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Abstract

In this paper we consider the eigenvalue problem —A,u = A(m)|u|” u, u e
W(} 'P(Q) where p > 1, A, is the p-Laplacian operator, A > 0,  is a bounded
domain in R¥ (N > 1) and m is a given positive function in L" () (» depending on
p and N). We prove that the second positive eigenvalue admits exactly two nodal
domains.
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1. Introduction
Consider the problem

(1.1)

—Apu = Am(x)|ul’2u  in S,
u=20 on 02,

where p > 1, A,u =div(|Vul? ~2Vu) denotes the p-Laplacian, €2 is a bounded domain
in RV, N € N and A is the eigenvalue parameter. We denote M1 (Q)={m € L"(Q) :
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N

meas{x € Q :m(x) >0} #0},withr > —ifl < p<Nandr =1if p > N. We
p

assume that m satisfies the hypothesis

(H): m(kx)>0ae. x € Qandm € M (Q).

Let us start by considering the sequence ;11 < wy < usz--- — +oo of all eigenvalues of
—A on HO1 (), with m € L*°(2), Q being a bounded domain in RY, where each uy is
repeated according to its multiplicity. A well-known theorem of Courant [4] states that if
u e H(} (£2) is an eigenfunction associated to px, then u admits at most k nodal domains.
This theorem was partially extended to the p-Laplacian by Anane and Tsouli in [1]. Let
usdenoteby A1 < A2 < A3...— 400 the sequence of eigenvalues of —A , on Wol’p(Q)
obtained by the Ljusternik—Schnirelman method (see [7]). In the linear case p = 2 and
m € L*(Q), this sequence A < Ay < Aj3... yields all eigenvalues and coincides with
the previous sequence u; < 2 < u3... (see [3, page 23]). The result of [1] is the
following. Let A be an eigenvalue of —A, on WOI’I7 (£2) and suppose that for some &,
A < Ak. Then the number of nodal domains of an eigenfunction associated to A is strictly
inferior to k. M. Cuesta et al. in [6] proved that in the nonlinear case and m = 1, the
number of nodal domains of an eigenfunction associated to A, the second eigenvalue, is
exactly 2. In this paper we prove that if m satisfies the hypothesis (H ), then the number
of nodal domains of an eigenfunction associated to A, (€2, m), the second eigenvalue for
the problem (1.1), is exactly 2.

2. Preliminaries

Throughout this paper,  will be a bounded domain of RY and we will always as-
sume the hypothesis (H). WO1 "P(Q) will denote the usual Sobolev space with norm

ulli,p = (/ |Vu|pdx>p. We will write ||.||, for the L”(£2) norm, p’ denotes
Q

the Holder conjugate exponent of p. We will write ¥ = L" TQ) if1 < p <N
and Y = C(2) if p > N. The infinity norm in the case ¥ = C(£2) will be de-
noted by ||.||ly. [|€2| denotes the Lebesgue measure of 2. We recall that a value

A € R is an eigenvalue of problem (1.1) if and only if there exists u € Wol’p () \ {0}
such that / IVulP"2VuVedx = A f mlu|P2ugpdx for all ¢ € Wy (), and u is

Q
then called an eigenfunction associated to A. Now let us formulate variational prob-

lem (1.1), for that we introduce the C! functionals ® by ®(u) = / |Vu|Pdx and
Q

B : Wol’p(Q) — R by B(u) = / mlu|Pdx. ® will denote the restriction of ® to
Q

M={ue WO1 P(Q) : B(u) = 1}. Afirst sequence of positive critical values of ® comes

from the Ljusternik—Schnirelman critical point theory on C ! manifolds proved in [8] that

A, (2, m) = inf max ®(u)is aneigenvalue. Moreover lim A, (€2, m) = +o00. Here
Kel', uek n—-+o0o



Nodal Domains for the p-Laplacian 137

'y = {K C M : K compact, symmetric and y (K) > n} and y (K) indicates the genus
of K. Finally in [5], M. Cueta showed that A, (€2, m) is simple, isolated, and possesses
the property of strict monotonicity respectively to the domain and the weight. This re-
sult has been shown in [2] in the case m € L*°(2). Since A,(£2, m) is isolated in the
spectrum and there exist eigenvalues different from A, (€2, m), it makes sense to define
the second eigenvalue of (1.1) as A := min{A € R : A eigenvalue and A > A,(€2, m)}.
This result is also proved in [1] in the case m € L™ ().

Theorem 2.1. [S] If m satisfies the hypothesis (H), then

(2, m) = ry) = = inf max Vul|Pdx,
Ao ) = A2 = 2 he]—"ueh([—l,l])f9| |

where F = {y € C([-1,1],M) : y(—1) = —¢1,y(l) = ¢1} and ¢; € M is the
positive eigenfunction associated to A (€2, m).

Proposition 2.2. Let ©; be a proper open subset of a domain €, C R" such that
meas({x € 1 : m(x) > 0}) # 0. Then A;(22, m) < A,(21, m).

Proof. Consider A = {u e W, Q) | |VulP = 1}. Now

Q

1
_ = sup/ mlu|Pdx = / m|;|Pdx
A (821, m) ueA JQ Q

= /m|g51|1’dx < f m|ps|Pdx
Q Q)
1

Ay (2, m)’

where ¢y, @ are respectively the eigenfunctions associated to A; (€21, m), A;(£22, m) and
@1 =@1on Q¢ =00nQ\ Q. |

3. Nodal Domains of the Second Eigenfunction
The main result in this section is the following theorem.

Theorem 3.1. An eigenfunction associated to A, (€2, m) admits exactly two nodal do-
mains.

Consider ® (1) = / |Vul|Pdx and M = {u € Wol’p(SZ) : / mlu|Pdx = 1}. We
Q

Q
have A,(€2, m) = inf max ®(u), where ', = {K C M : K compact, symmetric and
Kel', uek

v (K) > 2}. Let ¢ be the second eigenfunction associated to A, (€2, m). @2 must change
sign and consequently admits at least one positive nodal domain €2; and one negative
nodal domain €2;. Let us assume by contradiction the existence of a third nodal domain
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with say ¢» > 0 in 23 (the argument would be similar if ¢» < 0 in €23). Thus we have
the following lemma.

Lemma 3.2. There exists an open and connected set 6, C €2 with 2, & 65 such that 6,
is disjoint of €2 or €23.

Proof of Theorem 3.1. Let us admit Lemma 3.2 for a moment and show how to derive
a contradiction. We will assume below that the lemma is satisfied with 6, disjoint of
21 (the argument would be similar in the other case). We will show the existence of a

function v € WO1 "7 () which changes sign and satisfies

0 </ IVuT|Pdx <&2(Q,m)/ m@T)Pdx,
Q Q

0 </ Vv~ |Pdx <&2(Q,m)/ m( ™ )Pdx.
Q Q

Since

—Ap(#2) = Ay (Qm)mlp2|" 2y in Q,

=0 on 9<2,
where ¢, is the second eigenfunction associated to the second eigenvalue A, (€2, m), we
have

—8p(@2) = My(Q,m)mlg2|" gy in Q,

@y = 0 on 391.

Thus A, (€2, m) = A;(€21, m). Also, from Proposition 2.2 we conclude that A, (6>, m) <
A1 (22, m), where A (6, m) denotes the first eigenvalue of —A ), on W(}’p(é). We then

decrease 6, and increase S}l , S0 as to get two new open sets in 2, 9~2 and §21 , with empty
intersection such that A, (62, m) < A,(€2, m) and A, (€21, m) < A,(§2, m). On the other
hand let u; be the first positive eigenfunction associated to A (€21, m). Then we have

—Ap () = 2y (@1, mymul ™" in Qy,
up =0 on 8S~21.
Let u be the first positive eigenfunction associated to A, (52, m). Thus
—Ap(uz) = 2y (B, mymuf ™" in 6,
u, =0 on 965.

Putv; = ul/le, v = OonQ\le and v, = u2/0~2, vy = OonQ\éz. Letv = vy — vs.
We have

/ Vot |Pdx :/ |V |Pdx :&l(ﬁl,m)/ m|vy|Pdx <A2(Q,m)/ m|vy|Pdx
Q Q Q Q 3.0)
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and

/ Vv~ |Pdx :/ Vs |Pdx :Al(éz,m)f m|va|Pdx <L2(Q,m)/ m|va|Pdx,
Q Q Q Q

(3.2)
where v = max (v, 0) and v~ = max(—v, 0). Consider the mapping
dp-MNEHv))—=>SN@wv)iu— _*
ull1, p
which is odd homomorphic with
v

SN, s> MN T, vT) v

b

(fymlv|Pdx)?

where M = {u € W(}”’(sz) : / mlulPdx = 1}, S={uc WOI”’(Q) :lulli,, = 1} and
Q

(vt, v7) represents the space spanned by v and v™. Put F, = M N (v", v™). Then we

have y (F,) = 2, where y (F>) indicates the genus of F>. Now let u € F,. Then there
exists (a, b) € R? \ {(0, 0)} such that u = av* + bv~. Hence we have

0<f |VulPdx = |a|p/ |Vv+|1’dx+|b|p/ Vv~ |Pdx.
Q Q Q

From (3.1) and (3.2), we conclude that

f VulPdx = lal?hy (&1, m) f miviPdx + b7, G2, m) / mlva|Pdx.
Q Q Q

Thus / |Vu|Pdx < Ay(S2, m), which contradicts A,(2, m) = inf max @ (u). [ |
Q Kel'y uek
Proof of Lemma 3.2. The following proof adopts the scheme of M. Cuesta in [6]. Con-
sider the two sets 322 N2 and 9€2;NQ2. We distinguish two cases (1) 9Q2:NQ € 9Q; N
or (2) 02, N C 921 N Q. In case (1), there exists x € 92 N Q such that x does
not belong to d€21. Thus for some ¢ > 0, B(x, ) C Q and B(x, ) N Q1 = @. The set
0, = Q2 U B(x, ¢) is then disjoint of €21 and yields the conclusion of the lemma. Let
us now deal with case (2). The function ¢, on 23 is C 1, negative, and satisfies there
—Appy < Ointhe weak sense. Letz € 02, NE2 satisfy the interior ball condition with re-
spect to Q. Since ¢ is C! in a neighbourhood of z, we deduce from the Hopf maximum

d
principle that v
on(z) . .
Thus at least one partial derive of ¢; at z is nonzero. So there exists 1 < j < N such that
a
8_<P2 # 0. Now consider the c! mapping ¥ : @ — RY : (x1,...,xny) = (1, ..., YN)
Xj

defined by y; = x; —z; forall 1 <i < Nandi # j,y; = ¢2(x1, x2,...,xpn), by the

> 0, where n is the exterior normal direction to the interior ball at z.
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inverse mapping theorem there is an open neighbourhood U of z which is diffeomorphic
through W to V := {y € RY : |y| < ¢} for some ¢ > 0. Since (pz(\If_](y)) =y,
we have ¢ = 0 on \IJ_I(VO), @2 > 0 on \IJ_I(VJ“) and ¢ < O on \I!_l(V_), where
V0={y€V:yj:O},V+={yeV:yj>0},V_={er:yj<O}.Moreover
U=v'vOHuw i (vHuw (V7). Wehave z € 32, N Q, ¥~ (V1) is open and
connected, and €2, is a positive nodal domain. Consequently W' (V) c Q. Similarly
we have lIJ_l(V_) C 2. Thus z does not belong to 9€23. So there exists ¢ > 0 such
that B(z, €) N 23 = @, in which case we put 8, = B(z, &) U Q2. [ |

Corollary 3.3. Let 1 and 2, be the nodal domains of the second eigenfunction. Then
we have |Q| > Q| + |Q2] > 2(CA, (2, m)||m]||,)"7, where y = and C is

rp— N
some constant depending only on N and p if p # N andon N and 7" if p = N.
Proof. This follows from Theorem 3.1 and using [5, Theorem 3.2]. [ |
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