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Abstract
This paper deals with a class of nonlinear N-diffusion equations with convection.
The unique self-similar solution of a free boundary problem is constructed utiliz-
ing the unique solution of a related singular nonlinear two-point boundary value
problem. To obtain the main result, shooting methods and certain integral repre-
sentations of solutions are used.
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1. Introduction
In this paper we consider a free boundary problem of the form
M—-N—-1
up = x M M@l V] M pl TR, (1) € D,

ul,_yp=A >0,
4 (1.1)
N-—M+1
g (TRl ) | =@M @), >,
x=e(t)

ul_g=B>A, x>¢0) =0,
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in which D := {(x,1) : x > ¢(t), t > 0}, and ¢(¢) is unknown a priori and must be
determined as part of the solution. Here we make the following hypotheses:

(Hy) k, p, p' : (0, 00) — R are continuous with

k(u)y >0, pu) >0, p@s)<p(A) forall se€l[A, Bl

Hy) M,N e Rwithl <M < N + 1;

(H3) g : (0, Bo] — [0, 00) is continuous and strictly decreasing, where Sy > L(B — A)
for some suitable L > 0,

p(A) — p(B)

NTH
B4 ) and g(Bop) =0.

lim g(f) = ((N +1)
B—0F

The generalized diffusion equation mentioned above is of considerable interest in math-
ematical physics. In some special cases it can be used to model physical situations in
fields involving convection-diffusion processes. The free boundary problem describes
certain phase-change processes as does a common Stefan problem. Since a model for
certain generalized diffusion processes was suggested by Philip [6], many people de-
voted their research to diffusion equations which are similar to the first equation in
(1.1), with different initial or boundary conditions [1-3,5]. For example, Wang Junyu
and others presented many results about the free boundary problem of certain diffusion
equations [7-9]. This paper is inspired by what they have done.

2. Conversion Process

We look for a self-similar solution of the form

(p(0)ulx.0) = Ear" ™D F ). 1=

After some calculations we arrive at the following free boundary problem for an ordinary
differential equation:

[ k(F I N op] = - T 1an’m) —P(Faf ), 1> Ea,
fEa) =A,
4 (2.1)
g (™M (FaILF IV () =g N
n=£4
f(00) = B.

Suppose s = f(n) is strictly increasing in 1. Then there exists an inverse function
n = z(s) satisfying
M-I
. Let wi=k——=.
Z'(s) ()

f') =
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Then (2.1) is converted to a singular nonlinear two-point boundary value problem of the
form

w'(s) = N 1zM<s> —p'(s), selA, B),
17G) = (k(s) )Nzszl(s), s €[A, B), (2.2)
w(s)
2(A) = [g(w(A)]FT,  w(B) =0.

3. Two-point Boundary Value Problem

In order to establish the existence and uniqueness of the solution of the singular nonlinear
two-point boundary value problem (2.2), in this section we consider a more general two-
point boundary value problem of the form

w'(s) = — M(s) = p'(s), selA,B),

N +1 et
Z(s) = y(s,w(s)z ¥ (s), s€[A,B), G.1)

1
z(A) = [g(w(AN]VFT,  w(B) =0,
where (H;)—(H3) are all satisfied and the following additional hypothesis is adopted:

(Hq) y: [A, B)x(0,00) — (0, 00)is continuous, and strictly decreasing and Lipschitz-
continuous in the second variable.

Obviously, the two-point boundary value problem (2.2) is a particular case of the problem
(3.1).

Lemma 3.1. Assume (H;)-(H4). For each fixed S € [A, B], W > 0 and Z > 0, the
initial value problem

w'(s) = — T 1ZMM(S1) —p'(s), selA, B),
Z(s) = y(s, w(s)z ¥ (5), s€[A,B),
w |s=S = W’ Z |s:S: 4

has a unique solution (w, z), which can be represented by

_ PR S R
w(s) =W+ p(S) — p(s) N1 /S z7 (t)dt, (3.2)
[ZN‘?V”' G N-Mrl /s ¥, w(t))dt}N_MH
N s
2(s) = if M<N+1, (3.3)

Z exp (/S y(t, w(t))dt)
S

if M=N+1
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and depends continuously on S, W, Z. If the maximal interval of existence of the
solution is denoted by (S7, S>), then either S| = Aor lim w(s) = 0, and either S, = B

s—)Sl+
or lim w(s) =0.
s—>85

Proof. Since the proof is similar to the proof of [8, Lemma 2.1], we omit it here. [

Lemma 3.2. Assume (H;)—(Hy). For 8 > 0, let (w(-; B), z(+; B)) be the unique solution
of the initial value problem

M(s) = p'(s), selA,B),

w'(s) = —
N +1
Z(s) = y(s, w(s)z ¥ (5), s €[A,B),
wl|_, =B z|_,=@B)F.
If ,81 > ﬁz > 0, then
w(s; B1) > w(s; B2) and  z(s; Bi) < z(s; B2) forall s € Ip,,

where Ig, is the maximal interval of existence of the solution (w(-; B2), z(-; B2)).
Proof. Let B1 > B2 > 0. Assume that the first assertion is not true. Since
w(A; B1) = p1 > P2 = w(A; pa),
there exists S € Ig, such that
w(s; B1) > w(s; Bp) forall s e[A,S) but w(S;B1) = w(S; B).

Now note that for all s € [A, §) we have by (3.3) that

N
if M <N +1,
(g(ﬂ))ﬁl exp (/ y(t, w(t; ﬁ))dt)

A
if M=N+1.

N—M+1 N—-—M+1 [ N#MH
[(g(ﬁ)) NOV+D 4 —/A y(t, w(t; ﬁ))dt]

z(s; B) = (3.4)

Thus, due to (Hy)—(Hy),

z(s; B1) < z(s; Bp) forall s e[A,S).
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From (3.2) we get

1 S
O<pBr—pB = w(S;ﬂ1)+N—+1fA M(s; Br)ds — w(S; Ba)

1 s
_N—JrlfA M (s; Bo)ds
1 S
= N+l /A [2¥ (s; B1) — 2 (s; B2)]ds <0,

which is a contradiction and hence proves the first assertion. The second assertion follows
from (Hp)—(Hy) and (3.4). |

Lemma 3.3. Assume (H;)-(H4). Then (3.1) has a positive solution.

Proof. Define the set E := {8 > 0 : w(B; 8) > 0}. By (H3), there exists a number S
such that g(Bp) = 0. Then By € E, i.e., E # {, since, according to (3.2) and (3.3), for
alls € [A, B], when M < N + 1,

w(s; Bo) = Po+ p(A) — p(s)

MN

1 SIN—-M+1 (! N=MFT

- R — : ; d dt
N+1A{ N ,Lvavﬁw)q

> po+ p(A) —p(s) —L(B—A) >0,

where L is some suitable positive number as y is positive and continuous in [A, B) X
(0, 00),and when M = N + 1, then z(s; Bp) = Oand w(s; Bo) = p(A)— p(s)+Bo > 0.
Now we claim that 8* := inf E > 0. If not so, then B* = 0 and hence w(B; 0) > 0.
Moreover, because of (Hz), we get that for all s € [A, B],

p(A) — p(B)

M@s0) > (N +1) —

Hence it follows by (3.2) that

B
0 < w(B;0) = p(A) — p(B) — %HA M(s; 0)ds < 0,

which is impossible.

We prove that the solution (w(-; %), z(-; B*)) is a positive solution of the two-
point boundary value problem (3.1). Clearly, it is enough to show that w(B; 8*) =
0. If w(B; B*) > 0, then there will be a number 8 € (0, 8*) such that w(B; B) =
w(B; B*)/2,by Lemma 3.1 and Lemma 3.2. L.e., 8 € E, which contradicts the definition
of B*. The proof is complete. |
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Lemma 3.4. Assume (H;)-(H4). Let both (w1, z1) and (wy, z2) be solutions of the first
two equations in (3.1) defined on [a, b] C [A, B]. If

wi(a) = wa(a) and wi(b) = wa(b),
then w; = wy on [a, b].

Proof. Assume that the statement is not true. Then we may assume without loss of
generality w; (s) < wy(s) forall s € (a, b). Thus w}(a) < wj(a). Now it follows from
the first equation in (3.1) that z;(a) > z2(a), and thus, by (H»)—(Hy4) and (3.3),

N—M+1 —M+1 (5 #
[(m(a)) N +N—+/ y(t, wl(t))dt] ’

N
if M<N+1,

z1(a) exp (/ y(t, wl(t))dt>

if M=N+1

vewsn N—MA+1 [* N
|:(12(a)) N +T+/ y(t,wz(t))dt]

if M<N+1,

22(a) exp (/ y(t, wz(t))dt)

if M=N+1

z1(s) =

A%

= 22(5)

for all s € [a, b]. Therefore, by (3.2),

b

1
0> wi(s) —wa(s) = Nl [z @) = ®)]dt =0, s5€a,b),
which is a contradiction and hence finishes the proof. [ |

Now we can summarize the above results in the following statement.
Theorem 3.5. Assume (H;)—-(H4). Then (3.1) has a unique positive solution.

Proof. The existence is shown in Lemma 3.3. Now assume (wy, z1) and (w», z2) are
solutions of (3.1). Then w;(B) = 0 = wy(B) and z;(A) = z2(A). Hence wi(A) =
w7 (A) due to (H3). By Lemma 3.4, w; = wy. Thus wj = w) and therefore z; = z,. B

Theorem 3.6. In addition to (H;)—(H3), suppose

y(s, w) = (lﬂ)]\] .
w
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Then

(B7) = 00 if N<I1
¢ < 00 if N >1.

Proof. Suppose first N < 1. Assume z(B~) < oo. Then, by (3.1), w'(B7) is finite.
Thus there exists & > 0 such that |w'(s)| < 6 for all s € [A, B). Then

B B
/ w'(r)dr Sf |w'(r)|dr

B
5/ Odr =0(B — s)
N

w(s) < |ws)| = w(B) —w(s)| =

for all s € [A, B]. Therefore, by (3.3),

st N—M+1 P kv T
[(g(w(A))w o fA (M) d,}

ifM <N +1,
1 B /k %
(g(w(A) ¥ exp / (—(”) dt
4 \w(@®)

ifM=N+1
is finite and thus

B B B
~ > [ (@) ar= | (ﬂ) ar=5 [ KO gy
A w(t) A (B —1) 0Js, B—t

lfB L, Li (B dt
> - dt = — = 00,
0 Js B—t 0 J, B—t

Z(B7) = 9

z|—
=|—

where 0 < L < k(t) < Lpforallt € [A, B] due to (H), a contradiction.
Now suppose N > 1. Assume z(B~) = oo. Then, by (3.1), w'(B~) = oco. Thus
there exists S € [A, B) such that w'(s) < —1 forall s € [S, B). Then

B
w(s) = w(s) —w(B) = —/ w'(rydr > B —s

for all s € [S, B] and therefore by (Hy)

S k(r)\ ¥ (kG \V
f( ) drf/( ) dr < oo forall s e[S, B],
s \w(r) s \B—r

which implies z(B~) < oo, a contradiction. |
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4. Free Boundary Problem

In this section we construct a self-similar solution of the free boundary problem (1.1),
utilizing the unique positive solution of the two-point boundary value problem (2.2).

By a solution of the free boundary problem (1.1), we mean a pair (¢, u) satisfying
the following conditions:

(a) ¢ : [0, 00) — Ris continuously differentiable and ¢(0) = 0;
®) u:D \ {(0,0)} - Rand Lu : D — R are continuously differentiable, where

Lu(x) = xM_lk(u)lux|N_1ux;

(c) the pair (¢, u) satisfies (1.1).

Similarly, we call the pair (§4, f) a solution of the free boundary problem (2.1), if it
satisfies the following conditions:

(@) &4 > 0;
(b) f :[&a,00) — Ris increasing and continuously differentiable;

(c) Mf : &4, 00) — Ris continuously differentiable, where
Mf @) =ML IV s

(d) the pair ({4, f) satisfies (2.1).

Theorem 3.5 asserts that under the hypotheses (H;)—(H4), the two-point boundary value
problem (2.2) has a unique positive solution (w, z), in which z is strictly increasing.
Consequently, the function s = f(n) inverse to n = z(s) exists in (4, £p), where
Ex ;= z(A) and &g := z(B™). Theorem 3.6 tells us that £ = co when N < 1 and
Ep < oowhen N > 1. When N > 1, it is stipulated that f(n) = B for all n > &p.
Clearly,

fEn =4, lim fop=B, lim f'()=0
since for all n € [§4, &),

n=z(fm), fm= > 0.

1
Z'(s)
This shows that f : [£4, 00) is continuously differentiable and strictly increasing on

[E4, Ep]. Next we prove that the pair (§4, f) is a solution of the free boundary problem
(2.1). Substituting s = f(n) into (2.2) yields

1
w'(f(m) ==p'(f(n) - N—+1’7M’ n € [&a,8&p), 4.1

w(fm) =" k(FOIF IV (), € lEa, &), (4.2)
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and hence
Mk CF @IV m) = w' (Fm) f ()

= (=P = ) fop @3

N +1 '
foralln € [€4,&p). When N > 1, the above equationsread all 0 = O forall > £p. The
equations (4.2) and (4.3) show that M f : [§4, 00) — R is continuously differentiable.
From the last condition in (2.2), (4.1) and (4.2), we have

g (™ k(FaIF IV () |

_ & N+1
n=ta §a )
To sum up, the pair ({4, f) is a solution of the free boundary problem (2.1). Finally, let
us define the pair (¢, u) by

00 =64t u,0) = f (7 )

where (§£4, f) is a solution of the free boundary problem (2.1). It is easy to verify that
the pair (¢, u) is a self-similar solution of the free boundary problem (1.1).
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