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Abstract

In this paper, we study the existence of positive radial solutions for the elliptic sys-
tem by fixed point index theory.
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1. Introduction and Preliminaries

There are many results on the study of positive radial solutions in the annulus for elliptic
equations, see [1,7,9, 10] and references. However we are interested in problems of
superlinearity and sublinearity for the elliptic system. In this paper, we study existence
of positive radial solutions of the elliptic system

{ Au+hi(r) f(u,v) =0, (1.1)

Av+hy(r)gu) =0, 0<a<r<b
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with one of the following sets of boundary conditions

u=v=0 on r=a,r=>=, (1.2a)
0 0
u=v=0onr =a, —u:—v=00nr:b, (1.2b)
ar or
ou dv
— =—=0onr=a, u=v=0onr =>b, (1.2¢)
ar ar
where {x € R" : a < |x| < b} is an annulus, r = |x| = xlz+x%+~-—|—x,%(nz

2), whereas f € C(RT x R",RT), g ¢ CR",R™), £(0,0) = g(0) = 0,h; €
C((a,b),R") (i =1,2),R* =[0, +00).

The existence of positive radial solutions for the elliptic system is studied in [5, 8].
The paper [8] only deals with the sublinear case

fitx,y) . filx,y)
im = 400, lim ——= =
|, =0 [(x, ¥)| I, )= [(x, y)]

0 @=12).

In [5], Jiang and Liu studied the case of sublinearity ( fo = 0, foo = 00) or superlinearity
(fo = 00, foo = 0), where

e gim W S

= lim , eR" p>1).
lul—0 u|P~1 jul—>o0 |u|P~1 s p>1

The purpose of this paper is to study the existence of positive radial solutions of the system

(1.1)—(1.2a). Our particular interest is that f (u, v) and g(u) grow both superlinearly and

sublinearly in u, v respectively. So our results are different from the ones of [1,5,7-11]

and the conditions that we use are more general than the ones used in [1,5,7-11].
(1.1)—(1.2) is equivalent to the boundary value problems

u”(r) + - 1M’(r) + hi(r) f(u(r), v(r)) =0,

2l (1.3)

v (r) + . V() +ha(r)gu@) =0, a<r <b,
u(a) =v(a) =u(b) =vb) =0, (1.4a)
u(a) =v(a) =u'(b) =0v'(b) =0, (1.4b)
u'(a) =v'(a) = u) =vb) =0. (1.4c)

b b

Lets = — [ t'™dt,m = —f 17, w(s) = u(r(s)), z(s) = v(r(s)). Then

(1.3)—(1.4) can be rewritten as

w’(s) +r(s)*"Vhy(r (s)) £ (w(s), z(s)) =0,
2"(s) +r($)* " Vhy(r(s))g(w(s)) =0, m < s <0,
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w(m) = z(m) = w(0) = z(0) =0,
w(m) = z(m) = w'(0) = 7/(0) =0,
w'(m) = 7/ (m) = w(0) = z(0) = 0.

Now, lett = u, o) = w(s)and ¥ (t) = z(s). Then (1.1)—(1.2) can also be written
m
as

{ @)+ p (D f(p(D), ¥ (1)) =0, (L.5)
V() + p,()gle) =0, 0 <1 <1,
0) =¥ (0) = (1) =¢¥(1) =0, (1.6a)
9(0) =y (0) = ¢ () =y'(1) =0, (1.6b)
¢'(0) =¥'(0) = (1) =y (1) =0, (1.6¢)

where p.(£) = m*r>"=D(m(1 — )b (r(m(1 — 1)) (i = 1,2).

From now on, we concentrate on (1.5)—(1.6). Indeed, (1.1)—(1.2) has a positive
radial solution for any annulus if we can prove that there exists a positive solution to
BVP (1.5)—(1.6) for any m # O (cf. [8]).

For convenience of notation, we list the following assumptions:

(H) f e CRT xRt R, g € CRT,R"),h; € C((a, b),R"), hj(t) # 0 in any
subinterval of (a, b), and

b
/ hi(t)dt < +o0 (i =1,2).

(H) There exists o € (0, 1] such that

timinf 5% = 400, limint LYY < g
u—4oo 5 v—>+00 V¥
uniformly with respect to u € RY.
(H3) There exists B € (0, 4+00) such that
lim sup g(114) =0, limsup f(ul; V) < 400
u—0t ybB v—>0t v
uniformly with respect to u € RY.
(Hy) There exists p € (0, +00) such that
lim sup g(bll) =0, limsup fu. v) < +o0
u—>—+00 1 p v—>+too UP

uniformly with respect to u € RY.
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(Hs) There exists g € (0, 1] such that
g(u)

) _ oo, Timint L8
uda

v—0* vd

lim inf >0

u—0"+

uniformly with respect to u € RY.

(Hg) f(u,v)and g(u) are increasing in u and v and there exists R > 0 such that

"f(R,y,g(R)) <R,

1
where y, :/ p,(tHydt (i =1,2).
0
The following examples to illustrate (H,)—(Hs) are in order.

1
Example 1.1. Let f(u, v) = (14+e" )% g(u) = u’, o = 5> B=2. Then (Hy)—(Hs)

hold. Here f(u, v) grows sublinearly in # and superlinearly in v respectively, whereas
g(u) grows superlinearly in u.

—(u+v)y, 5 3 1
Example 1.2. Let f(u,v) = (1 + e w2, gu) =u,aa =8 = 3 Then (H>)—

(H3) hold, in which f(u, v) grows sublinearly, whereas g(u) grows superlinearly in
u.

y

| —

Example 1.3. Let f(u, v) = (1 + ¢~ )02 o(u) = u? or g(u) = u?, p = q =

f—

Then (H4) and (Hs) hold, f(u, v) grows sublinearly, whereas g(u) grows superlinear
or sublinearly.

Example 1.4. Let f(u,v) = (1 + e”+”)v% or f(u,v) = (1 + e”)v%, g(u) = u? +
w o= q = 5 Then (H3) and (Hs) hold, f(u, v) and g(u) are increasing in u and v.

At +o00, f(u,v) grows superlinearly or f(u, v) grows superlinearly and sublinearly in
u and v respectively, whereas g(u) grows superlinearly at +o0.

By virtue of (Hp), we can define the integral operator A : C[0, 1] — C[O0, 1] by

1
(Ap) (1) =/0 Gi(t,s)p,(s) f(p(s), (Te)(s))ds, (1.7)

where

1
(Te)() =/0 Gi(t,s)p,(s)g(p(s))ds (i =1,2,3), (1.8)

t(l—s), 0<tr<s <1,

Gl(t’s):{ s(1—1),0<s=t=1,

(1.9a)
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t, 0<tr<s<l,

Gz(t,5)={s’ O<s<t<l. (1.9b)
1—5,0<t<s <1,

G3(t,5)={ l—1.0<s<t<l. (1.9¢)

Then the positive solutions of BVP (1.5)—(1.6) are equivalent to the positive fixed points
of A.

LetJ =[0,1],0<c<d<1,Jy=]c,d]l,eg =c(1 —d), E = C[0,1], |u]| =
majx lu(t)| foru € E,
te

K={uecC[0,1]:u(t)>0,u) >t(1—10)ull,t e J}.

It is easy to show that (E, || - ||) is a real Banach pace and K is a cone in E. From (1.9)
we get that
Gi(t,s) > 0, Ga(t,s) > ¢, G3(t,s) =1 —d, (t,5) € Jyx Jo, (1.10)

tA—=0)G(r,s) < Gi(t,s) <s(l —s),
tGy(r,s) < Go(t,s) <s, (1.11)
(1—-=0Gs3(r,s) <Gs(t,s) <1 —5), t,s,rel.

Lemma 1.5. Let (H;) hold. Then A : K — K is a completely continuous operator.

See [2, 6] for the proof of Lemma 1.5.

To prove our main results, we also need the following fixed point index theorems.

Let (E, || - ||) be areal Banach space, P be aconein E, and B, = {u € E : |u| <
p} (p > 0) be the open ball of radius p. Let A : Ep N P — P be a completely
continuous operator, i (A, B, N P, P) denote the fixed point index of A on B, N P. For
the details of the fixed point index, one can refer to [4].

Lemma 1.6. [4] Assume that A : Ep N P — P is a completely continuous operator. If
there exists ug € P \ {6} such that

u— Au # Aug forallA > 0,u € 9B, N P,
theni(A, B,N P, P) =0.

Lemma 1.7. [3] Assume that A : Ep N P — P is a completely continuous operator and
has no fixed point on 0B, N P.

(1) If |Au|| < |lu|l forany u € B, N P, theni(A, B, N P, P) = 1.

(2) If ||Au|| = |[u]| forany u € 0B, N P, theni(A, B, P, P) =0.
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2. Main Results

Theorem 2.1. Let (H;), (H>) and (H3) hold. Then (1.1)—(1.2a) has a positive radial
solution for any annulus a < r < b.

Proof. Firstly, we consider (1.5)—(1.6a). By (H>), there are v > 0 and sufficiently large
M > 0 such that

flp,¥) > vy*forallg e RY, v > M, 2.1

g(@) > Cops forall g > M, (2.2)

ve2 d d ~a e\ —1
where Cyp = max —Of p(s)ds max/ Gi(t,s)p,(s)ds , y/eo‘" ,
2 c 2 tedo Jo 2

d

where )/2/ = f pa(r)ydr. Let N = (M + 1)80_1, ¢,(t) =sinmt € K \ {#}. We claim
C

that

¢ —Ap #Ap, forallA >0, p € 0By N K.

In fact, if there are A > 0, ¢ € 0By N K such that ¢ — Agp = Ag,, then

d 1
@(1) = (Ap)(1) Zf Gi(t,5)p, () f (cﬂ(S),/O Gl(s,r)Pz(r)g(w(r))dr) ds, t € J.
(2.3)

Owingto o € (0, 1] and ¢(¢) > eoll@ll =eoN =M +1 > M, p(t) € K, t € Jp, (2.2)
implies that

d

1
/OGl(s,r)pz(r)g(fp(r))drzf Gi(s,r)p,(r)g(e(r))dr

c

d | | d
> Cof Gi(s,r)p,(r)e«(r)dr = Co(8oN)“/ Gi(s,r)p,(r)dr

1+a

> NCoy)e,* =N, s € Jo. (2.4)

By using 0 < G1(t,s) < 1, € (0, 1] and Jensen’s inequality, it follows from (2.1)-
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(2.4) that

o

d 1
(1) EV/ G, 5)p,(s) (/0 Gl(s,r)Pz(r)g(w(r))dr) ds

d d o
Zv/ Gi(t,5)p,(s) (f Gl(s,r)Pz(r)g(fﬂ(r))dr) ds

v

d d
v / G1(t,5)p, (s) (f G?(sw)p?(r)g“«o(r))dr)ds
d d
> v / Gi(t,5)p, (s) / G1(s, r)p2(r)g® (p(r)drds

d d
Zvé‘oCS‘/ Gl(t,S)pl(S)dS/ Py (re(r)dr

v

d d
v%%/wﬁﬁwmww/;ﬂmMMLmJ.
c c

Thus

, (¢ d

ol = C8‘v€o/ py (rydr maX/ Gi(t,5)p,()dslell = 2llell.
¢ tedo Je

This is a contradiction. By Lemma 1.6 we get
i(A,ByNK,K)=0. (2.5)

On the other hand, according to the second limit of (H3), there exists a sufficiently small
p, € (0, 1) such that

f(f/”faﬂ‘ﬁ) : Vo eRT, ¥ e (0, pl]} < +o00. (2.6)

C =: sup{

1

1 B
Let &, = min :01)/2_1’ y2_1 (2C1y ) } > 0. By the first limit of (H3), there exists a
1

sufficiently small p, € (0, 1) such that

2(@) < &,0F. ¢ <l0.p,]. 2.7)

Let p = min{p,, p,}. (2.6) and (2.7) imply that

1 1 |
fo Gi(s,r)p,(r)gle(r)dr < 81/0 p,()p(r)Bdr

1

1 1+ _
<pllellf =p, ¥ <p, peB,NK,se[0,1],
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1 1 B
(Aco)(t)sCl/o Gi(t,5)p,(s) (/0 Gl(s,r)pz(r)g(w(r))dr> ds

1 1 . B
< Cief /0 P, (s)ds ( /0 pz(rw(r)dr)

1 _
< CinyPellol < Slell. ¢ €B,NK 10, 1].

1
Thus ||Ag|| < §||(p|| < |l¢|| for any ¢ € 0B, N K. Lemma 1.7 yields

i(A,B,NK,K)=1. (2.8)
(2.5) together with (2.8) imply that
i(A, (By \Fp) NK,K)=i(A,ByNK,K)—i(A,B,NK,K)=—-1.

So A has a fixed point ¢ € (By \Ep) N K and satisfies 0 < p < |l¢] < N. We know
that ¢(¢) > 0,7 € (0, 1) by definition of K. This show that BVP (1.5)—(1.6a) has a
positive solution ¢, ¥ € C2(O, 1) N C[O0, 1], and satisfies ¢(t) > 0, ¢ (t) > O for any
t € (0,1). Similarly we can get the conclusions of (1.5)—(1.6b) and (1.5)—(1.6¢c). This
completes the proof of Theorem 2.1. |

Theorem 2.2. Let (H;), (Hs) and (Hs) hold. Then (1.1)—(1.2) has a positive radial
solution for any annulus a < r < b.

Proof. First consider (1.5)—(1.6a). By (Hy), there exist § > 0, C, > 0 and C3 > 0 such
that

—_

F@9) <8P + s, g(p) < (
(2.9) implies that

4 p)p +C3, ¢,y eRT. (2.9)
23)/1)’2

1 1 P
(AQ)(1) < fo Gi(t,$)p, (s) [8 ( /0 Gl<s,r>p2<r>g<¢<r>>dr) +C2:|ds

! ! o(r) \7 !
< / p,(s)ds |6 / p,(r) (—p) +Cs|dr| +C
0 0 28y, v5

I P

lell \ 7

<3y, [(E + Gy, | + 1 Ca (2.10)
1

By means of simple calculation, we have
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Then there exists a sufficiently large G > 0 such that

loll \ 7 ’ 3 G
eiyr

From this and (2.10) we obtain that
lAgll < llell, ¢ €dBgNK.
This, along with Lemma 1.7, yields that
i(A,BGNK,K)=1. (2.11)
In addition, by (Hs), there exist n > 0 and sufficiently small £ > 0 such that
[l ¥) =yl 9 eRY,0<y <&, (2.12)

g1(p) > Cap, 0<¢ <&, (2.13)
—1

d d
1
where C4 = 2(7]8(2)/ G (§s> pl(s)ds/ pg(r)dr) . Since g(0) =0, g €
C C

C@R™,R™), there exists o € (0, min{&, yz_lf.;”}) such that g(p) < y;ls, for any ¢ €
[0, o]. This implies that

1
/ Gi(s, r)p,(Nglp(r)dr <& ¢ € B, NK,s€[0,1]. (2.14)
0

By using Jensen’s inequality and 0 < g < 1, from (2.12)—(2.14) we get that

1 d q
(Agp) (5) > 77[ Gi ( )Pl(s) ( Gl(s,r)pz(r)g(go(r))dr) ds

d q
> nf Gl( )pl(S) Gl(s,r)Pz(r)g(w(r))dr) ds

1 q
> 77/ Gi (2 S) pi(s) (/ Gi(s, V)Pf(r)gq(w(r)))dr) ds

> nC4 ( pi(s) ( Gl(s, r)l??(f)(ﬁ(r)di’) ds

d
> nCael / Gy (2 ) p,(s)ds / pl(rdrllell

=2llgll, ¢ € BsNK,

thus
lA@|| > |l¢| forall ¢ € 0B, N K. (2.15)
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(2.15) together Lemma 1.7 yield
i(A,B,NK,K)=0. (2.16)
(2.11) and (2.16) imply that
i(A,(B6\Bs;)NK,K)=i(A,BGNK,K)—i(A,B,NK,K)=1.

So A has a fixed point ¢ € (Bg \Eg) N K and satisfies 0 < 0 < ||¢|| < G. This
show that BVP (1.5)—(1.6a) has a positive solution ¢, ¢ € CZ(O, 1) N C[0, 1], and
o) > 0,%() > 0 forany ¢t € (0, 1). Similarly we can get the conclusions of (1.5)—
(1.6b) and (1.5)—(1.6¢). This completes the proof of Theorem 2.2. [ |

Theorem 2.3. Let (H;), (H2), (Hs) and (Hg) hold. Then (1.1)—(1.2) has two positive
radial solutions for any annulus a < r < b.

Proof. We take N > R > o such that either (2.5) or (2.16) hold. (1.7), (1.8) and (Hpg)
indicate that

1 1
(Ap)(1) = /O () f <¢(S),/O Pz(r)g(w(r)dr> ds <y, f(R,,8(R)) <R

for any ¢ € 0Bgr N K, then ||A¢| < ||l¢| for any ¢ € dBr N K. Lemma 1.7 implies
i(A,BRNK,K)=1.
Consequently,
i(A,(BN\BR)NK,K)=i(A,ByNK,K)—i(A,BgNK,K)=—1,

i(A,(BR\B,)NK,K)=i(A,BkNK,K)—i(A,B,NK,K)=1.

So A has two fixed points ¢; € (Br \By) N K and ¢ € (By \ BR) N K respectively,
and 0 < o < |lg1]l < R < [|lg2|l < N. Then BVP (1.5)—(1.6) has two positive solution
(o1, VY1), (92, ¥n), and satisfy ¢;(¢) > 0, ¥;(t) > 0@ = 1,2) forany t € (0, 1). This
completes the proof of Theorem 2.3. [ |

Remark 2.4. From Examples 1.1-1.4 we know that all conclusions in this paper are
different from the ones in [1,5,7-11] and the conditions that we use are more general
than the ones in papers [1,5,7-11].
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