On Similarity Solutions for a Class of Nonlinear **Diffusion Equations with Convection**¹

Martin Bohner

University of Missouri–Rolla, Department of Economics and Finance, Rolla, MO 65401, USA E-mail: bohner@umr.edu

Meihong Guan and Liancun Zheng

University of Science and Technology Beijing, Department of Mathematics and Mechanics, Beijing 100083, China E-mail: liancunzheng@sina.com

Abstract

This paper deals with a class of nonlinear N-diffusion equations with convection. The unique self-similar solution of a free boundary problem is constructed utilizing the unique solution of a related singular nonlinear two-point boundary value problem. To obtain the main result, shooting methods and certain integral representations of solutions are used.

AMS subject classification: 34B15, 34B16, 35A05, 35A22.

Keywords: Free boundary problem, similarity solution, two-point boundary value problem, shooting method, N-diffusion.

1. Introduction

In this paper we consider a free boundary problem of the form

If this paper we consider a free boundary problem of the form
$$\begin{cases}
 u_{t} = x^{1-M} \left[x^{M-1} k(u) |u_{x}|^{N-1} u_{x} \right]_{x} + x^{1-M} [p(u)]_{x} t^{\frac{M-N-1}{N+1}}, & (x,t) \in D, \\
 u |_{x=\varphi(t)} = A, \quad t > 0, \\
 g \left(t^{\frac{N-M+1}{N+1}} x^{M-1} k(u) |u_{x}|^{N-1} u_{x} \right) \Big|_{x=\varphi(t)} = (\varphi^{N+1}(t))', \quad t > 0, \\
 u |_{t=0} = B > A, \quad x > \varphi(0) = 0,
\end{cases}$$
(1.1)

¹Supported by NSF (USA) Grant #0624127 and NNSF (China) Grant #50476083. Received August 14, 2007; Accepted October 24, 2007

in which $D := \{(x, t) : x > \varphi(t), t > 0\}$, and $\varphi(t)$ is unknown a priori and must be determined as part of the solution. Here we make the following hypotheses:

 (H_1) $k, p, p' : (0, \infty) \to \mathbb{R}$ are continuous with

$$k(u) > 0$$
, $p(u) > 0$, $p(s) \le p(A)$ for all $s \in [A, B]$;

- (H₂) $M, N \in \mathbb{R}$ with $1 < M \le N + 1$;
- (H₃) $g:(0,\beta_0] \to [0,\infty)$ is continuous and strictly decreasing, where $\beta_0 > L(B-A)$ for some suitable L>0,

$$\lim_{\beta \to 0^{+}} g(\beta) \ge \left((N+1) \frac{p(A) - p(B)}{B - A} \right)^{\frac{N+1}{M}} \quad \text{and} \quad g(\beta_0) = 0.$$

The generalized diffusion equation mentioned above is of considerable interest in mathematical physics. In some special cases it can be used to model physical situations in fields involving convection-diffusion processes. The free boundary problem describes certain phase-change processes as does a common Stefan problem. Since a model for certain generalized diffusion processes was suggested by Philip [6], many people devoted their research to diffusion equations which are similar to the first equation in (1.1), with different initial or boundary conditions [1–3,5]. For example, Wang Junyu and others presented many results about the free boundary problem of certain diffusion equations [7–9]. This paper is inspired by what they have done.

2. Conversion Process

We look for a self-similar solution of the form

$$(\varphi(t), u(x, t)) = (\xi_A t^{1/(N+1)}, f(\eta)), \quad \eta = \frac{x}{t^{1/(N+1)}}.$$

After some calculations we arrive at the following free boundary problem for an ordinary differential equation:

differential equation:
$$\begin{cases}
 \left[\eta^{M-1} k(f(\eta)) |f'(\eta)|^{N-1} f'(\eta) \right]' = -\frac{1}{N+1} \eta^M f'(\eta) - p'(f(\eta)) f'(\eta), & \eta > \xi_A, \\
 f(\xi_A) = A, & (2.1) \\
 g\left(\eta^{M-1} k(f(\eta)) |f'(\eta)|^{N-1} f'(\eta) \right) \Big|_{\eta = \xi_A} = \xi_A^{N+1}, \\
 f(\infty) = B.
\end{cases}$$

Suppose $s = f(\eta)$ is strictly increasing in η . Then there exists an inverse function $\eta = z(s)$ satisfying

$$f'(\eta) = \frac{1}{z'(s)}$$
. Let $w := k \frac{z^{M-1}}{(z')^N}$.

Then (2.1) is converted to a singular nonlinear two-point boundary value problem of the form

$$\begin{cases} w'(s) = -\frac{1}{N+1} z^{M}(s) - p'(s), & s \in [A, B), \\ z'(s) = \left(\frac{k(s)}{w(s)}\right)^{\frac{1}{N}} z^{\frac{M-1}{N}}(s), & s \in [A, B), \\ z(A) = [g(w(A))]^{\frac{1}{N+1}}, & w(B) = 0. \end{cases}$$
 (2.2)

3. Two-point Boundary Value Problem

In order to establish the existence and uniqueness of the solution of the singular nonlinear two-point boundary value problem (2.2), in this section we consider a more general two-point boundary value problem of the form

$$\begin{cases} w'(s) = -\frac{1}{N+1} z^{M}(s) - p'(s), & s \in [A, B), \\ z'(s) = y(s, w(s)) z^{\frac{M-1}{N}}(s), & s \in [A, B), \\ z(A) = [g(w(A))]^{\frac{1}{N+1}}, & w(B) = 0, \end{cases}$$
(3.1)

where (H₁)–(H₃) are all satisfied and the following additional hypothesis is adopted:

(H₄) $y: [A, B) \times (0, \infty) \to (0, \infty)$ is continuous, and strictly decreasing and Lipschitz-continuous in the second variable.

Obviously, the two-point boundary value problem (2.2) is a particular case of the problem (3.1).

Lemma 3.1. Assume (H_1) – (H_4) . For each fixed $S \in [A, B]$, W > 0 and $Z \ge 0$, the initial value problem

$$\begin{cases} w'(s) = -\frac{1}{N+1} z^{M}(s) - p'(s), & s \in [A, B), \\ z'(s) = y(s, w(s)) z^{\frac{M-1}{N}}(s), & s \in [A, B), \\ w \mid_{s=S} = W, & z \mid_{s=S} = Z \end{cases}$$

has a unique solution (w, z), which can be represented by

$$w(s) = W + p(S) - p(s) - \frac{1}{N+1} \int_{S}^{s} z^{M}(t)dt,$$
 (3.2)

$$z(s) = \begin{cases} \left[Z^{\frac{N-M+1}{N}} + \frac{N-M+1}{N} \int_{S}^{s} y(t, w(t)) dt \right]^{\frac{N}{N-M+1}} \\ & \text{if } M < N+1, \\ Z \exp\left(\int_{S}^{s} y(t, w(t)) dt \right) \\ & \text{if } M = N+1 \end{cases}$$
(3.3)

and depends continuously on S, W, Z. If the maximal interval of existence of the solution is denoted by (S_1, S_2) , then either $S_1 = A$ or $\lim_{s \to S_1^+} w(s) = 0$, and either $S_2 = B$ or $\lim_{s \to S_2^-} w(s) = 0$.

Proof. Since the proof is similar to the proof of [8, Lemma 2.1], we omit it here.

Lemma 3.2. Assume (H_1) – (H_4) . For $\beta > 0$, let $(w(\cdot; \beta), z(\cdot; \beta))$ be the unique solution of the initial value problem

$$\begin{cases} w'(s) = -\frac{1}{N+1} z^{M}(s) - p'(s), & s \in [A, B), \\ z'(s) = y(s, w(s)) z^{\frac{M-1}{N}}(s), & s \in [A, B), \\ w \mid_{s=A} = \beta, & z \mid_{s=A} = (g(\beta))^{\frac{1}{N+1}}. \end{cases}$$

If $\beta_1 > \beta_2 > 0$, then

$$w(s; \beta_1) > w(s; \beta_2)$$
 and $z(s; \beta_1) < z(s; \beta_2)$ for all $s \in I_{\beta_2}$,

where I_{β_2} is the maximal interval of existence of the solution $(w(\cdot; \beta_2), z(\cdot; \beta_2))$.

Proof. Let $\beta_1 > \beta_2 > 0$. Assume that the first assertion is not true. Since

$$w(A; \beta_1) = \beta_1 > \beta_2 = w(A; \beta_2).$$

there exists $S \in I_{\beta_2}$ such that

$$w(s; \beta_1) > w(s; \beta_2)$$
 for all $s \in [A, S)$ but $w(S; \beta_1) = w(S; \beta_2)$.

Now note that for all $s \in [A, S)$ we have by (3.3) that

$$z(s;\beta) = \begin{cases} \left[(g(\beta))^{\frac{N-M+1}{N(N+1)}} + \frac{N-M+1}{N} \int_{A}^{s} y(t, w(t;\beta)) dt \right]^{\frac{N}{N-M+1}} \\ \text{if } M < N+1, \\ (g(\beta))^{\frac{1}{N+1}} \exp\left(\int_{A}^{s} y(t, w(t;\beta)) dt \right) \\ \text{if } M = N+1. \end{cases}$$
(3.4)

Thus, due to (H_2) – (H_4) ,

$$z(s; \beta_1) < z(s; \beta_2)$$
 for all $s \in [A, S)$.

From (3.2) we get

$$0 < \beta_1 - \beta_2 = w(S; \beta_1) + \frac{1}{N+1} \int_A^S z^M(s; \beta_1) ds - w(S; \beta_2)$$
$$-\frac{1}{N+1} \int_A^S z^M(s; \beta_2) ds$$
$$= \frac{1}{N+1} \int_A^S \left[z^M(s; \beta_1) - z^M(s; \beta_2) \right] ds \le 0,$$

which is a contradiction and hence proves the first assertion. The second assertion follows from (H_2) – (H_4) and (3.4).

Lemma 3.3. Assume (H_1) – (H_4) . Then (3.1) has a positive solution.

Proof. Define the set $E := \{\beta > 0 : w(B; \beta) > 0\}$. By (H₃), there exists a number β_0 such that $g(\beta_0) = 0$. Then $\beta_0 \in E$, i.e., $E \neq \emptyset$, since, according to (3.2) and (3.3), for all $s \in [A, B]$, when M < N + 1,

$$w(s; \beta_0) = \beta_0 + p(A) - p(s)$$

$$-\frac{1}{N+1} \int_A^s \left[\frac{N-M+1}{N} \int_A^t y(r, w(r; \beta_0)) dr \right]^{\frac{MN}{N-M+1}} dt$$

$$> \beta_0 + p(A) - p(s) - L(B-A) > 0,$$

where L is some suitable positive number as y is positive and continuous in $[A, B) \times (0, \infty)$, and when M = N+1, then $z(s; \beta_0) \equiv 0$ and $w(s; \beta_0) = p(A) - p(s) + \beta_0 > 0$. Now we claim that $\beta^* := \inf E > 0$. If not so, then $\beta^* = 0$ and hence $w(B; 0) \geq 0$. Moreover, because of (H_3) , we get that for all $s \in [A, B]$,

$$z^{M}(s; 0) > (N+1)\frac{p(A) - p(B)}{B - A}.$$

Hence it follows by (3.2) that

$$0 \le w(B; 0) = p(A) - p(B) - \frac{1}{N+1} \int_{A}^{B} z^{M}(s; 0) ds < 0,$$

which is impossible.

We prove that the solution $(w(\cdot; \beta^*), z(\cdot; \beta^*))$ is a positive solution of the two-point boundary value problem (3.1). Clearly, it is enough to show that $w(B; \beta^*) = 0$. If $w(B; \beta^*) > 0$, then there will be a number $\beta \in (0, \beta^*)$ such that $w(B; \beta) = w(B; \beta^*)/2$, by Lemma 3.1 and Lemma 3.2. I.e., $\beta \in E$, which contradicts the definition of β^* . The proof is complete.

Lemma 3.4. Assume (H_1) – (H_4) . Let both (w_1, z_1) and (w_2, z_2) be solutions of the first two equations in (3.1) defined on $[a, b] \subset [A, B]$. If

$$w_1(a) = w_2(a)$$
 and $w_1(b) = w_2(b)$,

then $w_1 = w_2$ on [a, b].

Proof. Assume that the statement is not true. Then we may assume without loss of generality $w_1(s) < w_2(s)$ for all $s \in (a, b)$. Thus $w_1'(a) \le w_2'(a)$. Now it follows from the first equation in (3.1) that $z_1(a) \ge z_2(a)$, and thus, by (H₂)–(H₄) and (3.3),

$$z_{1}(s) = \begin{cases} \left[(z_{1}(a))^{\frac{N-M+1}{N}} + \frac{N-M+1}{N} \int_{a}^{s} y(t, w_{1}(t)) dt \right]^{\frac{N}{N-M+1}} \\ & \text{if } M < N+1, \\ z_{1}(a) \exp\left(\int_{a}^{s} y(t, w_{1}(t)) dt \right) \\ & \text{if } M = N+1 \end{cases}$$

$$\geq \begin{cases} \left[(z_{2}(a))^{\frac{N-M+1}{N}} + \frac{N-M+1}{N} \int_{a}^{s} y(t, w_{2}(t)) dt \right]^{\frac{N}{N-M+1}} \\ & \text{if } M < N+1, \\ z_{2}(a) \exp\left(\int_{a}^{s} y(t, w_{2}(t)) dt \right) \\ & \text{if } M = N+1 \end{cases}$$

$$= z_{2}(s)$$

for all $s \in [a, b]$. Therefore, by (3.2),

$$0 > w_1(s) - w_2(s) = \frac{1}{N+1} \int_s^b \left[z_1^M(t) - z_2^M(t) \right] dt \ge 0, \quad s \in (a,b),$$

which is a contradiction and hence finishes the proof.

Now we can summarize the above results in the following statement.

Theorem 3.5. Assume (H_1) – (H_4) . Then (3.1) has a unique positive solution.

Proof. The existence is shown in Lemma 3.3. Now assume (w_1, z_1) and (w_2, z_2) are solutions of (3.1). Then $w_1(B) = 0 = w_2(B)$ and $z_1(A) = z_2(A)$. Hence $w_1(A) = w_2(A)$ due to (H₃). By Lemma 3.4, $w_1 = w_2$. Thus $w_1' = w_2'$ and therefore $z_1 = z_2$.

Theorem 3.6. In addition to (H_1) – (H_3) , suppose

$$y(s, w) = \left(\frac{k(s)}{w}\right)^{\frac{1}{N}}.$$

Then

$$z(B^{-}) \begin{cases} = \infty & \text{if } N \leq 1 \\ < \infty & \text{if } N > 1. \end{cases}$$

Proof. Suppose first $N \le 1$. Assume $z(B^-) < \infty$. Then, by (3.1), $w'(B^-)$ is finite. Thus there exists $\theta > 0$ such that $|w'(s)| < \theta$ for all $s \in [A, B)$. Then

$$w(s) \le |w(s)| = |w(B) - w(s)| = \left| \int_s^B w'(r)dr \right| \le \int_s^B |w'(r)|dr$$
$$\le \int_s^B \theta dr = \theta(B - s)$$

for all $s \in [A, B]$. Therefore, by (3.3),

$$z(B^{-}) = \begin{cases} \left[(g(w(A)))^{\frac{N-M+1}{N(N+1)}} + \frac{N-M+1}{N} \int_{A}^{B} \left(\frac{k(t)}{w(t)} \right)^{\frac{1}{N}} dt \right]^{\frac{N}{N-M+1}} \\ \text{if } M < N+1, \\ ((g(w(A)))^{\frac{1}{N}} \exp\left(\int_{A}^{B} \left(\frac{k(t)}{w(t)} \right)^{\frac{1}{N}} dt \right) \\ \text{if } M = N+1 \end{cases}$$

is finite and thus

$$\infty > \int_{A}^{B} \left(\frac{k(t)}{w(t)}\right)^{\frac{1}{N}} dt \ge \int_{A}^{B} \left(\frac{k(t)}{\theta(B-t)}\right)^{\frac{1}{N}} dt \ge \frac{1}{\theta} \int_{A}^{B} \frac{k(t)}{B-t} dt$$
$$\ge \frac{1}{\theta} \int_{A}^{B} \frac{L_{1}}{B-t} dt = \frac{L_{1}}{\theta} \int_{A}^{B} \frac{dt}{B-t} = \infty,$$

where $0 < L_1 \le k(t) \le L_2$ for all $t \in [A, B]$ due to (H_1) , a contradiction.

Now suppose N > 1. Assume $z(B^-) = \infty$. Then, by (3.1), $w'(B^-) = \infty$. Thus there exists $S \in [A, B)$ such that w'(s) < -1 for all $s \in [S, B)$. Then

$$w(s) = w(s) - w(B) = -\int_{s}^{B} w'(r)dr > B - s$$

for all $s \in [S, B]$ and therefore by (H_1)

$$\int_{S}^{s} \left(\frac{k(r)}{w(r)}\right)^{\frac{1}{N}} dr \le \int_{S}^{s} \left(\frac{k(r)}{B-r}\right)^{\frac{1}{N}} dr < \infty \quad \text{for all} \quad s \in [S, B],$$

which implies $z(B^-) < \infty$, a contradiction.

4. Free Boundary Problem

In this section we construct a self-similar solution of the free boundary problem (1.1), utilizing the unique positive solution of the two-point boundary value problem (2.2).

By a solution of the free boundary problem (1.1), we mean a pair (φ, u) satisfying the following conditions:

- (a) $\varphi:[0,\infty)\to\mathbb{R}$ is continuously differentiable and $\varphi(0)=0$;
- (b) $u: \overline{D} \setminus \{(0,0)\} \to \mathbb{R}$ and $Lu: D \to \mathbb{R}$ are continuously differentiable, where

$$Lu(x) := x^{M-1}k(u)|u_x|^{N-1}u_x;$$

(c) the pair (φ, u) satisfies (1.1).

Similarly, we call the pair (ξ_A, f) a solution of the free boundary problem (2.1), if it satisfies the following conditions:

- (a) $\xi_A > 0$;
- (b) $f: [\xi_A, \infty) \to \mathbb{R}$ is increasing and continuously differentiable;
- (c) $Mf: [\xi_A, \infty) \to \mathbb{R}$ is continuously differentiable, where

$$Mf(\eta) := \eta^{M-1} k(f(\eta)) |f'(\eta)|^{N-1} f'(\eta);$$

(d) the pair (ξ_A, f) satisfies (2.1).

Theorem 3.5 asserts that under the hypotheses (H_1) – (H_4) , the two-point boundary value problem (2.2) has a unique positive solution (w, z), in which z is strictly increasing. Consequently, the function $s = f(\eta)$ inverse to $\eta = z(s)$ exists in (ξ_A, ξ_B) , where $\xi_A := z(A)$ and $\xi_B := z(B^-)$. Theorem 3.6 tells us that $\xi_B = \infty$ when $N \le 1$ and $\xi_B < \infty$ when N > 1. When N > 1, it is stipulated that $f(\eta) = B$ for all $\eta \ge \xi_B$. Clearly,

$$f(\xi_A) = A$$
, $\lim_{\eta \to \xi_B} f(\eta) = B$, $\lim_{\eta \to \xi_B} f'(\eta) = 0$

since for all $\eta \in [\xi_A, \xi_B)$,

$$\eta = z(f(\eta)), \quad f'(\eta) = \frac{1}{z'(s)} > 0.$$

This shows that $f: [\xi_A, \infty)$ is continuously differentiable and strictly increasing on $[\xi_A, \xi_B]$. Next we prove that the pair (ξ_A, f) is a solution of the free boundary problem (2.1). Substituting $s = f(\eta)$ into (2.2) yields

$$w'(f(\eta)) = -p'(f(\eta)) - \frac{1}{N+1} \eta^M, \quad \eta \in [\xi_A, \xi_B), \tag{4.1}$$

$$w(f(\eta)) = \eta^{M-1} k(f(\eta)) |f'(\eta)|^{N-1} f'(\eta), \quad \eta \in [\xi_A, \xi_B), \tag{4.2}$$

and hence

$$(\eta^{M-1}k(f(\eta))|f'(\eta)|^{N-1}f'(\eta))' = w'(f(\eta))f'(\eta)$$

$$= \left(-p'(f(\eta)) - \frac{1}{N+1}\eta^{M}\right)f'(\eta)$$
(4.3)

for all $\eta \in [\xi_A, \xi_B)$. When N > 1, the above equations read all 0 = 0 for all $\eta \ge \xi_B$. The equations (4.2) and (4.3) show that $Mf : [\xi_A, \infty) \to \mathbb{R}$ is continuously differentiable. From the last condition in (2.2), (4.1) and (4.2), we have

$$g(\eta^{M-1}k(f(\eta))|f'(\eta)|^{N-1}f'(\eta))|_{\eta=\xi_A} = \xi_A^{N+1}.$$

To sum up, the pair (ξ_A, f) is a solution of the free boundary problem (2.1). Finally, let us define the pair (φ, u) by

$$\varphi(t) = \xi_A t^{1/(N+1)}, \quad u(x,t)) = f\left(\frac{x}{t^{1/(N+1)}}\right),$$

where (ξ_A, f) is a solution of the free boundary problem (2.1). It is easy to verify that the pair (φ, u) is a self-similar solution of the free boundary problem (1.1).

References

- [1] C. Atkinson and J.E. Bouillet. Some qualitative properties of solutions of a generalised diffusion equation, *Math. Proc. Cambridge Philos. Soc.*, 86(3):495–510, 1979.
- [2] F.V. Atkinson and L.A. Peletier. Similarity profiles of flows through porous media, *Arch. Rational Mech. Anal.*, 42:369–379, 1971.
- [3] F.V. Atkinson and L.A. Peletier. Similarity solutions of the nonlinear diffusion equation, *Arch. Rational Mech. Anal.*, 54:373–392, 1974.
- [4] Meihong Guan, Lianzhun Zheng, and Xinxin Zhang. The similarity solution to a generalized diffusion equation with convection, *Adv. Dyn. Syst. Appl.*, 1(2):183–189, 2006.
- [5] L.A. Peletier and Jun Yu Wang. A very singular solution of a quasilinear degenerate diffusion equation with absorption, *Trans. Amer. Math. Soc.*, 307(2):813–826, 1988.
- [6] J.R. Philip. *n*-diffusion, *Austral. J. Phys.*, 14:1–13, 1961.
- [7] Jun Yu Wang. A free boundary problem for a generalized diffusion equation, *Non-linear Anal.*, 14(8):691–700, 1990.
- [8] Jun Yu Wang, Jie Jiang, and Xian Rui Lü. A free boundary problem for one-dimensional equations of a viscous gas, *Chinese Ann. Math. Ser. B*, 14(4):411–418, 1993. A Chinese summary appears in Chinese Ann. Math. Ser. A 14 (1993), no. 6, 739.

- [9] Jun Yu Wang, Da Wei Zheng, and Xue Kong Wang. A free boundary problem for a nonlinear second order differential equation involving a small parameter, *Tohoku Math. J.* (2), 44(2):233–242, 1992.
- [10] Lincun Zheng, Xinxin Zhang, and Jicheng He. Transfer behavior for a class of generalized *N*-diffusion equations in an infinite medium, *Int. Comm. Heat Mass Trans.*, 29(8):1151–1158, 2002.