞, from Theorem 2.1-i2) we have M
+
∞,� �= ∅. Let z be a

solution of (1.1) in the class M
+
∞,� and, without loss of generality, suppose z(t) > x(t) >

0, for t ≥ t0 ≥ 0. Consider the half-linear equations (t ≥ t0)

(a(t)|v′|α sgn v′)′ + bx(t)|v|α sgn v = 0, (4.1)

(a(t)|w′|α sgn w′)′ + bz(t)(t)|w|α sgn w = 0, (4.2)

where
bx(t) = b(t)xβ−α(t), bz(t) = b(t)zβ−α(t).

Obviously, x is a solution of (4.1) and z solution of (4.2). Integrating (1.1) we obtain∫ ∞

t0

b(s)zβ(s)ds < ∞,

which yields ∫ ∞

t0

bz(s)ds < ∞.

Hence for the half-linear equation (4.2) we have Ibz
< ∞, Ia = ∞. Since (4.2) has

a solution in the class M
+
∞,� (indeed z is such a solution), from Theorem 2.1-i2) and

Remark 2.2 we have ∫ ∞

t0

bz(t)
(∫ t

t0

A(s) ds
)α

dt < ∞
and so ∫ ∞

t0

bx(t)
(∫ t

t0

A(s) ds
)α

dt < ∞.

Since α ≤ 1, using Lemma 2.4-i2) we obtain∫ ∞

t0

A(t)
(∫ ∞

t

bx(s) ds
)1/α

dt < ∞.
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Thus, by applying Theorem 2.3 to the half-linear equation (4.1), we obtain that (4.1) does
not have intermediate solutions. This is a contradiction, since x is a solution of (4.1).

Claim i2). Without loss of generality, suppose x(t) > 1 for t ≥ t0 ≥ 0. Consider
again the half-linear equation (4.1). Since α ≥ β, we have for t ≥ t0

bx(t) < b(t)

and so, because Jα < ∞, we obtain∫ ∞

t0

A(t)
(∫ ∞

t

bx(s) ds
)1/α

dt < ∞.

Since α ≥ 1, using Lemma 2.4-i1) we have

∫ ∞

t0

bx(t)
(∫ t

t0

A(s) ds
)α

dt < ∞.

Thus, again by applying Theorem 2.3 to the half-linear equation (4.1), we obtain that
(4.1) does not have intermediate solutions. This is a contradiction, since x is a solution
of (4.1). �

Remark 4.2. Under the assumptions of Theorem 4.1, we have by Lemma 2.4-i3), i4)
that the case C4) holds.

From Theorem 4.1 we get for (1.2) the following result stated by Belohorec (if β < 1)
and Moore–Nehari (if β > 1), see, e.g., [24, Theorems 6.3 and 6.4].

Corollary 4.3. Equation (1.2) does not have intermediate solutions if J1 < ∞ and
Kβ < ∞.

When β > α > 1 or β < α < 1, Theorem 4.1 cannot be applied. Assuming stronger
conditions, we can prove that also in these cases intermediate solutions do not exist.

Theorem 4.4. Equation (1.1) does not have solutions in the class M
+
∞,0 if any of the

following conditions is satisfied:

i1) β > α > 1, Kβ < ∞ and

Jβ =
∫ ∞

0
A(t)

(∫ ∞

t

b(s)ds

)1/β

dt < ∞.

i2) β < α < 1, Jα < ∞ and

Kα =
∫ ∞

0
b(t)

(∫ t

0
A (σ) dσ

)α

dt < ∞.
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In order to prove Theorem 4.4, the following lemma will be needed.

Lemma 4.5. Consider the half-linear differential equation(
c(t)|x′(t)|γ sgn x′(t)

)′ + b(t)|x(t)|γ sgn x(t) = 0, (4.3)

where c is a positive continuous function for t ≥ t0 ≥ 0 and γ > 0. If (4.3) has a
nonoscillatory unbounded solution, then∫ ∞

t0

(
1

c(t)

)1/γ

dt = ∞.

Proof. Let x be a nonoscillatory unbounded solution of (4.3). Without loss of generality
assume x(t) > 0 and x[1](t) > 0 for t ≥ t0. Then there exists h > 0 such that for t ≥ t0

x[1](t)
xγ (t)

≤ h. (4.4)

Integrating this inequality, we obtain

ln
x(t)

x(t0)
< h1/γ

∫ t

t0

(
1

c(s)

)1/γ

ds,

and so the assertion follows. �

Proof of Theorem 4.4. Let x be a solution of (1.1) in the class M
+
∞,0 and, without loss

of generality, suppose x(t) > 0, x′(t) > 0 for t ≥ t0 ≥ 0.

Claim i1). Consider for t ≥ t0 the half-linear equation

(ax(t)|z′|β sgn z′)′ + b(t)|z|β sgn z = 0, (4.5)

where
ax(t) = a(t)(x′(t))α−β.

Clearly, x is an intermediate solution of (4.5). Since x[1] is positive decreasing for t ≥ t0,

from (2.1) there exists k > 0 such that x′(t) < kA(t). Then(
1

ax(t)

)1/β

= Aα/β(t)(x′(t))(β−α)/β < k1A(t). (4.6)

where k1 = k(β−α)/β. Moreover, since Jβ < ∞, we obtain∫ ∞

t0

(
1

ax(t)

)1/β (∫ ∞

t

b(s)ds
)1/β

dt < k1

∫ ∞

t0

A(t)
(∫ ∞

t

b(s)ds
)1/β

dt < ∞.

Because (4.5) has a (nonoscillatory) unbounded solution, from Lemma 4.5 we get∫ ∞

t0

(
1

ax(t)

)1/β

dt = ∞.
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So, applying Theorem 2.3 to (4.5), we obtain∫ ∞

t0

b(t)
(∫ t

t0

(
1

ax(s)

)1/β

ds
)β

dt = ∞.

Since ∫ ∞

t0

b(t)
(∫ t

t0

(
1

ax(s)

)1/β

ds
)β

dt ≤ k
β
1

∫ ∞

t0

b(t)
(∫ t

t0

A(s)ds
)β

dt,

we have Kβ = ∞, which is a contradiction.
Claim i2). Consider the half-linear equation (4.1) on [t0, ∞). Reasoning as in the

proof of Theorem 4.1-i2) we obtain∫ ∞

t0

A(t)
(∫ ∞

t

bx(s) ds
)1/α

dt < ∞.

Since α > β, we get bx(t) < b(t), and so, because Kα < ∞, we get∫ ∞

t0

bx(t)
(∫ t

t0

A(s) ds
)α

dt <

∫ ∞

t0

b(t)
(∫ t

t0

A(s) ds
)α

dt < ∞.

Applying Theorem 2.3 to the half-linear equation (4.1), we get that it does not have
intermediate solutions, which is a contradiction. �

Remark 4.6. Obviously, under the assumptions of Theorem 4.4, the case C4) holds.
Indeed, if β > α, we have by Lemma 2.4-i4)

Jβ < ∞ ⇒ Jα < ∞
and similarly, if 1 > α > β, we have by Lemma 2.4-i3)

Kα < ∞ ⇒ Kβ < ∞.

Remark 4.7. Theorem 4.1 is applicable when integrals Jβ and Kβ have the same asymp-
totic behavior, i.e., are both either convergent or divergent. This happens for instance
if

A(t) = O(tσ ), b(t) = O(tρ) for large t, (4.7)

where σ ≥ −1, ρ < −1 (see, e.g., [9]). If (4.7) is satisfied, from Theorem 4.4 interme-
diate solutions do not exist. However, in general, it can happen Kβ < ∞ and Jβ = ∞
and in view of Theorems 4.1 and 4.4 the following problem remains open.

Open Problem. Do intermediate solutions of equation (1.1) in the case C4) assuming

β > α > 1, Jα < ∞, Kβ < ∞, Jβ = ∞
or

β < α < 1, Jα < ∞, Kβ < ∞, Kα = ∞
exist? For instance, does the equation(|x′(t)|2/3 sgn x′(t)

)′ + 1

(t + 2)5/3(log(t + 2))5/6
|x(t)|1/3 sgn x(t) = 0

have intermediate solutions?
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5. Discrete Versus Continuous Case

In this section we consider the difference equation (1.4) and we show some similarities
and discrepancies in the asymptotic behavior of solutions between the continuous case
and the discrete one.

As usual, a solution x of (1.4), is said to be nonoscillatory if xnxn+1 > 0 for large n

and oscillatory otherwise. The equation (1.4) is called nonoscillatory if all its solutions
are nonoscillatory. Similarly to the continuous case, all the nonoscillatory solutions x

of (1.4) are of class M
+, that is they are eventually monotone and satisfy the condition

xnx
[1]
n > 0 for large n,

where the sequence x[1] = {x[1]
n }, x[1]

n = an|�xn|α sgn �xn, is called the quasidifference
of x.

The classification of these solutions into the subclasses M
+
∞,�, M

+
∞,0, M

+
�,0, stated

for (1.1), continues to hold also for (1.4) by replacing x(t) and x[1](t) with xn and x[1]
n ,

respectively. Theorem 2.1 on existence of dominant or subdominant solutions for (1.1)
can be formulated for (1.4) in terms of the series

Sα =
∞∑

n=0

(
1

an

)1/α
( ∞∑

k=n

bk

)1/α

, Tβ =
∞∑

n=0

bn

(
n∑

k=0

(
1

ak

)1/α
)β

, (5.1)

instead of the integrals Jα, Kβ , see, e.g., [19, Theorems 2 and 3] with minor changes.
Concerning the mutual behavior of the series (5.1), using the discrete version of

Lemma 2.4 ([6, Theorem 1], [7, Lemma 2]) the possible cases are again the following:

C1) Sα = ∞, Tβ = ∞;
C2) Sα = ∞, Tβ < ∞ and α > β;
C3) Sα < ∞, Tβ = ∞ and α < β;
C4) Sα < ∞, Tβ < ∞.

When the case C1) holds, (1.4) is oscillatory, as it follows, e.g., from [15, Theorems 1,
2], with minor changes. When C2) holds, (1.4) has solutions in the class M

+
∞,0, see,

e.g., [3, Theorem 2], in which a more general equation than (1.4) is considered. When
the case C3) occurs, the situation is different with respect to the continuous case. This
is due to the fact that Theorem 3.2 does not have a discrete analogy, as the following
example shows.

Example 5.1. Consider the difference equation

�
(|�xn|2 sgn �xn

) + bn|xn+1|9/2 sgn xn+1 = 0, (5.2)
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where

bn = 8n4 + 48n3 + 120n2 + 144n + 68√
(n2 + 3n + 2)9

.

For this equation the discrete counterpart of (3.10) becomes

bnn
δ+ε is nonincreasing for large n, (5.3)

where δ = 14/3. Clearly, Ya = ∞ and (5.3) is satisfied if 0 < ε < 1/3, but (5.2) has
the oscillatory (unbounded) solution x = {

(−1)nn(n + 1)
}
. Nevertheless, Theorem 3.2

can be applied to the corresponding differential equation(|x(t)|2 sgn x(t)
)′ + b(t)|x(t)|9/2 sgn x(t) = 0, (5.4)

where b is a continuous positive decreasing function such that b(n) = bn. Thus (5.4) is
nonoscillatory and, by Theorems 3.1 and 3.3, we have M

+ = M
+
�,0 ∪M

+
∞,0, where M

+
�,0

is one-parametric family of solutions satisfying (3.1). Finally, observe that the case C3)

holds.

Due to the lack of a discrete counterpart of Theorem 3.2, it is an open problem
whenever intermediate solutions can exist in the discrete case, when C3) holds. The
following example shows that this fact can occur.

Example 5.2. Consider the difference equation

�2xn + bnx
5
n+1 = 0,

where

bn = 2(n + 1)2/3 − (n + 2)2/3 − n2/3

(n + 1)10/3
.

In virtue of the concavity of u2/3 on [0, ∞), the sequence b is positive and S1 < ∞,

T5 = ∞. So the case C3) holds and x = {
n2/3} is an intermediate solution.

In general, several nonoscillation criteria, stated for the differential equation (1.1),
cannot be carried over to the difference equation (1.4). This fact, already pointed out
in [13] for the classical nonoscillation results by Atkinson and Heidel, remains to hold
for more recent nonoscillation criteria. For instance, in the continuous case the following
holds.

Theorem 5.3. [18, 25] Equation (1.2) is nonoscillatory if any of the following two
conditions is satisfied.

i1) the function b is absolutely continuous and there exists ε > 0 such that

lim
t→∞ ψ(t) = k > 0,

∫ ∞
|ψ ′(t)|dt < ∞,

where ψ(t) = t (β+3)/2+εb(t).
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i2) β ∈ (0, 1), the function ϕ(t) = t (β+3)/2b(t) is nonincreasing and
lim

t→∞ t (β+3)/2b(t) = 0.

Observe that Theorem 5.3-i1) holds both in the superlinear and sublinear case. The
following example shows that this result does not have a discrete counterpart.

Example 5.4. Consider the differential equation

x′′ + 4t2 + 8t + 6

(t + 1)6
x3 = 0. (5.5)

It is easy to verify that for ε = 1 all assumptions of Theorem 5.3-i1) are verified, and so
all the solutions of (5.5) are nonoscillatory. Such a result is not true for the corresponding
discrete equation

�2xn + 4(n + 1)2 + 8(n + 1) + 6

(n + 2)6
x3

n+1 = 0,

since x = {(−1)n(n + 1)2} is an its oscillatory solution. Observe that for ε = 1 the
sequence ψ = {n4bn} satisfies lim

n
ψn = 4 and

∑
n

|�ψn| < ∞.

A similar example can be produced in the case of Theorem 5.3-i2). For instance, for
the difference equation (n ≥ N )

�2xn + bn|xn+1|1/2 sgn xn+1 = 0,

where

bn = 9
√

2

4
2−n/2,

the sequence {n7/4bn} is nonincreasing and tends to zero, but this equation has the
oscillatory solution x = {(−1)n2−n}.

6. Concluding Remark

When the case C4) holds, it is an open problem whether intermediate solutions of (1.4) do
not exist. In particular, the nonexistence of such solutions under the additional conditions
as in the continuous case is an open problem. Observe that Theorems 4.1 and 4.4 are
based on a comparison with the half-linear case, and so a crucial role is played by
Theorem 2.3. The study of intermediate solutions of nonlinear difference equations is
the subject of the forthcoming paper [5].
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