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Abstract

We give an existence result of a renormalized solution for a class of nonlinear

parabolic equations
∂b(x, u)

∂t
− div (a(x, u, ∇u) + �(u)) = f , where the right-

hand side belongs to L1((0, T ) × �) and where b(x, u) is an unbounded function
of u and where −div(a(t, x, u, ∇u) + �(u)) is a Leray–Lions type operator with
growth |∇u|p−1 in ∇u, but without any growth assumption on u.
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1. Introduction

In the present paper we establish an existence result of a renormalized solution for a class
of nonlinear parabolic equations of the type




∂b(x, u)

∂t
− div (a(x, t, u, ∇u) + �(u)) = f in � × (0, T ),

b(x, u)(t = 0) = b(x, u0) in �,

u = 0 on ∂� × (0, T ).

(1.1)

In Problem (1.1), the framework is the following: � is a bounded domain of R
N , N ≥ 1,

T is a positive real number while the data f and b(x, u0) are in L1(� × (0, T )) and
L1(�). The operator −div(a(x, t, u,∇u)) is a Leray–Lions operator which is coercive
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and which grows like |∇u|p−1 with respect to ∇u, but which is not restricted by any
growth condition with respect to u (see assumptions (2.3), (2.4) and (2.5) of Section 2).
The function � is just assumed to be continuous on R.

When Problem (1.1) is investigated, the difficulty is due to the facts that the data f

and b(x, u0) only belong to L1 and the functions a(x, t, u,∇u) and �(u) do not belong
to (L1

loc((0, T ) × �))N in general, so that proving existence of a weak solution (i.e., in
the distribution meaning) seems to be an arduous task. To overcome this difficulty we
use in this paper the framework of renormalized solutions. This notion was introduced
by P.-L. Lions and Di Perna [16] for the study of Boltzmann equation (see also P.-
L. Lions [20] for a few applications to fluid mechanics models). This notion was then
adapted to elliptic versions of (1.1) in Boccardo, J.-L. Diaz, D. Giachetti, F. Murat [9],
in P.-L. Lions and F. Murat [21] and F. Murat [21, 22]. At the same time, the equivalent
notion of entropy solutions has been developed independently by Bénilan and et al. [1]
for the study of nonlinear elliptic problems.

As far as the parabolic equation case (1.1) is concerned, the existence and uniqueness
of renormalized solutions has been proved in D. Blanchard, F. Murat and H. Redwane [4]
(see also A. Porretta [23]) in the case where b(x, u) = u and where f is replaced by
f + div(g) (where g ∈ (Lp′

(Q))N ). In the case where a(x, t, s, ξ) is independent of s,
� = 0 and g = 0, existence and uniqueness have been established in D. Blanchard [2],
D. Blanchard and F. Murat [3], and in the case where b(x, u) = b(u) (where b is a strictly
increasing function of u that can possibly blow up for some finite r0) and a(x, t, s, ξ)

is independent of s and linear with respect to ξ , existence and uniqueness have been
established in D. Blanchard and H. Redwane [7], and in the case where b(x, u) = b(u)

(where b is a maximal monotone graph on R) and a(x, t, s, ξ) is independent of t ,
existence and uniqueness have been established in D. Blanchard and A. Porretta [6] (see
also J. Carrillo [12], J. Carrillo and P. Wittbold [13, 14]).

With respect to the previous ones, the originality of the present work lies on the
noncontrolled growth of the function a(x, t, s, ξ) with respect to s, and the function �

is just assumed to be continuous on R, and f, b(x, u0) are just assumed to belong to L1.
The paper is organized as follows: Section 2 is devoted to specify the assumptions

on b, a(x, t, s, ξ), �, f and u0 needed in the present study and gives the definition of a
renormalized solution of (1.1). In Section 3 (Theorem 3.1) we establish the existence of
such a solution. In Section 4 (appendix) we give the proof of Lemma 3.2.

2. Assumptions on Data and Definition of a Renormalized Solution

Throughout the paper, we assume that the following assumptions hold true.

Assumption 2.1. � is a bounded open set on R
N (N ≥ 1), T > 0 is given and we set

Q = � × (0, T ),

b : � × R → R is a Carathéodory function (2.1)

such that for every x ∈ �, b(x, ·) is a strictly increasing C1-function with b(x, 0) = 0.
Next, for any K > 0, there exists λK > 0 and functions AK ∈ L1(�) and BK ∈ Lp(�)
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such that

λK ≤ ∂b(x, s)

∂s
≤ AK(x) and

∣∣∣∣∇x

(
∂b(x, s)

∂s

)∣∣∣∣ ≤ BK(x) (2.2)

for almost every x ∈ �, for every s such that |s| ≤ K . Also,

a : Q × R × R
N → R

N is a Carathéodory function, (2.3)

a(x, t, s, ξ)ξ ≥ α|ξ |p (2.4)

for almost every (x, t) ∈ Q, for every s ∈ R, for every ξ ∈ R
N , where α > 0 is a given

real number. Next, for any K > 0, there exist βK > 0 and a function CK ∈ Lp′
(�) such

that
|a(x, t, s, ξ)| ≤ CK(x, t) + βK |ξ |p−1 (2.5)

for almost every (t, x) ∈ Q, for every s such that |s| ≤ K , and for every ξ ∈ R
N ,

[a(x, t, s, ξ) − a(x, t, s, ξ ′)][ξ − ξ ′] ≥ 0 (2.6)

for any s ∈ R, for any (ξ, ξ ′) ∈ R
2N , and for almost every (x, t) ∈ Q. Finally,

� : R → R
N is a continuous function, (2.7)

f ∈ L1(Q), (2.8)

u0 is a measurable function defined on � such that b(·, u0) ∈ L1(�). (2.9)

Remark 2.2. In (2.2), we denote by ∇x

(
∂b(x, s)

∂s

)
the gradient of

∂b(x, s)

∂s
defined in

the sense of distributions.

As already mentioned in the introduction, Problem (1.1) does not admit a weak so-
lution under assumptions (2.1)–(2.9) (even when b(x, u) = u, f = 0 and u0 = 0) since
the growths of a(x, t, u, ∇u) and �(u) are not controlled with respect to u (so that these
fields are not in general defined as distributions, even when u ∈ Lp(0, T ; W

1,p
0 (�))).

Throughout, for any K ≥ 0, we denote by TK(r) = min{K, max{r, −K}} the
truncation function at height K . The definition of a renormalized solution for Problem
(1.1) can be stated as follows.

Definition 2.3. A measurable function u defined on Q is a renormalized solution of
Problem (1.1) if

TK(u) ∈ Lp(0, T ; W
1,p
0 (�)) for any K ≥ 0 and b(x, u) ∈ L∞(0, T ; L1(�)), (2.10)

∫
{(t,x)∈Q:n≤|u(x,t)|≤n+1}

a(x, t, u, ∇u)∇u dx dt → 0 as n → ∞, (2.11)
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and if, for every increasing function S in W 2,∞(R), which is piecewise C1 and such that
S′ has compact support, we have

∂bS(x, u)

∂t
− div(S′(u)a(x, t, u,∇u)) + S′′(u)a(x, t, u,∇u)∇u (2.12)

+ div(S′(u)�(u)) − S′′(u)�(u)∇u = f S′(u) in D′(Q)

and
bS(x, u)(t = 0) = bS(x, u0) in �, (2.13)

where bS(x, r) =
∫ r

0

∂b(x, s)

∂s
S′(s)ds.

The following remarks are concerned with a few comments on Definition 2.3.

Remark 2.4. Equation (2.12) is formally obtained through pointwise multiplication of
the first equation in (1.1) by S′(u). Note that due to (2.10), each term in (2.12) has a
meaning in L1(Q)+Lp′

(0, T ; W−1,p′
(�)). Indeed for the sake of simplicity, we denote

a(u, ∇u) = a(x, t, u, ∇u), and if K is such that supp S′ ⊂ [−K, K], the following
identifications are made in (2.12):

• S(u) ∈ L∞(Q) since S is a bounded function.

• S′(u)a(u, ∇u) is identified with S′(u)a(TK(u), ∇TK(u)) a.e. in Q. Since indeed
|TK(u)| ≤ K a.e. in Q, assumptions (2.3) and (2.5) imply that

|a(x, t, TK(u), ∇TK(u))| ≤ CK(x, t) + βK |∇TK(u)|p−1 a.e. in Q.

As a consequence of (2.10) and of S′(u) ∈ L∞(Q), it follows that

S′(u)a(TK(u), ∇TK(u)) ∈ Lp′
(Q)N.

• S′′(u)a(u, ∇u)∇u is identified with S′′(u)a(TK(u), ∇TK(u))∇TK(u), and due to
(2.3), (2.5), and (2.10), one has

S′′(u)a(TK(u), ∇TK(u))∇TK(u) ∈ L1(Q).

• S′(u)�(u) is identified with S′(u)�(TK(u)) and S′′(u)�(u)∇u is identified with
S′′(u)�(TK(u))∇TK(u). Due to the properties of S and (2.7), the functions S′, S′′
and � ◦ TK are bounded on R so that (2.10) implies that

S′(u)�(TK(u)) ∈ (L∞(Q))N and S′′(u)�(TK(u))∇TK(u) ∈ Lp(Q).

The above shows that (2.12) holds in D′(Q) and that

∂bS(x, u)

∂t
∈ L1(Q) + Lp′

(0, T ; W−1,p′
(�)).
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Due to the properties of S and (2.2),
∂S(u)

∂t
∈ L1(Q) + Lp′

(0, T ; W−1,p′
(�)), which

implies that S(u) ∈ C0([0, T ]; L1(�)) (for a proof of this trace result see [23]), so that
the initial condition (2.13) makes sense, since, due to the properties of S (increasing)
and (2.2), we have

∣∣bS(x, r) − bS(x, r ′)
∣∣ ≤ AK(x)|S(r) − S(r ′)| for all r, r ′ ∈ R. (2.14)

3. Existence Result

In this section we establish the following existence theorem.

Theorem 3.1. Under assumptions (2.1)–(2.9) there exists at least one renormalized so-
lution u of Problem (1.1).

Proof. The proof is divided into 9 steps. In Step 1, we introduce an approximate problem.
Step 2 is devoted to establish a few a priori estimates. In Step 3, the limit u of the
approximate solutions uε is introduced and it is shown that b(x, u) ∈ L∞(0, T ; L1(�))

and that (2.10) holds. In Step 4, we define a time regularization of the field TK(u) and
we establish Lemma 3.2, which a allows us to control the parabolic contribution that
arises in the monotonicity method when passing to the limit. Step 5 is devoted to prove
an energy estimate (Lemma 3.3) which is a key point for the monotonicity arguments
that are developed in Step 6 and Step 7. In Step 8, we prove that u satisfies (2.11). At
last, Step 9 is devoted to prove that u satisfies (2.12) and (2.13) of Definition 2.3. �

Step 1

Let us introduce the following regularization of the data: For ε > 0 fixed,

bε(x, s) = b(x, T1/ε(s)) + εs a.e. in �, s ∈ R, (3.1)

aε(x, t, s, ξ) = a(x, t, T1/ε(s), ξ) a.e. in Q, s ∈ R, ξ ∈ R
N, (3.2)

�ε : R → R
N is a Lipschitz continuous bounded function (3.3)

such that �ε uniformly converges to � on any compact subset of R as ε → 0, and

f ε ∈ Lp′
(Q) satisfies f ε → f in L1(Q) as ε → 0, (3.4)

uε
0 ∈ C∞

0 (�) satisfies bε(x, uε
0) → b(x, u0) in L1(�) as ε → 0. (3.5)

Let us now consider the regularized problem




∂bε(x, uε)

∂t
− div

(
aε(x, t, uε, ∇uε) + �ε(u

ε)
) = f ε in Q,

uε = 0 on (0, T ) × ∂�,

bε(x, uε)(t = 0) = bε(x, uε) in �.

(3.6)
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In view of (3.1), bε satisfies (2.1) and (2.2), and due to (2.2), there exist λε > 0 and
functions Aε ∈ L1(�) and Bε ∈ LP (�) such that

λε ≤ ∂bε(x, s)

∂s
≤ Aε(x) and

∣∣∣∣∇x

(
∂bε(x, s)

∂s

)∣∣∣∣ ≤ Bε(x) a.e. in �, s ∈ R.

In view of (3.2), aε satisfies (2.3), (2.4), and (2.6), and due to (2.5), there exist βε > 0
and a function Cε ∈ Lp′

(�) such that

|aε(x, t, s, ξ)| ≤ Cε(x, t) + βε|ξ |p−1 a.e. in Q, s ∈ R, ξ ∈ R
N.

For the sake of simplicity, we denote aε(u
ε, ∇uε) = aε(x, t, uε, ∇uε).

As a consequence, proving existence of a weak solution uε ∈ Lp(0, T ; W
1,p
0 (�)) of

(3.6) is an easy task (see e.g., [19]).

Step 2

The estimates derived in this step rely on usual techniques for problems of type (3.6),
and we just sketch the proofs of them (the reader is referred to [2–5,7,8] or to [9,21,22]
for elliptic versions of (3.6)).

Using TK(uε) as a test function in (3.6) leads to

∫
�

bε
K(x, uε)(t) dx +

∫ t

0

∫
�

aε(u
ε, ∇uε)∇TK(uε) dx ds

+
∫ t

0

∫
�

�ε(u
ε)∇TK(uε) dx ds =

∫ t

0

∫
�

f εTK(uε) dx ds +
∫

�

bε
K(x, uε) dx (3.7)

for almost every t ∈ (0, T ), and where bε
K(x, r) =

∫ r

0
TK(s)

∂bε(x, s)

∂s
ds.

The Lipschitz character of �ε and Stokes’ formula together with the boundary con-
dition in (3.6) make it possible to obtain

∫ t

0

∫
�

�ε(u
ε)∇TK(uε) dx ds = 0 for almost any t ∈ (0, T ).

Due to the definition of bε
K we have

0 ≤ bε
K(x, uε

0) ≤ K|bε(x, uε
0)| a.e. in �,

so that

0 ≤
∫

�

bε
K(x, uε

0) dx ≤ K

∫
�

|bε(x, uε
0)| dx.

Since aε satisfies (2.4), the properties of f ε and bε(u
ε
0) permit to deduce from (3.7) that

TK(uε) is bounded in Lp(0, T ; W
1,p
0 (�)), (3.8)
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independently of ε for any K ≥ 0.
Proceeding as in [3, 4, 7], we have for any S ∈ W 2,∞(R) such that S′ has compact

support (supp S′ ⊂ [−K, K])
S(uε) is bounded in Lp(0, T ; W

1,p
0 (�)) (3.9)

and
∂S(uε)

∂t
is bounded in L1(Q) + Lp′

(0, T ; W−1,p′
(�)), (3.10)

independently of ε. As a first consequence we have

∇S(uε) = S′(uε)∇TK(uε) a.e. in Q. (3.11)

As a consequence of (3.8) and (3.11), we then obtain (3.9). To show that (3.10) holds
true, we multiply the equation for uε in (3.6) by S′(uε) to obtain

∂bε
S(x, uε)

∂t
= div

(
S′(uε)aε(t, x, uε, ∇uε)

)
(3.12)

− S′′(uε)aε(u
ε, ∇uε)∇uε + div(�ε(u

ε))S′(uε) + f εS′(uε) in D′(Q),

where bε
S(x, r) =

∫ r

0
S′(s)

∂bε(x, s)

∂s
ds. Since supp S′ and supp S′′ are both included

in [−K, K], uε may be replaced by TK(uε) in each of these terms. Thus each term on
the right-hand side of (3.12) is bounded either in Lp′

(0, T ; W−1,p′
(�)) or in L1(Q). As

a consequence of (2.2) and (3.12), we then obtain (3.10).
Now for fixed K > 0, aε(TK(uε), ∇TK(uε)) = a(TK(uε), ∇TK(uε)) a.e. in Q as

soon as ε < 1/K , while assumption (3.2) gives∣∣aε(TK(uε), ∇TK(uε))
∣∣ ≤ CK(t, x) + βK |∇TK(uε)|p−1,

where βK > 0 and CK ∈ Lp′
(Q). In view of (3.8), we find

aε

(
TK(uε), ∇TK(uε)

)
is bounded in (Lp′

(Q))N,

independently of ε for ε < 1/K .
For any integer n ≥ 1, consider the Lipschitz continuous function θn defined by

θn(r) = Tn+1(r) − Tn(r).

Remark that ‖θn‖L∞(R) ≤ 1 for any n ≥ 1 and that θn(r) → 0 for any r when n → ∞.
Using this admissible test function θn(u

ε) in (3.6) leads to
∫

�

bε,n(x, uε)(t) dx +
∫ t

0

∫
�

aε(u
ε, ∇uε)∇θn(u

ε) dx ds (3.13)

+
∫ t

0

∫
�

�ε(u
ε)∇θn(u

ε) dx ds =
∫ t

0

∫
�

f εθn(u
ε) dx ds +

∫
�

bε,n(x, uε
0) dx
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for almost any t ∈ (0, T ), and where bε,n(x, r) =
∫ r

0

∂bε(x, s)

∂s
θn(s) ds.

The Lipschitz character of �ε and Stokes’ formula together with the boundary con-
dition in (3.6) allow to obtain

∫ t

0

∫
�

�ε(u
ε)∇θn(u

ε) dx ds = 0. (3.14)

Since bε,n(x, r) ≥ 0 and

aε(u
ε, ∇uε)∇θn(u

ε) = a(uε, ∇uε)∇θn(u
ε) a.e. in Q for ε <

1

n + 1
,

equality (3.13) implies that

∫ t

0

∫
�

a(uε, ∇uε)∇θn(u
ε) dx ds ≤

∫ t

0

∫
�

f εθn(u
ε) dx ds +

∫
�

bε,n(x, uε
0) dx (3.15)

for almost every t ∈ (0, T ) and for ε < 1/(n + 1).

Step 3

Arguing again as in [3–5, 7], estimates (3.9) and (3.10) imply that, for a subsequence
still indexed by ε,

uε → u a.e. in Q, (3.16)

bε(x, uε) → b(x, u) a.e. in Q, (3.17)

and with the help of (3.8),

TK(uε) ⇀ TK(u) weakly in Lp(0, T ; W
1,p
0 (�)), (3.18)

θn(u
ε) ⇀ θn(u) weakly in Lp(0, T ; W

1,p
0 (�)), (3.19)

aε

(
TK(uε), DTK(uε)

)
⇀ σK weakly in (Lp′

(Q))N (3.20)

as ε → 0 for any K > 0 and any n ≥ 1, and where for any K > 0, σK ∈ (Lp′
(Q))N .

We now establish that b(x, u) belongs to L∞(0, T ; L1(�)). Indeed using Tσ (uε)/σ

as a test function in (3.6) leads to

∫
�

1

σ
bε

σ (x, uε)(t) dx +
∫ t

0

∫
�

1

σ
aε(u

ε, ∇uε)∇Tσ (uε) dx ds

+
∫ t

0

∫
�

1

σ
�ε(u

ε)∇Tσ (uε) dx ds ≤ (‖f ‖L1(Q) + ‖b(x, u0)‖L1(�)

)

for almost every t ∈ (0, T ), and where bε
σ (x, r) =

∫ r

0
Tσ (s)

∂bε(x, s)

∂s
ds.



Existence of a Renormalized Solution 249

As usual, the divergence formula shows that the third term on the left-hand side of the
above inequality is equal to zero, while the second term is nonnegative. Letting σ → 0,
it follows that

∫
�

|bε(x, uε)|(t) dx ≤ (‖f ε‖L1(Q) + ‖bε(x, uε
0)‖L1(�)

)
a.e. in (0, T ).

With (3.4) and (3.5), we have b(x, u) ∈ L∞(0, T ; L1(�)).
We are now in a position to exploit (3.15). Due to the definition of θn we have

a(uε, ∇uε)∇θn(u
ε) = a(uε, ∇uε)∇uεχ{n≤|uε|≤n+1} a.e. in Q.

Inequality (3.14), the pointwise convergence of uε to u and bε(x, uε
0) to b(x, u0) then

imply that

lim
ε→0

∫
{n≤|uε|≤n+1}

aε(u
ε, ∇uε)∇uε dx dt ≤

∫
Q

f θn(u) dx dt +
∫

�

bn(x, u0) dx.

Since θn and θn both converge to zero everywhere as n → ∞, Lebesgue’s convergence
theorem permits to conclude that

lim
n→∞ lim

ε→0

∫
{n≤|uε|≤n+1}

aε(u
ε, ∇uε)∇uε dx dt = 0. (3.21)

Step 4

This step is devoted to introduce for fixed K ≥ 0 a time regularization of the function
TK(u) in order to perform the monotonicity method which will be developed in Step 5
and Step 6. This kind of regularization has been first introduced by R. Landes (see [18,
Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231]). More recently, it has
been exploited in [11,15] to solve a few nonlinear evolution problems with L1 or measure
data.

This specific time regularization of TK(u) (for fixed K ≥ 0) is defined as follows.
Let (v

µ
0 )µ be a sequence of functions defined on � such that

v
µ
0 ∈ L∞(�) ∩ W

1,p
0 (�) for all µ > 0,

‖vµ
0 ‖L∞(�) ≤ K for all µ > 0,

and

v
µ
0 → TK(u0) a.e. in � and

1

µ
‖vµ

0 ‖Lp(�) → 0 as µ → ∞. (3.22)
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Existence of such a subsequence (v
µ
0 )µ is easy to establish (see e.g., [17]). For fixed K ≥

0 and µ > 0, let us consider the unique solution TK(u)µ ∈ L∞(Q)∩Lp(0, T ; W
1,p
0 (�))

of the monotone problem

∂TK(u)µ

∂t
+ µ

(
TK(u)µ − TK(u)

) = 0 in D′(Q), (3.23)

TK(u)µ(t = 0) = v
µ
0 in �. (3.24)

Remark that due to (3.23), we have for µ > 0 and K ≥ 0,

∂TK(u)µ

∂t
∈ Lp(0, T ; W

1,p
0 (�)).

The behavior of TK(u)µ as µ → ∞ is investigated in [18] (see also [15, 17]), and we
just recall here that (3.22) and (3.23) imply that

TK(u)µ → TK(u) a.e. in Q (3.25)

and in L∞(Q) weak star and strongly in Lp(0, T ; W
1,p
0 (�)) as µ → ∞, and

‖TK(u)µ‖L∞(Q) ≤ max
{‖TK(u)‖L∞(Q), ‖vµ

0 ‖L∞(�)

} ≤ K (3.26)

for any µ and any K ≥ 0.
The main estimate is the following.

Lemma 3.2. Suppose h ∈ W 1,∞(R), h ≥ 0, and h has compact support. Then

lim
µ→∞ lim

ε→0

∫ T

0

∫ s

0

〈
∂bε(x, uε)

∂t
, h(uε)

(
TK(uε) − (TK(u))µ

)〉
dt ds ≥ 0,

where 〈, 〉 denotes the duality pairing between L1(�) + W−1,p′
(�) and L∞(�) ∩

W
1,p
0 (�).

Proof of Lemma 3.2. See appendix. �

Step 5

In this step, we prove the following lemma, which is the key point in the monotonicity
arguments that will be developed in Step 6.

Lemma 3.3. The subsequence of uε defined in Step 3 satisfies for any K ≥ 0

lim
ε→0

∫ T

0

∫ t

0

∫
�

a(uε, ∇TK(uε))∇TK(uε) dx ds dt

≤
∫ T

0

∫ t

0

∫
�

σK∇TK(u) dx ds dt. (3.27)
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Proof. We first introduce a sequence of increasing C∞(R)-functions Sn such that for any
n ≥ 1

Sn(r) = r for |r| ≤ n, supp S′
n ⊂ [−(n+1), (n+1)], ‖S′′

n‖L∞(R) ≤ 1. (3.28)

We use the sequence TK(u)µ of approximations of TK(u) defined by (3.23), (3.24) of
Step 4, and plug the test function S′

n(u
ε)(TK(uε) − TK(u)µ) (for ε > 0 and µ > 0) in

(3.6). Through setting, for fixed K ≥ 0,

Wε
µ = (TK(uε) − TK(u)µ), (3.29)

we obtain upon integration over (0, t) and then over (0, T ):
∫ T

0

∫ t

0

〈
∂bε(x, uε)

∂t
, S′

n(u
ε)Wε

µ

〉
ds dt

+
∫ T

0

∫ t

0

∫
�

S′
n(u

ε)aε(x, uε, ∇uε)∇Wε
µ dx ds dt (3.30)

+
∫ T

0

∫ t

0

∫
�

S′′
n(uε)Wε

µaε(x, uε, ∇uε)∇uε dx ds dt

+
∫ T

0

∫ t

0

∫
�

�ε(u
ε)S′

n(u
ε)∇Wε

µ dx ds dt

+
∫ T

0

∫ t

0

∫
�

S′′
n(uε)Wε

µ�ε(u
ε)∇uε dx ds dt

=
∫ T

0

∫ t

0

∫
�

f εS′
n(u

ε)Wε
µ dx ds dt.

In the following we pass to the limit in (3.30) as ε → 0, then µ → ∞, and then n → ∞,
the real number K ≥ 0 kept being fixed. In order to perform this task, we prove below
the following results for fixed K ≥ 0:

lim
µ→∞ lim

ε→0

∫ T

0

∫ t

0

〈
∂bε(x, uε)

∂t
, S′

n(u
ε)Wε

µ

〉
ds dt ≥ 0 for any n ≥ K, (3.31)

lim
µ→∞ lim

ε→0

∫ T

0

∫ t

0

∫
�

S′
n(u

ε)�ε(u
ε)∇Wε

µ dx ds dt = 0 for any n ≥ 1, (3.32)

lim
µ→∞ lim

ε→0

∫ T

0

∫ t

0

∫
�

S′′
n(uε)Wε

µ�ε(u
ε)∇uε dx ds dt = 0 for any n, (3.33)

lim
n→∞ lim

µ→∞ lim
ε→0

∣∣∣∣
∫ T

0

∫ t

0

∫
�

S′′
n(uε)Wε

µaε(u
ε, ∇uε)∇uε dx ds dt

∣∣∣∣ = 0, (3.34)

and

lim
µ→∞ lim

ε→0

∫ T

0

∫ t

0

∫
�

f εS′
n(u

ε)Wε
µ dx ds dt = 0 for any n ≥ 1. (3.35)
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Proof of (3.31). In view of the definition (3.29) of Wε
µ, Lemma 3.2 applies with h = Sn

for fixed n ≥ K . As a consequence, (3.31) holds true. �
Proof of (3.32). For fixed n ≥ 1, we have

S′
n(u

ε)�ε(u
ε)∇Wε

µ = S′
n(u

ε)�ε(Tn+1(u
ε))∇Wε

µ (3.36)

a.e. in Q and for all ε ≤ 1/(n + 1), and where supp S′
n ⊂ [−(n + 1), n + 1]. Since S′

n

is smooth and bounded, (3.3) and (3.16) lead to

S′
n(u

ε)�ε(Tn+1(u
ε)) → S′

n(u)�(Tn+1(u)) (3.37)

a.e. in Q and in L∞(Q) weak star as ε → 0. For fixed µ > 0, we have

Wε
µ ⇀ (TK(u) − TK(u)µ) weakly in Lp(0, T ; W

1,p
0 (�)) (3.38)

and a.e. in Q and in L∞(Q) weak star as ε → 0. As a consequence of (3.36), (3.37),
and (3.38), we deduce that

lim
ε→0

∫ T

0

∫ t

0

∫
�

S′
n(u

ε)�ε(u
ε)∇Wε

µ dx ds dt (3.39)

=
∫ T

0

∫ t

0

∫
�

S′
n(u)�(u)∇ [

TK(u) − TK(u)µ
]

dx ds dt

for any µ > 0. Appealing now to (3.25) and passing to the limit as µ → ∞ in (3.39)
allows to conclude that (3.32) holds true. �

Proof of (3.33). For fixed n ≥ 1, and by the same arguments than those that lead to
(3.36), we have

S′′
n(uε)�ε(u

ε)∇uεWε
µ = S′′

n(uε)�ε(Tn+1(u
ε))∇Tn+1(u

ε)Wε
µ a.e. in Q.

From (3.3) and (3.16), it follows that for any µ > 0

lim
ε→0

∫ T

0

∫ t

0

∫
�

S′′
n(uε)�ε(u

ε)∇uεWε
µ dx ds dt

=
∫ T

0

∫ t

0

∫
�

S′′
n(uε)�ε(Tn+1(u

ε))∇Tn+1(u
ε)Wε

µ dx ds dt.

With the help of (3.25) and passing to the limit as µ → ∞, the above equality leads to
(3.33). �

Proof of (3.34). For any fixed n ≥ 1, we have supp S′′
n ⊂ [−(n + 1), −n] ∪ [n, n + 1].

As a consequence,∣∣∣∣
∫ T

0

∫ t

0

∫
�

S′′
n(uε)aε(u

ε, ∇uε)∇uεWε
µ dx ds dt

∣∣∣∣
≤ T ‖S′′

n‖L∞(R)‖Wε
µ‖L∞(Q)

∫
{n≤|uε|≤n+1}

aε(u
ε, ∇uε)∇uε dx dt
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for any n ≥ 1 and any µ > 0. The above inequality together with (3.26) and (3.28)
make it possible to obtain

lim
µ→∞ lim

ε→0

∣∣∣∣
∫ T

0

∫ t

0

∫
�

S′′
n(uε)aε(u

ε, ∇uε)∇uεWε
µ dx ds dt

∣∣∣∣ (3.40)

≤ C lim
ε→0

∫
{n≤|uε|≤n+1}

aε(u
ε, ∇uε)∇uε dx dt

for any n ≥ 1, where C is a constant independent of n. Appealing now to (3.21) permits
to pass to the limit as n → ∞ in (3.40) and to establish (3.34). �

Proof of (3.35). For fixed n ≥ 1, and in view of (3.4), (3.16), and (3.28), Lebesgue’s
convergence theorem implies that for any µ > 0 and any n ≥ 1,

lim
ε→0

∫ T

0

∫ t

0

∫
�

f εS′
n(u

ε)Wε
µ dx ds dt

=
∫ T

0

∫ t

0

∫
�

f S′
n(u)

(
TK(u) − TK(u)µ

)
dx ds dt.

Now for fixed n ≥ 1, using (3.25) permits to pass to the limit as µ → ∞ in the above
equality to obtain (3.35). �

We now return to the proof of Lemma 3.3. Due to (3.30)–(3.35), we are in a position
to pass to the lim sup when ε → 0, then to the lim sup when µ → ∞, and then to the
limit as n → ∞ in (3.30). We obtain using the definition of Wε

µ that for any K ≥ 0,

lim
n→∞ lim

µ→∞ lim
ε→0

∫ T

0

∫ t

0

∫
�

S′
n(u

ε)aε(u
ε, ∇uε)∇ (

TK(uε) − TK(u)µ
)

dx ds dt ≤ 0.

Since S′
n(u

ε)aε(u
ε, ∇uε)∇TK(uε) = a(uε, ∇uε)∇TK(uε) for ε ≤ 1/K and K ≤ n, the

above inequality implies that for K ≤ n,

lim
ε→0

∫ T

0

∫ t

0

∫
�

aε(u
ε, ∇uε)∇TK(uε) dx ds dt (3.41)

≤ lim
n→∞ lim

µ→∞ lim
ε→0

∫ T

0

∫ t

0

∫
�

S′
n(u

ε)aε(u
ε, ∇uε)∇TK(u)µ dx ds dt.

The right-hand side of (3.41) is computed as follows. In view of (3.2) and (3.28), we
have for ε ≤ 1/(n + 1),

S′
n(u

ε)aε(u
ε, ∇uε) = S′

n(u
ε)a

(
Tn+1(u

ε), ∇Tn+1(u
ε)

)
a.e. in Q.

Due to (3.20), it follows that for fixed n ≥ 1,

S′
n(u

ε)aε(u
ε, ∇uε) ⇀ S′

n(u)σn+1 weakly in (Lp′
(Q))N
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when ε → 0. The strong convergence of TK(u)µ to TK(u) in Lp(0, T ; W
1,p
0 (�)) as

µ → ∞ then allows to conclude that

lim
µ→∞ lim

ε→0

∫ T

0

∫ t

0

∫
�

S′
n(u

ε)aε(u
ε, ∇uε)∇TK(u)µ dx ds dt (3.42)

=
∫ T

0

∫ t

0

∫
�

S′
n(u)σn+1∇TK(u) dx ds dt =

∫ T

0

∫ t

0

∫
�

σn+1∇TK(u) dx ds dt

as long as K ≤ n, since S′
n(r) = 1 for |r| ≤ n. Now for K ≤ n, we have

a
(
Tn+1(u

ε), ∇Tn+1(u
ε)

)
χ{|uε|<K} = a

(
TK(uε), ∇TK(uε)

)
χ{|uε|<K} a.e. in Q.

Passing to the limit as ε → 0, we obtain

σn+1χ{|u|<K} = σKχ{|u|<K} a.e. in Q \ {|u| = K} for K ≤ n. (3.43)

As a consequence of (3.43), we have for K ≤ n,

σn+1DTK(u) = σKDTK(u) a.e. in Q. (3.44)

Recalling (3.41), (3.42), and (3.44) allows to conclude that (3.27) holds true, and the
proof of Lemma 3.3 is complete. �

Step 6

In this step, we prove the following monotonicity estimate.

Lemma 3.4. The subsequence of uε defined in Step 3 satisfies for any K ≥ 0,

lim
ε→0

∫ T

0

∫ t

0

∫
�

[
a(TK(uε), ∇TK(uε)) − a(TK(uε), ∇TK(u))

] × (3.45)

× [∇TK(uε) − ∇TK(u)
]

dx ds dt = 0.

Proof. Let K ≥ 0 be fixed. The monotone character (2.6) of a(s, ξ) with respect to ξ

implies that

∫ T

0

∫ t

0

∫
�

[
a(TK(uε), ∇TK(uε)) − a(TK(uε), ∇TK(u))

] × (3.46)

× [∇TK(uε) − ∇TK(u)
]

dx ds dt ≥ 0.

To pass to the lim sup as ε → 0 in (3.46), let us remark that (2.3), (2.4), and (3.16) imply
that

a(TK(uε), ∇TK(u)) → a(TK(u), ∇TK(u)) a.e. in Q

as ε → 0, and that
∣∣a(TK(uε), ∇TK(u))

∣∣ ≤ CK(t, x) + βK |∇TK(u)|p−1 a.e. in Q,



Existence of a Renormalized Solution 255

uniformly with respect to ε. It follows that when ε → 0,

a
(
TK(uε), ∇TK(u)

) → a (TK(u), ∇TK(u)) strongly in (Lp′
(Q))N . (3.47)

Inequality (3.46) is split into

Aε
1 + Aε

2 + Aε
3 ≥ 0, (3.48)

where

Aε
1 =

∫ T

0

∫ t

0

∫
�

a
(
TK(uε), ∇TK(uε)

) ∇TK(uε) dx ds dt,

Aε
2 = −

∫ T

0

∫ t

0

∫
�

a
(
TK(uε), ∇TK(uε)

) ∇TK(u) dx ds dt,

and

Aε
3 =

∫ T

0

∫ t

0

∫
�

a
(
TK(uε), ∇TK(u)

) (∇TK(uε) − ∇TK(u)
)

dx ds dt.

Using (3.27) of Lemma 3.3, we obtain

lim
ε→0

Aε
1 = lim

ε→0

∫ T

0

∫ t

0

∫
�

a
(
TK(uε), ∇TK(uε)

) ∇TK(uε) dx ds dt (3.49)

≤
∫ T

0

∫ t

0

∫
�

σK∇TK(u) dx ds dt.

In view of (3.20), we have

lim
ε→0

Aε
2 = −

∫ T

0

∫ t

0

∫
�

σK∇TK(u) dx ds dt. (3.50)

Due to (3.18), we conclude that

(∇TK(uε) − ∇TK(u)
)

⇀ 0 weakly in (Lp(Q))N as ε → 0. (3.51)

As a consequence of (3.47) and (3.51), we have for all K > 0,

lim
ε→0

Aε
3 = 0. (3.52)

Now (3.49), (3.50), and (3.52) allow to pass to the lim sup as ε → 0 in (3.48) and to
obtain (3.45) of Lemma 3.4. �
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Step 7

In this step, we identify the weak limit σK and we prove the weak L1 convergence of the
“truncated” energy a

(
TK(uε), ∇TK(uε)

) ∇TK(uε) as ε → 0.

Lemma 3.5. For fixed K ≥ 0, we have as ε → 0,

σK = a
(
TK(uε), ∇TK(uε)

)
a.e. in Q (3.53)

and

a
(
TK(uε), ∇TK(uε)

) ∇TK(uε) ⇀ a (TK(u), ∇TK(u)) ∇TK(u) weakly in L1(Q).

(3.54)
Proof. The proof is standard once we remark that for any K > 0, any 0 < ε < 1/K and
any ξ ∈ R

N ,

aε(TK(uε), ξ) = a(TK(uε), ξ) a.e. in Q

which with (3.18) and (3.47) makes it possible to obtain from (3.45) of Lemma 3.4,

lim
ε→0

∫ T

0

∫ t

0

∫
�

a1/K

(
TK(uε), ∇TK(uε)

)
TK(uε) dx ds dt (3.55)

=
∫ T

0

∫ t

0

∫
�

σK∇TK(u) dx ds dt.

Since, for fixed K > 0, the function a1/K(s, ξ) is continuous and bounded with respect
to s, the usual Minty argument applies in view of (3.18), (3.20), and (3.55). It follows
that (3.53) holds true.

Using the above convergence results that for any K ≥ 0 and any T ′ < T ,

[
a(TK(uε), ∇TK(uε)) − a(TK(uε), ∇TK(u))

] [∇TK(uε) − ∇TK(u)
] → 0

strongly in L1((0, T ′) × �) as ε → 0 because of Lemma 3.4. This shows that for any
K ≥ 0 and any T ′ < T ,

a
(
TK(uε), ∇TK(uε)

) ∇TK(uε) ⇀ a (TK(u), ∇TK(u)) ∇TK(u) (3.56)

weakly in L1((0, T ′) × �) as ε → 0.
At the possible expense of extending the functions a(t, x, s, ξ) and f on a time

interval (0, T ) with T > T in such a way that (2.3)–(2.8) hold true with T in place of
T , we can show that the convergence (3.56) is still weakly in L1(Q), namely that (3.54)
holds true. �
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Step 8

In this step, we prove that u satisfies (2.11). To this end, remark that for any fixed n ≥ 0
one has ∫

{(t,x)/ n≤|uε|≤n+1}
aε(u

ε, ∇uε)∇uε dx dt

=
∫

Q

aε(u
ε, Duε)

[∇Tn+1(u
ε) − ∇Tn+1(u

ε)
]

dx dt

=
∫

Q

a
(
Tn+1(u

ε), ∇Tn+1(u
ε)

) ∇Tn+1(u
ε) dx dt

−
∫

Q

a
(
Tn(u

ε), ∇Tn(u
ε)

) ∇Tn(u
ε) dx dt

for ε < 1/(n + 1). According to (3.54), one may pass to the limit as ε → 0 for fixed
n ≥ 0 and obtain

lim
ε→0

∫
{(t,x)/ n≤|uε|≤n+1}

aε(u
ε, ∇uε)∇uε dx dt (3.57)

=
∫

Q

a (Tn+1(u), ∇Tn+1(u)) ∇Tn+1(u) dx dt

−
∫

Q

a (Tn(u), ∇Tn(u)) ∇Tn(u) dx dt

=
∫

{(t,x)/ n≤|u|≤n+1}
a(u, ∇u)∇u dx dt.

Taking the limit as n → ∞ in (3.57) and using the estimate (3.21) show that u satisfies
(2.11).

Step 9

In this step, u is shown to satisfies (2.12) and (2.13). Let S be a function in W 2,∞(R) such
that S′ has compact support. Let K > 0 be such that supp S′ ⊂ [−K, K]. Pointwise
multiplication of the approximate equation (3.6) by S′(uε) leads to

∂bε
S(x, uε)

∂t
− div

(
S′(uε)aε(u

ε, ∇uε)
) + S′′(uε)aε(u

ε, ∇uε)Duε (3.58)

− div
(
S′(uε)�ε(u

ε)
) + S′′(uε)�ε(u

ε)∇uε = f εS′(uε) in D′(Q),

where bε
S(x, r) =

∫ r

0

∂bε(x, s)

∂s
S′(s) ds. In what follows we pass to the limit as ε → 0

in each term of (3.58).

(i) Since S is bounded and bε
S(x, uε) → bS(x, u) a.e. in Q and weak star in L∞(Q),

∂bε
S(x, uε)

∂t
→ ∂bS(x, u)

∂t
in D′(Q) as ε → 0.
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(ii) Since supp S′ ⊂ [−K, K], we have for ε < 1/K ,

S′(uε)aε(u
ε, ∇uε) = S′(uε)aε

(
TK(uε), ∇TK(uε)

)
a.e. in Q.

The pointwise convergence uε → u as ε → 0, the bounded character of S, (3.20),
and (3.53) of Lemma 3.5 imply that

S′(uε)aε

(
TK(uε), ∇TK(uε)

)
⇀ S′(u)a (TK(u), ∇TK(u)) weakly in (Lp′

(Q))N

as ε → 0, because S′(u) = 0 for |u| ≥ K a.e. in Q, and hence

S′(u)a (TK(u), ∇TK(u)) = S′(u)a(u, ∇u) a.e. in Q.

(iii) Since supp S′′ ⊂ [−K, K], we have for ε ≤ 1/K ,

S′′(uε)aε(u
ε, ∇uε)∇uε = S′′(uε)aε

(
TK(uε), ∇TK(uε)

) ∇TK(uε) a.e. in Q.

The pointwise convergence S′′(uε) → S′′(u) as ε → 0, the bounded character of
S′′, and (3.54) of Lemma 3.5 allow to conclude that

S′′(uε)aε(u
ε, ∇uε)∇uε ⇀ S′′(u)a (TK(u), ∇TK(u)) ∇TK(u) weakly in L1(Q)

as ε → 0 and

S′′(u)a (TK(u), ∇TK(u)) ∇TK(u) = S′′(u)a(u, ∇u)∇u a.e. in Q.

(iv) Since supp S′ ⊂ [−K, K], we have for ε ≤ 1/K ,

S′(uε)�ε(u
ε) = S′(uε)�ε(TK(uε)) a.e. in Q.

As a consequence of (3.3) and (3.16), it follows that for any 1 ≤ q < ∞,

S′(uε)�ε(u
ε) → S′(u)�(TK(u)) strongly in Lq(Q)

as ε → 0. The term S′(u)�(TK(u)) is denoted by S′(u)�(u).

(v) Since S′ ∈ W 1,∞(R) with supp S′ ⊂ [−K, K], we have

S′′(uε)�ε(u
ε)∇uε = �ε(TK(uε))∇S′(uε) a.e. in Q.

Thus ∇S′(uε) → ∇S′(u) weakly in Lp(Q)
N as ε → 0, while �ε(TK(uε)) is

uniformly bounded with respect to ε and converges a.e. in Q to �(TK(u)) as
ε → 0. Therefore

S′′(uε)�ε(u
ε)∇uε ⇀ �(TK(u))∇S′(u) weakly in Lp(Q).
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(vi) Due to (3.4) and (3.16), we have

f εS′(uε) → f S′(u) strongly in L1(Q) as ε → 0.

As a consequence of the above convergence result, we are in a position to pass to the
limit as ε → 0 in equation (3.58) and to conclude that u satisfies (2.12). It remains
to show that bS(x, u) satisfies the initial condition (2.13). To this end, firstly remark
that, S being bounded, S(uε) is bounded in L∞(Q). Secondly, (3.58) and the above

considerations on the behavior of the terms of this equation show that
∂bε

S(x, uε)

∂t
is

bounded in L1(Q) + Lp′
(0, T ; W−1,p′

(�)). Due to (2.2), we deduce that
∂S(uε)

∂t
is

bounded in L1(Q)+Lp′
(0, T ; W−1,p′

(�)). As a consequence, anAubin type lemma (see
e.g., [24, Corollary 4]) implies that S(uε) lies in a compact set of C0([0, T ]; W−1,s(�))

for any s < inf(p′, N/(N − 1)). It follows that, on one hand, S(uε)(t = 0) →
S(u)(t = 0) strongly in W−1,s(�). On the other hand, the smoothness of S implies that
S(uε)(t = 0) → S(u)(t = 0) strongly in Lq(�) for all q < ∞. Due to (2.14) and (3.5),
we conclude that bε

S(x, uε)(t = 0) = bε
S(x, uε

0) → bS(x, u)(t = 0) strongly in Lq(�).
Thus

bS(x, u)(t = 0) = bS(x, u0) in �.

By Step 3, Step 8, and Step 9, the proof of Theorem 3.1 is complete. �

4. Appendix

In this appendix we give the proof of Lemma 3.2.

Proof of Lemma 3.2. Suppose h ∈ W 1,∞(R), h ≥ 0, and h has compact support. By
the integration by parts formula, using the properties of TK(u)µ, we have

∫ T

0

∫ t

0

〈
∂bε(x, uε)

∂t
, h(uε)

(
TK(uε) − (TK(u))µ

)〉
ds dt (4.1)

=
∫ T

0

∫ t

0

〈
∂bε(x, uε)

∂t
, h(uε)TK(uε)

〉
ds dt

−
∫ T

0

∫ t

0

〈
∂bε(x, uε)

∂t
, h(uε)(TK(u))µ

〉
ds dt

= I ε
1 + I

ε,µ
2 .

We denote

Bε
h,K(x, z) =

∫ z

0

∂bε(x, s)

∂s
h(s)TK(s) ds and Bε

h(x, z) =
∫ z

0

∂bε(x, s)

∂s
h(s) ds.
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Upon applying [10, Lemma 2.4] to the first term on the right-hand side of (4.1), we
obtain

I ε
1 =

∫ T

0

∫ t

0

〈
∂bε(x, uε)

∂t
, h(uε)TK(uε)

〉

=
∫

�

∫ T

0

(
Bε

h,K(x, uε) − Bε
h,K(x, uε

0)
)

dt dx. (4.2)

Passing to the limit in (4.2) as ε → 0, we first observe that

∂bε(x, uε)

∂s
h(uε) =

(
∂b(x, Tn(u

ε))

∂s
+ ε

)
h(uε) for ε <

1

n
with supp h ⊂ [−n, n].

In view of (2.1), (2.2), (3.5), and (3.17), passing to the limit in (4.2) leads to

lim
ε→0

I ε
1 =

∫
�

∫ T

0

(
Bh,K(x, u) − Bh,K(x, u0)

)
dt dx. (4.3)

The second term on the right-hand side of (4.1) can be rewritten as

I
ε,µ
2 = −

∫ T

0

∫ t

0

〈
∂bε(x, uε)

∂t
, h(uε)(TK(u))µ

〉
dt ds (4.4)

= −
∫ T

0

∫ t

0

〈
∂Bε

h(x, uε)

∂t
, (TK(u))µ

〉
dt ds

= −
∫

�

∫ T

0

(
Bε

h(x, uε)(TK(u))µ − Bε
h(x, uε

0)(TK(u))µ(0)
)

dt dx

+
∫ T

0

∫ t

0
Bε

h(x, uε)
∂(TK(u))µ

∂t
dt ds

= −
∫

�

∫ T

0

(
Bε

h(x, uε)(TK(u))µ − Bε
h(x, uε

0)(TK(u))µ(0)
)

dt dx

+ µ

∫ T

0

∫ t

0
Bε

h(x, uε)
(
TK(u) − TK(u)µ

)
dt ds.

In view of (3.5), (3.16), and (3.17), passing to the limit as ε → 0 in (4.4) is an easy task
and leads to

lim
ε→0

I
ε,µ
2 = −

∫
�

∫ T

0

(
Bh(x, u)(TK(u))µ − Bh(x, u0)(TK(u))µ(0)

)
dt dx

+ µ

∫ T

0

∫ t

0
Bh(x, u)

(
TK(u) − TK(u)µ

)
dt ds (4.5)
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for any µ > 0. In order to pass to the lim inf as µ → ∞ in (4.5), we now use the
definition of TK(u)µ. In view of (3.22), (3.25), passing to the limit as µ → ∞ yields

lim
µ→∞

∫
�

∫ T

0

(
Bh(x, u)(TK(u))µ − Bh(x, u0)TK(u)µ(0)

)
dt dx (4.6)

=
∫

�

∫ T

0
(Bh(x, u)TK(u) − Bh(x, u0)TK(u0)) dt dx.

The right-hand side of (4.5) can be rewritten as

µ

∫ T

0

∫ t

0
Bh(x, u)

(
TK(u) − TK(u)µ

)
dt ds (4.7)

= µ

∫ T

0

∫ t

0
(Bh(x, u) − Bh(x, TK(u)))

(
TK(u) − TK(u)µ

)
dt ds

+ µ

∫ T

0

∫ t

0

(
Bh(x, TK(u)) − Bh(x, (TK(u))µ)

) (
TK(u) − TK(u)µ

)
dt ds

+ µ

∫ T

0

∫ t

0
Bh(x, (TK(u))µ)

(
TK(u) − TK(u)µ

)
dt ds

= II
µ
1 + II

µ
2 + II

µ
3 ,

where

II
µ
1 =µ

∫
�

∫ T

0

∫ t

0
(Bh(x, u) − Bh(x, TK(u)))

(
TK(u) − TK(u)µ

)
dt ds dx

=µ

∫
{u>K}

∫ T

0

∫ t

0
(Bh(x, u) − Bh(x, K))

(
K − TK(u)µ

)
dt ds dx

+ µ

∫
{u<−K}

∫ T

0

∫ t

0
(Bh(x, u) − Bh(x, −K))

(−K − TK(u)µ
)

dt ds dx ≥ 0

as Bh(x, s) is nondecreasing for s and −K ≤ (TK(u))µ ≤ K . It also follows that
II

µ
2 ≥ 0. Next,

II
µ
3 =µ

∫
�

∫ T

0

∫ t

0
Bh(x, (TK(u))µ)

(
TK(u) − TK(u)µ

)
dt ds dx

=
∫

�

∫ T

0

∫ t

0
Bh(x, (TK(u))µ)

∂TK(u)µ

∂t
dt ds dx

=
∫

�

∫ T

0

(
Bh(x, (TK(u))µ) − Bh(x, (TK(u))µ(0))

)
dt dx,

where Bh(x, z) =
∫ z

0
Bh(x, s)ds. Since TK(u)µ → TK(u) a.e. in Q and |TK(u)µ| ≤ K ,

Lebesgue’s convergence theorem shows that

lim
µ→∞ II

µ
3 =

∫
�

∫ T

0

(
Bh(x, TK(u)) − Bh(x, (TK(u0)))

)
dt dx.
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As a consequence of (4.5), (4.6), and (4.7), we deduce that

lim
µ→∞ lim

ε→0
I

ε,µ
2 ≥

∫
�

∫ T

0
(Bh(x, u)(TK(u)) − Bh(x, u0)TK(u0)) dt dx

+
∫

�

∫ T

0

(
Bh(x, TK(u)) − Bh(x, (TK(u0))

)
dt dx. (4.8)

Due to (4.1), (4.3), and (4.8), we deduce that

lim
µ→∞ lim

ε→0

∫ T

0

∫ s

0

〈
∂bε(x, uε)

∂t
, h(uε)

(
TK(uε) − (TK(u))µ

)〉
dt ds

≥
∫

�

∫ T

0

(
Bh,K(x, u) − Bh,K(x, u0)

)
dt dx

−
∫

�

∫ T

0
(Bh(x, u)TK(u) − Bh(x, u0)TK(u0)) dt dx

+
∫

�

∫ T

0

(
Bh(x, TK(u)) − Bh(x, TK(u0))

)
dt dx = 0,

where the last equality holds since for any z ∈ R and for almost every x ∈ �, we have

Bh(x, TK(z)) = Bh(x, z)TK(z) − Bh,K(x, z).

Indeed,

Bh(x, TK(z)) =
∫ TK(z)

0
Bh(x, s) ds =

∫ TK(z)

0

∫ s

0

∂b(x, w)

∂w
h(w) dw ds

=
∫ TK(z)

0
(TK(z) − w)

∂b(x, w)

∂w
h(w) dw

=
∫ TK(z)

0
(TK(z) − TK(w))

∂b(x, w)

∂w
h(w) dw

=
∫ TK(z)

0
(TK(z) − TK(w))

∂b(x, w)

∂w
h(w) dw.

This concludes the proof. �
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