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Abstract

We will show how to use the mountain pass theorem to obtain nontrivial solutions of
a certain two point BVP for the 2nth order, n ∈ N (formally) self-adjoint nonlinear
difference equation

n∑
i=0

�i[ri(t)�
iu(t − i)] = f (t, u(t)), t ∈ [a, b]Z.

No periodicity assumptions will be placed on ri, i = 0, 1, . . . , n or f and it will be
assumed that f grows superlinearly both at the origin and at infinity. An example
of our results will be given.
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1. Introduction and Preliminary Results

A great deal of work has been done concerning the existence to discrete boundary value
problems. Recently, techniques from critical point theory have been employed to show
the existence of nontrivial solutions to discrete boundary value problems [1–5]. These
techniques are complementary to the fixed point theory that has also been utilized to
study this area.

Received October 30, 2007; Accepted January 14, 2008
Communicated by Andreas Ruffing



132 Heidi Berger

We will be concerned with finding nontrivial solutions to the 2nth order nonlinear
BVP:

n∑
i=0

�i[ri(t)�iu(t − i)] − f (t, u(t)) = 0, t ∈ [a, b]Z (1.1)

u(a − i) = 0 = u(b + i), 1 ≤ i ≤ n. (1.2)

We assume a, b are integers and we define [a, b]Z := [a, b]∩Z, where Z denotes the set of
integers. Moreover, f : [a, b]Z×R → R is continuous in x and �u(t) := u(t+1)−u(t)

defines the forward difference operator �. Throughout this paper, we let

F(t, x) =
∫ x

0
f (t, s) ds.

We also assume throughout:

(−1)iri(t) ≥ 0 for 1 ≤ i ≤ n for t ∈ [a − n, b + n]Z (1.3)

r0(t) > 0 ∀t ∈ [a − n, b + n]Z. (1.4)

This boundary value problem generalizes the important Sturm–Liouville problem when
n = 1 and a beam bending problem when n = 2 [8].

In this section, we establish the variational framework for (1.1), (1.2). Before pro-
ceeding, we need a few useful definitions.

Definition 1.1. Let E be a real Banach space and let ϕ : E → R be a mapping.
We say ϕ is Fréchet differentiable at u ∈ E if there exists a continuous linear map
L = L(u) : E → R satisfying

lim
x→u

ϕ(x) − ϕ(u) − L[x − u]
‖x − u‖E

= 0.

The mapping L will be denoted by ϕ′(u). A critical point u of ϕ is a point at which
ϕ′(u) = 0, i.e., ϕ′(u)v = 0 for all v ∈ E. We write ϕ ∈ C1(E, R) provided ϕ′(u) is
continuous for all u ∈ E.

The following remark will be useful.

Remark 1.2. Assume ϕ : R
n → R has continuous first-order partial derivatives. Then

for any u = (u1, · · · , un) ∈ R
n,

ϕ′(u) = ∇uϕ(u),

where

∇uϕ :=
(

∂ϕ

∂u1
, · · · ,

∂ϕ

∂un

)
is the gradient of ϕ with respect to u.
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Definition 1.3. Let E be a real Banach space. The function ϕ ∈ C1(E, R) satisfies the
Palais–Smale condition if every sequence

{
uj

}
in E such that

{
ϕ(uj )

}
is bounded and

ϕ′(uj ) → 0 as j → ∞ contains a convergent subsequence.

We state the mountain pass theorem, which is instrumental to proving the main results
of the paper. Let B(0, ρ) denote the open ball in a Banach space E of radius ρ centered
at 0.

Theorem 1.4. (Mountain Pass Theorem [5]) Let E be a real Banach space and ϕ ∈
C1(E, R). Suppose ϕ satisfies the Palais–Smale condition and ϕ(0) = 0. If
(A1) there exist constants ρ, α > 0 such that

ϕ

∣∣∣
∂B(0,ρ)

≥ α

and
(A2) there exists e ∈ E\B(0, ρ) such that ϕ(e) ≤ 0,
then ϕ possesses a critical value c ≥ α given by

c = inf
g∈�

max
s∈[0,1] ϕ(g(s)), (1.5)

where
� = {g ∈ C ([0, 1], E) | g(0) = 0, g(1) = e} . (1.6)

Theorem 1.5. (Ljusternik–Schnirelman [2]) Let ϕ ∈ C1(RN, R) be an even function.
Then the restriction of ϕ to the unit sphere SN−1 of R

N possesses at least N distinct pairs
of critical points.

Let E = {u : [a − n, b + n]Z → R : u(a − i) = 0 = u(b + i), 1 ≤ i ≤ n}. Then E

is a Hilbert space with inner product

〈u, v〉E :=
b+n∑
t=a

n∑
i=0

|ri(t)|�iu(t − i)�iv(t − i), u, v ∈ E

and corresponding norm

‖u‖2
E = 〈u, u〉E =

b+n∑
t=a

n∑
i=0

|ri(t)|
(
�iu(t − i)

)2
.

Let N = b − a + 1. Then we can associate E with R
N by the relation

(0, . . . , 0, u(a), u(a + 1), . . . , u(b), 0, . . . , 0) ↔ (x1, . . . , xN) ,

where xi = u(a + i − 1), 1 ≤ i ≤ N.
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Define a map ϕ : E → R by:

ϕ(u) = 1

2

b+n∑
t=a

n∑
i=0

|ri(t)|
(
�iu(t − i)

)2 −
b∑

t=a

F (t, u(t))

= 1

2
‖u‖2

E −
b∑

t=a

F (t, u(t)).

For our application, we will be interested in computing the Fréchet derivative of ϕ. Here
is a remark to aid in this calculation.

Remark 1.6. Let H be a real Hilbert space, let f : H → R be the function defined by
f (x) = ‖x‖2 and let u ∈ H. Then the Fréchet derivative of f at u is the linear functional
on H given by f ′(u)x := 2〈x, u〉.

One could use Remark 1.2 to prove Remark 1.6. It is also an easy exercise to prove
Remark 1.6 using the definition of the Fréchet derivative.

With the aid of Remark 1.6, we calculate the Fréchet derivative of our functional ϕ.

Theorem 1.7. For u, v ∈ E, the Fréchet derivative of ϕ at u is given by

ϕ′(u)v = 〈u, v〉E −
b+n∑
t=a

f (t, u(t))v(t)

=
b+n∑
t=a

[
n∑

i=0

�i[ri(t)�iu(t − i)] − f (t, u(t))

]
v(t).

Proof. Let u, v ∈ E. Define ϕ1(u) = 1

2
‖u‖2

E and ϕ2(u) =
b∑

t=a

F (t, u(t)). Then

ϕ = ϕ1 − ϕ2. By Remark 1.6, ϕ′
1(u)v = 〈u, v〉E . Also, as the Fréchet derivative of

functions in C1(RN, R) is the gradient of that function,

ϕ′
2(u)v = < ∇uϕ2(u), v >E

= < ∇u

(
b∑

τ=a

∫ u(τ)

0
f (τ, s) ds

)
, v >E

= < f (u), v >RN

=
b∑

t=a

f (t, u(t))v(t)

=
b+n∑
t=a

f (t, u(t))v(t).
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Therefore,

ϕ′(u)v = 〈u, v〉E −
b+n∑
t=a

f (t, u(t))v(t)

=
b+n∑
t=a

[
n∑

i=0

|ri(t)|�iu(t − i)�iv(t − i) − f (t, u(t))v(t)

]
.

It remains to show that
b+n∑
t=a

[
n∑

i=0

|ri(t)|�iu(t − i)�iv(t − i)

]

=
b+n∑
t=a

[
n∑

i=0

�i[ri(t)�iu(t − i)]
]

v(t). (1.7)

We verify that (1.7) holds by finite induction on n. If n = 0, then (1.7) clearly holds.
Suppose (1.7) holds for a fixed n. We will adopt the convention that for any

u ∈ E, we extend the domain of u to Z by defining u(t) ≡ 0 for all t > b +
n and for all t < a − n. Then

b+n+1∑
t=a

n+1∑
i=0

|ri(t)|�iu(t − i)�iv(t − i)

=
(

b+n∑
t=a

+
b+n+1∑

t=b+n+1

) ( n∑
i=0

|ri(t)|�iu(t − i)�iv(t − i)

+ |rn+1(t)|�n+1u(t − n − 1)�n+1v(t − n − 1)

)

=
b+n∑
t=a

n∑
i=0

|ri(t)|�iu(t − i)�iv(t − i)

+
b+n∑
t=a

|rn+1(t)|�n+1u(t − n − 1)�n+1v(t − n − 1)

+
n∑

i=0

|ri(b + n + 1)|�iu(b + n − i + 1)�iv(b + n − i + 1)

+|rn+1(b + n + 1)|�n+1u(b)�n+1v(b)

=
b+n∑
t=a

n∑
i=0

�i[ri(t)�iu(t − i)]v(t)

b+n∑
t=a

|rn+1(t)|�n+1

×u(t − n − 1)�n+1v(t − n − 1) + |rn+1(b + n + 1)|u(b)v(b)
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by the boundary assumptions on u and v and the induction hypothesis. Note that by
summation by parts [3, Theorem 2.8] and the boundary conditions on u and v:

b+n∑
t=a

|rn+1(t)|�n+1u(t − n − 1)�n+1v(t − n − 1)

= −|rn+1(b + n + 1)|u(b)v(b) +
b+n∑
t=a

�n+1[rn+1(t)�
n+1u(t − n − 1)]v(t).

Indeed, using a summation by parts formula we get:

b+n∑
t=a

|rn+1(t)|�n+1u(t − n − 1)�n+1v(t − n − 1)

= (−1)n+1
b+n∑
t=a

rn+1(t)�
n+1u(t − n − 1)�n+1v(t − n − 1)

= (−1)n+1
[
rn+1(t)�

n+1u(t − n − 1)�nv(t − n − 1)

∣∣∣b+n+1

a

−
b+n∑
t=a

�[rn+1(t)�
n+1u(t − n − 1)]�nv(t − n)

]
= −|rn+1(b + n + 1)|u(b)v(b)

+(−1)n+1
[

−
b+n∑
t=a

�[rn+1(t)�
n+1u(t − n − 1)]�nv(t − n)

]
,

using u(t) = 0, t ≤ a − 1, u(t) = 0, t ≥ b + 1. Again by summation by parts we get:

b+n∑
t=a

|rn+1(t)|�n+1u(t − n − 1)�n+1v(t − n − 1)

= −|rn+1(b + n + 1)|u(b)v(b)

+(−1)n+1
[

− �[rn+1(t)�
n+1u(t − n − 1)]�n−1v(t − n)

)∣∣∣b+n+1

a

+
b+n∑
t=a

�2[rn+1(t)�
n+1u(t − n − 1)]�n−1v(t − n)

]
= −|rn+1(b + n + 1)|u(b)v(b)

+(−1)n+1
b+n∑
t=a

�2[rn+1(t)�
n+1u(t − n − 1)]�n−1v(t − n),
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where we have used the boundary conditions on u, v to simplify. Continuing in this
fashion we see:

b+n∑
t=a

|rn+1(t)|�n+1u(t − n − 1)�n+1v(t − n − 1)

= (−1)n+1
[
(−1)n�n[rn+1(t)�

n+1u(t − n − 1)]v(t − 1)

∣∣∣b+1+n

a

+(−1)n+1
b+n∑
t=a

�n+1[rn+1(t)�
n+1u(t − n − 1)]v(t)

]

= −|rn+1(b + n + 1)|u(b)v(b) +
b+n∑
t=a

�n+1[rn+1(t)�
n+1u(t − n − 1)]v(t).

Thus,

b+n+1∑
t=a

n+1∑
i=0

|ri(t)|�iu(t − i)�iv(t − i)

=
b+n∑
t=a

n∑
i=0

�i[ri(t)�iu(t − i)]v(t) +
b+n∑
t=a

�n+1[rn+1(t)�
n+1u(t − n − 1)]v(t)

=
b+n∑
t=a

n∑
i=0

�i[ri(t)�iu(t − i)]v(t) +
b+n∑
t=a

�n+1[rn+1(t)�
n+1u(t − n − 1)]v(t)

+
n∑

i=0

�i[ri(t)�iu(t − i)]
∣∣∣
t=b+n+1

v(b + n + 1)

+�n+1[rn+1(t + n + 1)�n+1u(t)]
∣∣∣
t=b

v(b + n + 1)

=
(

b+n∑
t=a

+
b+n+1∑

t=b+n+1

) ( n∑
i=0

�i[ri(t)�iu(t − i)]v(t)

+�n+1[rn+1(t)�
n+1u(t − n − 1)]v(t)

)

=
b+n+1∑

t=a

n+1∑
i=0

�i[ri(t)�iu(t − i)]v(t).

Hence, by induction, (1.7) holds and the theorem is proved. �

Corollary 1.8. Let u ∈ E. The following are equivalent:

1. u is a critical point of ϕ.
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2. u is a solution of (1.1), (1.2).

Furthermore, ϕ ∈ C1(E, R).

Proof. By definition and Theorem 1.7,

u is a critical point of ϕ

iff
ϕ′(u)v = 0 ∀ v ∈ E

iff
b+n∑
t=a

[
n∑

i=0

�i[ri(t)�iu(t − i)] − f (t, u(t))

]
v(t) = 0 ∀ v ∈ E (1.8)

iff
u is a solution of (1.1), (1.2).

To see that the last statement holds, for any m ∈ [a, b]Z, let

vm(t) =
{

1 if t = m

0 if t �= m.

Then vm ∈ E and ϕ′(u)vm = 0 for all m ∈ [a, b]Z. But this implies:

n∑
i=0

�i[ri(t)�iu(t − i)] − f (t, u(t)) = 0, ∀ t ∈ [a, b]Z,

so that these critical points correspond to solutions of the BVP (1.1), (1.2). Conversely,
if u is a solution to BVP (1.1), (1.2), then (1.8) clearly holds. As E and R are Euclidean
spaces, the continuity of f guarantees that ϕ ∈ C1(E, R). �

2. Main Results

First, we introduce some notation. As E is a finite dimensional vector space, we know
that all norms defined on E are equivalent. In particular, there exist constants d1, d2, and
B > 0 such that

d1‖u‖2
2 ≤ ‖u‖2

E ≤ d2‖u‖2
2 (2.1)

and
‖u‖∞ ≤ B‖u‖E ∀ u ∈ E. (2.2)

Here, ‖u‖2 =
(

b∑
t=a

u2(t)

) 1
2

and ‖u‖∞ = max
t∈[a,b]Z

|u(t)|.
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Now we state and prove the main theorems.

Theorem 2.1. Suppose

lim
x→0

F(t, x)

x2
= 0; t ∈ [a, b]Z, (2.3)

and there exists β > 2 such that

0 < β

∫ x

0
f (t, s) ds ≤ xf (t, x) ∀ (t, x) ∈ [a − n, b + n]Z × R\{0}. (2.4)

Then there exists a nontrivial solution to the BVP (1.1), (1.2).

Remark 2.2. Assumption (2.4) implies that for each t ∈ [a, b]Z, there exists a real
number α(t) > 0 such that

F(t, x) ≥ α(t)|x|β for |x| ≥ 1, t ∈ [a, b]Z. (2.5)

Proof. To verify this remark, assume x ≥ 1. Then from (2.4),

β

∫ x

0
f (t, s) ds ≤ xf (t, x)

⇒ β

x
≤ f (t, x)∫ x

0 f (t, s) ds

⇒
∫ x

1

β

τ
dτ ≤

∫ x

1

f (t, τ )∫ τ

0 f (t, s) ds
dτ

⇒
∫ x

1

β

τ
dτ ≤ ln

∣∣∣∣
∫ τ

0
f (t, s) ds

∣∣∣∣∣∣∣x1
⇒ β ln |x| ≤ ln

∣∣∣∣
∫ x

0
f (t, s) ds

∣∣∣∣ − ln

∣∣∣∣
∫ 1

0
f (t, s) ds

∣∣∣∣
⇒ β ln |x| + C(t) ≤ ln

(∫ x

0
f (t, s) ds

)
, where C(t) := ln

∣∣∣∣
∫ 1

0
f (t, s) ds

∣∣∣∣
⇒ eβ ln |x|+C(t) ≤

∫ x

0
f (t, s) ds

⇒ |x|βα(t) ≤
∫ x

0
f (t, s) ds = F(t, x),

where α(t) = eC(t). The case for x ≤ −1 is similar. �

Remark 2.3. The inequality (2.5) implies

lim
x→∞

F(t, x)

x2
= ∞; t ∈ [a, b]Z. (2.6)



140 Heidi Berger

Proof. By (2.5):

α(t)|x|β
x2

≤ F(t, x)

x2
.

Since lim
x→∞ α(t)|x|β−2 = ∞, it follows that lim

x→∞
F(t, x)

x2
= ∞, t ∈ [a, b]Z. �

Proof of Theorem 2.1. We will prove the existence of a nontrivial critical point of ϕ using
Theorem 1.4. We know that ϕ ∈ C1(E, R) and ϕ(0) = 0.

We verify that the Palais–Smale condition holds. Let {uk} be a sequence in E such
that

{ϕ(uk)} is bounded and ϕ′(uk) → 0 as k → ∞. (2.7)

We will show that {uk} possesses a convergent subsequence.
By (2.7), ϕ′(uk) → 0 as k → ∞, so that

sup
v∈E,v �=0

∣∣∣∣ϕ′(uk)v

‖v‖E

∣∣∣∣ → 0.

Without loss of generality, we can assume that uk �= 0 for an k. Hence, {ϕ(uk)} and{
1

‖uk‖E

ϕ′(uk)uk

}
are bounded sequences of real numbers. So there exist constant

M, N ≥ 0 such that

M + N

β
‖uk‖E ≥ ϕ(uk) − 1

β
ϕ′(uk)uk.

By (2.4),

F(t, uk(t)) − 1

β
uk(t)f (t, uk(t)) ≤ 0.

Thus,

M + N

β
‖uk‖E ≥ ϕ(uk) − 1

β
ϕ′(uk)uk

=
(

1

2
− 1

β

)
‖uk‖2

E −
b+n∑
t=a

[
F(t, uk(t)) − 1

β
f (t, uk(t))uk(t)

]

≥
(

1

2
− 1

β

)
‖uk‖2

E.

Thus,

α‖uk‖2
E − N

β
‖uk‖E − M ≤ 0 , where α := 1

2
− 1

β
> 0.
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As

(
N

β

)2

+ 4αM ≥ 0, we see that {uk} is bounded in E. As E is finite dimensional,

{uk} has a convergent subsequence. Hence, ϕ satisfies the Palais–Smale condition.
Now we prove that (A1) in the mountain pass theorem (Theorem 1.4) holds. Let B, d1

be as in (2.2), (2.1), respectively. By (2.3), there is a δ > 0 such that F(t, x) ≤ 1

4
d1x

2

whenever |x| < δt ∈ [a, b]Z. Let ρ := δ

B
and suppose ‖u‖E ≤ ρ. Then we have

‖u‖∞ ≤ δ

B
B = δ, so that F(t, u(t)) ≤ 1

4
d1u

2(t) for all t ∈ [a, b]Z. Thus, if ‖u‖E = ρ:

ϕ(u) = 1

2
‖u‖2

E −
b∑

t=a

F (t, u(t))

≥ 1

2
‖u‖2

E − 1

4
d1‖u‖2

2

≥ 1

2
‖u‖2

E − 1

4
‖u‖2

E, by (2.1)

= 1

4
ρ2 := α > 0.

Thus, (A1) holds. Finally, we verify that (A2) holds. Condition (2.6) implies that there
exists δ1 > Bρ such that F(t, x) ≥ d2x

2 for all |x| ≥ δ1, t ∈ [a, b]Z. (Here, B and d2
are defined in (2.2) and (2.1).) Let e ∈ E be such that |e(t)| ≥ δ1 on [a, b]Z. Then
‖e‖∞ ≥ δ1 so that ‖e‖E > ρ. In this case,

ϕ(e) = 1

2
‖e‖2

E −
b∑

t=a

F (t, e(t))

≤ 1

2
‖e‖2

E − d2‖e‖2
2

≤ 1

2
‖e‖2

E − ‖e‖2
E, by (2.1)

= −1

2
‖e‖2

E < 0.

Thus, (A2) holds.
By the mountain pass theorem, there exists c > 0, a critical value of ϕ. The corre-

sponding critical point u ∈ E is a solution of the BVP (1.1), (1.2) by construction of ϕ.
As ϕ(0) = 0 and ϕ(u) = c > 0, u �= 0. So u is a nontrivial solution to our BVP and the
result holds. �

Theorem 2.4. Suppose

lim
x→0

F(t, x)

x2
= ∞; t ∈ [a, b]Z, (2.8)
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and there exists 0 < γ < 2 such that

0 < xf (t, x) ≤ γ

∫ x

0
f (t, s) ds ∀ (t, x) ∈ [a − n, b + n]Z × R\{0}. (2.9)

Then there exists a nontrivial solution to the BVP (1.1), (1.2).

Remark 2.5. As in Theorem 2.1, for each t ∈ [a−n, b+n]Z, there exists a real number
α1(t) > 0 such that

F(t, x) ≥ α1(t)|x|γ for |x| ≥ 1 (2.10)

so that

lim
x→∞

F(t, x)

x2
= 0; t ∈ [a, b]Z. (2.11)

The proofs of (2.10) and (2.11) are similar to the proofs of (2.5) and (2.6), respectively.

Proof of Theorem 2.4. We will show that the functional −ϕ satisfies all the conditions
of the mountain pass theorem. We know that −ϕ ∈ C1(E, R) and −ϕ(0) = 0.

We verify that the Palais–Smale condition holds. Let {uk} be a sequence in E such
that

{−ϕ(uk)} is bounded and − ϕ′(uk) → 0 as k → ∞. (2.12)

We will show that {uk} possesses a convergent subsequence.
By (2.12), −ϕ′(uk) → 0 as k → ∞, so that

sup
v∈E,v �=0

∣∣∣∣−ϕ′(uk)v

‖v‖E

∣∣∣∣ → 0.

Without loss of generality, we can assume that uk �= 0 for a k. Hence, {−ϕ(uk)} and{
1

‖uk‖E

ϕ′(uk)uk

}
are bounded sequences of real numbers. So there exist constant

M1, N ≥ 0 such that

M1 + N

γ
‖uk‖E ≥ ϕ(uk) + 1

γ
ϕ′(uk)uk.

By (2.9), F(t, uk(t)) − 1

γ
uk(t)f (t, uk(t)) ≥ 0. Thus,

M1 + N

γ
‖uk‖E ≥ −ϕ(uk) + 1

γ
ϕ′(uk)uk

=
(

−1

2
+ 1

γ

)
‖uk‖2

E +
b+n∑
t=a

[
F(t, uk(t)) − 1

γ
f (t, uk(t))uk(t)

]

≥
(

−1

2
+ 1

γ

)
‖uk‖2

E.
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Thus,

α1‖uk‖2
E − N

γ
‖uk‖E − M1 ≤ 0, where α1 := −1

2
+ 1

γ
> 0.

As
N2

γ 2
+ 4M1α1 ≥ 0, {uk} is bounded in E. Thus, as E is finite dimensional, {uk} has

a convergent subsequence. Hence, −ϕ satisfies the Palais–Smale condition.
Now we prove that (A1) in the mountain pass theorem holds. By (2.11), there is

a β > 0 such that F(t, x) ≥ d2x
2 whenever |x| < β, t ∈ [a, b]Z. Let ρ1 := β

B
,

where B is as in (2.2), d2 is defined in (2.1), and suppose ‖u‖E ≤ ρ1. Then we have

‖u‖∞ ≤ β

B
B = β, so that F(t, u(t)) ≥ d2u

2(t) for all t ∈ [a, b]Z. Thus, if ‖u‖E = ρ1:

−ϕ(u) = −1

2
‖u‖2

E +
b∑

t=a

F (t, u(t))

≥ −1

2
‖u‖2

E + d2‖u‖2
2

≥ −1

2
‖u‖2

E + ‖u‖2
E, by (2.1)

= 1

2
ρ2

1 := α1 > 0.

Thus, (A1) holds.
Finally, we verify that condition (A2) holds. Condition (2.8) implies that there exists

β1 > Bρ1, where B is as in (2.2), such that F(t, x) ≤ d1x
2 ∀ |x| ≥ β1, where d1 is as

in (2.1). Let e1 ∈ E be such that |e1(t)| ≥ β1 on [a, b]Z. Then ‖e1‖∞ ≥ β1 so that
‖e1‖E > ρ1. In this case,

−ϕ(e1) = −1

2
‖e1‖2

E +
b∑

t=a

F (t, e1(t))

≤ −1

2
‖e1‖2

E + 1

4
d1‖e1‖2

2

≤ −1

2
‖e1‖2

E + 1

4
‖e1‖2

E, by (2.1)

= −1

4
‖e1‖2

E < 0.

Thus, (A2) holds.
By the mountain pass theorem, there exists c > 0, a critical value of −ϕ. The

corresponding critical point u ∈ E is a solution of the BVP (1.1), (1.2) by construction
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of −ϕ. As −ϕ(0) = 0 and −ϕ(u) = c > 0, u �= 0. So u is a nontrivial solution to the
BVP (1.1), (1.2) and the result holds. �

Next, we obtain a result concerning the existence of multiple solutions to the BVP
(1.1), (1.2) by applying Theorem 1.5:

Theorem 2.6. Assume
f (t, −x) = −f (t, x). (2.13)

Then the BVP (1.1), (1.2) has at least N := b−a+1 distinct pairs of nontrivial solutions.

Remark 2.7. Note that if u is a solution to (1.1), (1.2), then under the assumptions of
Theorem 2.6, −u is also a solution to the BVP. In this case, call (u, −u) a pair of solutions
to the BVP (1.1), (1.2).

Proof of Theorem 2.6. By condition (2.13), we see that ϕ is even:

ϕ(−u) = 1

2
‖ − u‖2

E −
b∑

t=a

F (t, −u(t))

= 1

2
‖u‖2

E −
b∑

t=a

∫ −u(t)

0
f (t, s) ds

= 1

2
‖u‖2

E −
b∑

t=a

(
−

∫ 0

−u(t)

f (t, s) ds

)

= 1

2
‖u‖2

E −
b∑

t=a

∫ 0

−u(t)

f (t, −s) ds

= 1

2
‖u‖2

E −
b∑

t=a

∫ 0

u(t)

−f (t, τ ) dτ

= 1

2
‖u‖2

E −
b∑

t=a

∫ u(t)

0
f (t, τ ) dτ

= 1

2
‖u‖2

E −
b∑

t=a

F (t, u(t))

= ϕ(u).

By Theorem 1.5, the restriction of ϕ to SN−1 has at least N distinct pairs of critical
points. So there exist uj ∈ E such that (uj (a), · · · , uj (b)) ∈ SN−1, 1 ≤ j ≤ 2N such
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that

ϕ′(uj )v =
b+n∑
t=a

[
n∑

i=0

�i[ri(t)�iuj (t − i)] − f (t, uj (t))

]
v(t) = 0 ∀ v ∈ E

such that (v(a), · · · , v(b)) ∈ SN−1, 1 ≤ j ≤ 2N. For m ∈ [a, b]Z, let

vm(t) =
{

1 if t = m

0 if t �= m.

Then vm ∈ E and (vm(a), . . . , vm(b)) ∈ SN−1 and ϕ′(uj )vm = 0, 1 ≤ j ≤ 2N, m ∈
[a, b]Z. But this implies

n∑
i=0

�i[ri(t)�iu(t − i)] − f (t, u(t)) = 0, ∀ t ∈ [a, b]Z,

so that these critical points correspond to solutions of the BVP (1.1), (1.2). �

Example 2.8. Fix n ∈ N and consider the boundary value problem

n∑
i=0

�i[(−1)i�iu(t − i)] = x2n+1et , t ∈ [0, 1]Z (2.14)

u(−i) = 0 = u(1 + i), 1 ≤ i ≤ n. (2.15)

Here f (t, x) = x2n+1et . Then f satisfies the conditions of Theorem 2.1 with β = 2n,
so that BVP (2.14), (2.15) has a nontrivial solution. Moreover, f satisfies (2.13) in
Theorem 2.6, so that BVP (2.14), (2.15) has two distinct pairs of nontrivial solutions.

Example 2.9. Fix n ∈ N and consider the boundary value problem

n∑
i=0

�i[(−1)i�iu(t − i)] = x
1

2n+1 sin2(t), t ∈ [0, 1]Z (2.16)

u(−i) = 0 = u(1 + i), 1 ≤ i ≤ n. (2.17)

Here, f (t, x) = x
1

2n+1 sin2(t) satisfies the conditions of Theorem 2.4 with γ = 2n + 2

2n + 1
.

Also, f satisfies (2.13) in Theorem 2.6. In the first case, BVP (2.16), (2.17) would have
a nontrivial solution and in the second case, this BVP would have two distinct pairs of
nontrivial solutions.
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