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Abstract

In this paper, we study the existence of positive radial solutions for the elliptic sys-
tem by fixed point index theory.
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1. Introduction and Preliminaries

There are many results on the study of positive radial solutions in the annulus for elliptic
equations, see [1, 7, 9, 10] and references. However we are interested in problems of
superlinearity and sublinearity for the elliptic system. In this paper, we study existence
of positive radial solutions of the elliptic system{ �u + h1(r)f (u, v) = 0,

�v + h2(r)g(u) = 0, 0 < a < r < b
(1.1)
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with one of the following sets of boundary conditions

u = v = 0 on r = a, r = b, (1.2a)

u = v = 0 on r = a,
∂u

∂r
= ∂v

∂r
= 0 on r = b, (1.2b)

∂u

∂r
= ∂v

∂r
= 0 on r = a, u = v = 0 on r = b, (1.2c)

where {x ∈ R
n : a < |x| < b} is an annulus, r = |x| =

√
x2

1 + x2
2 + · · · + x2

n (n ≥
2), whereas f ∈ C(R+ × R

+, R
+), g ∈ C(R+, R

+), f (0, 0) = g(0) = 0, hi ∈
C((a, b), R

+) (i = 1, 2), R
+ = [0, +∞).

The existence of positive radial solutions for the elliptic system is studied in [5, 8].
The paper [8] only deals with the sublinear case

lim|(x,y)|→0

fi(x, y)

|(x, y)| = +∞, lim|(x,y)|→∞
fi(x, y)

|(x, y)| = 0 (i = 1, 2).

In [5], Jiang and Liu studied the case of sublinearity (f0 = 0, f∞ = ∞) or superlinearity
(f0 = ∞, f∞ = 0), where

f0 = lim|u|→0

f (u)

|u|p−1
, f∞ = lim|u|→∞

f (u)

|u|p−1
(f ∈ R

m, p > 1).

The purpose of this paper is to study the existence of positive radial solutions of the system
(1.1)–(1.2a). Our particular interest is that f (u, v) and g(u) grow both superlinearly and
sublinearly in u, v respectively. So our results are different from the ones of [1,5,7–11]
and the conditions that we use are more general than the ones used in [1, 5, 7–11].

(1.1)–(1.2) is equivalent to the boundary value problems


u′′(r) + n − 1

r
u′(r) + h1(r)f (u(r), v(r)) = 0,

v′′(r) + n − 1

r
v′(r) + h2(r)g(u(r)) = 0, a < r < b,

(1.3)

u(a) = v(a) = u(b) = v(b) = 0, (1.4a)

u(a) = v(a) = u′(b) = v′(b) = 0, (1.4b)

u′(a) = v′(a) = u(b) = v(b) = 0. (1.4c)

Let s = −
∫ b

r

t1−ndt, m = −
∫ b

a

t1−ndt, w(s) = u(r(s)), z(s) = v(r(s)). Then

(1.3)–(1.4) can be rewritten as{
w′′(s) + r(s)2(n−1)h1(r(s))f (w(s), z(s)) = 0,

z′′(s) + r(s)2(n−1)h2(r(s))g(w(s)) = 0, m < s < 0,
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w(m) = z(m) = w(0) = z(0) = 0,

w(m) = z(m) = w′(0) = z′(0) = 0,

w′(m) = z′(m) = w(0) = z(0) = 0.

Now, let t = m − s

m
, ϕ(t) = w(s) and ψ(t) = z(s). Then (1.1)–(1.2) can also be written

as {
ϕ′′(t) + p1(t)f (ϕ(t), ψ(t)) = 0,

ψ ′′(t) + p2(t)g(ϕ(t)) = 0, 0 < t < 1,
(1.5)

ϕ(0) = ψ(0) = ϕ(1) = ψ(1) = 0, (1.6a)

ϕ(0) = ψ(0) = ϕ′(1) = ψ ′(1) = 0, (1.6b)

ϕ′(0) = ψ ′(0) = ϕ(1) = ψ(1) = 0, (1.6c)

where p
i
(t) = m2r2(n−1)(m(1 − t))hi(r(m(1 − t)))(i = 1, 2).

From now on, we concentrate on (1.5)–(1.6). Indeed, (1.1)–(1.2) has a positive
radial solution for any annulus if we can prove that there exists a positive solution to
BVP (1.5)–(1.6) for any m �= 0 (cf. [8]).

For convenience of notation, we list the following assumptions:

(H1) f ∈ C(R+ × R
+, R

+), g ∈ C(R+, R
+), hi ∈ C((a, b), R

+), hi(t) �≡ 0 in any
subinterval of (a, b), and∫ b

a

hi(t)dt < +∞ (i = 1, 2).

(H2) There exists α ∈ (0, 1] such that

lim inf
u→+∞

g(u)

u
1
α

= +∞, lim inf
v→+∞

f (u, v)

vα
> 0

uniformly with respect to u ∈ R
+.

(H3) There exists β ∈ (0, +∞) such that

lim sup
u→0+

g(u)

u
1
β

= 0, lim sup
v→0+

f (u, v)

vβ
< +∞

uniformly with respect to u ∈ R
+.

(H4) There exists p ∈ (0, +∞) such that

lim sup
u→+∞

g(u)

u
1
p

= 0, lim sup
v→+∞

f (u, v)

vp
< +∞

uniformly with respect to u ∈ R
+.
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(H5) There exists q ∈ (0, 1] such that

lim inf
u→0+

g(u)

u
1
q

= +∞, lim inf
v→0+

f (u, v)

vq
> 0

uniformly with respect to u ∈ R
+.

(H6) f (u, v) and g(u) are increasing in u and v and there exists R > 0 such that

γ1f (R, γ2g(R)) < R,

where γ
i
=

∫ 1

0
p

i
(t)dt (i = 1, 2).

The following examples to illustrate (H2)–(H5) are in order.

Example 1.1. Let f (u, v) = (1+ev−u)v2, g(u) = u3, α = 1

2
, β = 2. Then (H2)–(H3)

hold. Here f (u, v) grows sublinearly in u and superlinearly in v respectively, whereas
g(u) grows superlinearly in u.

Example 1.2. Let f (u, v) = (1 + e−(u+v))v
1
2 , g(u) = u3, α = β = 1

2
. Then (H2)–

(H3) hold, in which f (u, v) grows sublinearly, whereas g(u) grows superlinearly in
u.

Example 1.3. Let f (u, v) = (1 + e−(u+v))v
1
2 , g(u) = u

3
2 or g(u) = u

1
2 , p = q = 1

2
.

Then (H4) and (H5) hold, f (u, v) grows sublinearly, whereas g(u) grows superlinearly
or sublinearly.

Example 1.4. Let f (u, v) = (1 + eu+v)v
1
2 or f (u, v) = (1 + eu)v

1
2 , g(u) = u

1
2 +

u3, α = q = 1

2
. Then (H2) and (H5) hold, f (u, v) and g(u) are increasing in u and v.

At +∞, f (u, v) grows superlinearly or f (u, v) grows superlinearly and sublinearly in
u and v respectively, whereas g(u) grows superlinearly at +∞.

By virtue of (H1), we can define the integral operator A : C[0, 1] → C[0, 1] by

(Aϕ)(t) =
∫ 1

0
Gi(t, s)p1(s)f (ϕ(s), (T ϕ)(s))ds, (1.7)

where

(T ϕ)(t) =
∫ 1

0
Gi(t, s)p2(s)g(ϕ(s))ds (i = 1, 2, 3), (1.8)

G1(t, s) =
{

t (1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1,
(1.9a)
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G2(t, s) =
{

t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1.
(1.9b)

G3(t, s) =
{

1 − s, 0 ≤ t ≤ s ≤ 1,

1 − t, 0 ≤ s ≤ t ≤ 1.
(1.9c)

Then the positive solutions of BVP (1.5)–(1.6) are equivalent to the positive fixed points
of A.

Let J = [0, 1], 0 < c < d < 1, J0 = [c, d], ε0 = c(1 − d), E = C[0, 1], ‖u‖ =
max
t∈J

|u(t)| for u ∈ E,

K = {u ∈ C[0, 1] : u(t) ≥ 0, u(t) ≥ t (1 − t)‖u‖, t ∈ J }.

It is easy to show that (E, ‖ · ‖) is a real Banach pace and K is a cone in E. From (1.9)
we get that

G1(t, s) ≥ ε0, G2(t, s) ≥ c, G3(t, s) ≥ 1 − d, (t, s) ∈ J0 × J0, (1.10)

t (1 − t)G1(r, s) ≤ G1(t, s) ≤ s(1 − s),

tG2(r, s) ≤ G2(t, s) ≤ s,

(1 − t)G3(r, s) ≤ G3(t, s) ≤ (1 − s), t, s, r ∈ J.

(1.11)

Lemma 1.5. Let (H1) hold. Then A : K → K is a completely continuous operator.

See [2, 6] for the proof of Lemma 1.5.
To prove our main results, we also need the following fixed point index theorems.
Let (E, ‖ · ‖) be a real Banach space, P be a cone in E, and Bρ = {u ∈ E : ‖u‖ <

ρ} (ρ > 0) be the open ball of radius ρ. Let A : Bρ ∩ P → P be a completely
continuous operator, i(A, Bρ ∩ P, P ) denote the fixed point index of A on Bρ ∩ P . For
the details of the fixed point index, one can refer to [4].

Lemma 1.6. [4] Assume that A : Bρ ∩ P → P is a completely continuous operator. If
there exists u0 ∈ P \ {θ} such that

u − Au �= λu0 for all λ ≥ 0, u ∈ ∂Bρ ∩ P,

then i(A, Bρ ∩ P, P ) = 0.

Lemma 1.7. [3] Assume that A : Bρ ∩P → P is a completely continuous operator and
has no fixed point on ∂Bρ ∩ P .

(1) If ‖Au‖ ≤ ‖u‖ for any u ∈ ∂Bρ ∩ P , then i(A, Bρ ∩ P, P ) = 1.

(2) If ‖Au‖ ≥ ‖u‖ for any u ∈ ∂Bρ ∩ P , then i(A, Bρ ∩ P, P ) = 0.
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2. Main Results

Theorem 2.1. Let (H1), (H2) and (H3) hold. Then (1.1)–(1.2a) has a positive radial
solution for any annulus a < r < b.

Proof. Firstly, we consider (1.5)–(1.6a). By (H2), there are ν > 0 and sufficiently large
M > 0 such that

f (ϕ, ψ) ≥ νψα for all ϕ ∈ R
+, ψ > M, (2.1)

g(ϕ) ≥ C0ϕ
1
α for all ϕ > M, (2.2)

where C0 = max




(
νε2

0

2

∫ d

c

pα
2
(s)ds max

t∈J0

∫ d

c

G1(t, s)p1(s)ds

)− 1
α

,

(
γ ′

2
ε

1+α
α

0

)−1

,

where γ ′
2

=
∫ d

c

p2(r)dr . Let N = (M + 1)ε−1
0 , ϕ0(t) = sin πt ∈ K \ {θ}. We claim

that

ϕ − Aϕ �= λϕ0 for all λ ≥ 0, ϕ ∈ ∂BN ∩ K.

In fact, if there are λ ≥ 0, ϕ ∈ ∂BN ∩ K such that ϕ − Aϕ = λϕ0 , then

ϕ(t) ≥ (Aϕ)(t) ≥
∫ d

c

G1(t, s)p1(s)f

(
ϕ(s),

∫ 1

0
G1(s, r)p2(r)g(ϕ(r))dr

)
ds, t ∈ J.

(2.3)

Owing to α ∈ (0, 1] and ϕ(t) ≥ ε0‖ϕ‖ = ε0N = M + 1 > M, ϕ(t) ∈ K, t ∈ J0, (2.2)
implies that

∫ 1

0
G1(s, r)p2(r)g(ϕ(r))dr ≥

∫ d

c

G1(s, r)p2(r)g(ϕ(r))dr

≥ C0

∫ d

c

G1(s, r)p2(r)ϕ
1
α (r)dr ≥ C0(ε0N)

1
α

∫ d

c

G1(s, r)p2(r)dr

≥ NC0γ
′

2
ε

1+α
α

0 ≥ N, s ∈ J0. (2.4)

By using 0 ≤ G1(t, s) ≤ 1, α ∈ (0, 1] and Jensen’s inequality, it follows from (2.1)–
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(2.4) that

ϕ(t) ≥ ν

∫ d

c

G1(t, s)p1(s)

(∫ 1

0
G1(s, r)p2(r)g(ϕ(r))dr

)α

ds

≥ ν

∫ d

c

G1(t, s)p1(s)

(∫ d

c

G1(s, r)p2(r)g(ϕ(r))dr

)α

ds

≥ ν

∫ d

c

G1(t, s)p1(s)

(∫ d

c

Gα
1 (s, r)pα

2
(r)gα(ϕ(r))dr

)
ds

≥ ν

∫ d

c

G1(t, s)p1(s)

∫ d

c

G1(s, r)p
α
2
(r)gα(ϕ(r))drds

≥ νε0C
α
0

∫ d

c

G1(t, s)p1(s)ds

∫ d

c

pα
2
(r)ϕ(r)dr

≥ νε2
0C

α
0

∫ d

c

G1(t, s)p1(s)ds

∫ d

c

pα
2
(r)dr‖ϕ‖, t ∈ J.

Thus

‖ϕ‖ ≥ Cα
0 νε2

0

∫ d

c

pα
2
(r)dr max

t∈J0

∫ d

c

G1(t, s)p1(s)ds‖ϕ‖ ≥ 2‖ϕ‖.

This is a contradiction. By Lemma 1.6 we get

i(A, BN ∩ K, K) = 0. (2.5)

On the other hand, according to the second limit of (H3), there exists a sufficiently small
ρ1 ∈ (0, 1) such that

C1 =: sup

{
f (ϕ, ψ)

ψβ
: ∀ ϕ ∈ R

+, ψ ∈ (0, ρ1]
}

< +∞. (2.6)

Let ε1 = min

{
ρ1γ

−1
2

, γ −1
2

(
1

2C1γ1

) 1
β

}
> 0. By the first limit of (H3), there exists a

sufficiently small ρ2 ∈ (0, 1) such that

g(ϕ) ≤ ε1ϕ
1
β , ϕ ∈ [0, ρ2]. (2.7)

Let ρ = min{ρ1, ρ2}. (2.6) and (2.7) imply that

∫ 1

0
G1(s, r)p2(r)g(ϕ(r))dr ≤ ε1

∫ 1

0
p2(r)ϕ(r)

1
β dr

≤ ρ1‖ϕ‖ 1
β = ρ

1+ 1
β

1 < ρ1, ϕ ∈ Bρ ∩ K, s ∈ [0, 1],
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(Aϕ)(t) ≤ C1

∫ 1

0
G1(t, s)p1(s)

(∫ 1

0
G1(s, r)p2(r)g(ϕ(r))dr

)β

ds

≤ C1ε
β
1

∫ 1

0
p1(s)ds

(∫ 1

0
p2(r)ϕ

1
β (r)dr

)β

≤ C1γ1γ
β

2
ε
β
1 ‖ϕ‖ ≤ 1

2
‖ϕ‖, ϕ ∈ Bρ ∩ K, t ∈ [0, 1].

Thus ‖Aϕ‖ ≤ 1

2
‖ϕ‖ < ‖ϕ‖ for any ϕ ∈ ∂Bρ ∩ K . Lemma 1.7 yields

i(A, Bρ ∩ K, K) = 1. (2.8)

(2.5) together with (2.8) imply that

i(A, (BN \ Bρ) ∩ K, K) = i(A, BN ∩ K, K) − i(A, Bρ ∩ K, K) = −1.

So A has a fixed point ϕ ∈ (BN \ Bρ) ∩ K and satisfies 0 < ρ < ‖ϕ‖ ≤ N . We know
that ϕ(t) > 0, t ∈ (0, 1) by definition of K . This show that BVP (1.5)–(1.6a) has a
positive solution ϕ, ψ ∈ C2(0, 1) ∩ C[0, 1], and satisfies ϕ(t) > 0, ψ(t) > 0 for any
t ∈ (0, 1). Similarly we can get the conclusions of (1.5)–(1.6b) and (1.5)–(1.6c). This
completes the proof of Theorem 2.1. �

Theorem 2.2. Let (H1), (H4) and (H5) hold. Then (1.1)–(1.2) has a positive radial
solution for any annulus a < r < b.

Proof. First consider (1.5)–(1.6a). By (H4), there exist δ > 0, C2 > 0 and C3 > 0 such
that

f (ϕ, ψ) ≤ δψp + C2, g(ϕ) ≤
(

ϕ

2δγ1γ
p

2

) 1
p + C3, ϕ, ψ ∈ R

+. (2.9)

(2.9) implies that

(Aϕ)(t) ≤
∫ 1

0
G1(t, s)p1(s)

[
δ

(∫ 1

0
G1(s, r)p2(r)g(ϕ(r))dr

)p

+ C2

]
ds

≤
∫ 1

0
p1(s)ds

[
δ

(∫ 1

0
p2(r)

[(
ϕ(r)

2δγ1γ
p

2

) 1
p + C3

]
dr

)p

+ C2

]

≤ δγ1

[( ‖ϕ‖
2δγ1

) 1
p + C3γ2

]p

+ γ1C2. (2.10)

By means of simple calculation, we have

lim
u→+∞

δγ1

[(
u

2δγ1

) 1
p + C3γ2

]p

+ γ1C2

u
= 1

2
.
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Then there exists a sufficiently large G > 0 such that

δγ1

[( ‖ϕ‖
2δγ1

) 1
p + C3γ2

]p

+ γ1C2 <
3

4
‖ϕ‖, ‖ϕ‖ > G.

From this and (2.10) we obtain that

‖Aϕ‖ < ‖ϕ‖, ϕ ∈ ∂BG ∩ K.

This, along with Lemma 1.7, yields that

i(A, BG ∩ K, K) = 1. (2.11)

In addition, by (H5), there exist η > 0 and sufficiently small ξ > 0 such that

f (ϕ, ψ) ≥ ηψq, ϕ ∈ R
+, 0 ≤ ψ ≤ ξ, (2.12)

gq(ϕ) ≥ C4ϕ, 0 ≤ ϕ ≤ ξ, (2.13)

where C4 = 2

(
ηε2

0

∫ d

c

G1

(
1

2
, s

)
p1(s)ds

∫ d

c

pq
2
(r)dr

)−1

. Since g(0) = 0, g ∈
C(R+, R

+), there exists σ ∈ (0, min{ξ, γ −1
2

ξ}) such that g(ϕ) ≤ γ −1
2

ξ , for any ϕ ∈
[0, σ ]. This implies that∫ 1

0
G1(s, r)p2(r)g(ϕ(r))dr ≤ ξ, ϕ ∈ Bσ ∩ K, s ∈ [0, 1]. (2.14)

By using Jensen’s inequality and 0 < q ≤ 1, from (2.12)–(2.14) we get that

(Aϕ)

(
1

2

)
≥ η

∫ d

c

G1

(
1

2
, s

)
p1(s)

(∫ 1

0
G1(s, r)p2(r)g(ϕ(r))dr

)q

ds

≥ η

∫ d

c

G1

(
1

2
, s

)
p1(s)

(∫ d

c

G1(s, r)p2(r)g(ϕ(r))dr

)q

ds

≥ η

∫ d

c

G1

(
1

2
, s

)
p1(s)

(∫ d

c

G
q
1(s, r)pq

2
(r)gq(ϕ(r)))dr

)
ds

≥ ηC4

∫ d

c

G1

(
1

2
, s

)
p1(s)

(∫ d

c

G1(s, r)p
q
2
(r)ϕ(r)dr

)
ds

≥ ηC4ε
2
0

∫ d

c

G1

(
1

2
, s

)
p1(s)ds

∫ d

c

pq
2
(r)dr‖ϕ‖

= 2‖ϕ‖, ϕ ∈ Bσ ∩ K,

thus
‖Aϕ‖ > ‖ϕ‖ for all ϕ ∈ ∂Bσ ∩ K. (2.15)
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(2.15) together Lemma 1.7 yield

i(A, Bσ ∩ K, K) = 0. (2.16)

(2.11) and (2.16) imply that

i(A, (BG \ Bσ ) ∩ K, K) = i(A, BG ∩ K, K) − i(A, Bσ ∩ K, K) = 1.

So A has a fixed point ϕ ∈ (BG \ Bσ ) ∩ K and satisfies 0 < σ < ‖ϕ‖ < G. This
show that BVP (1.5)–(1.6a) has a positive solution ϕ, ψ ∈ C2(0, 1) ∩ C[0, 1], and
ϕ(t) > 0, ψ(t) > 0 for any t ∈ (0, 1). Similarly we can get the conclusions of (1.5)–
(1.6b) and (1.5)–(1.6c). This completes the proof of Theorem 2.2. �

Theorem 2.3. Let (H1), (H2), (H5) and (H6) hold. Then (1.1)–(1.2) has two positive
radial solutions for any annulus a < r < b.

Proof. We take N > R > σ such that either (2.5) or (2.16) hold. (1.7), (1.8) and (H6)

indicate that

(Aϕ)(t) ≤
∫ 1

0
p1(s)f

(
ϕ(s),

∫ 1

0
p2(r)g(ϕ(r)dr

)
ds ≤ γ1f (R, γ2g(R)) < R

for any ϕ ∈ ∂BR ∩ K , then ‖Aϕ‖ < ‖ϕ‖ for any ϕ ∈ ∂BR ∩ K . Lemma 1.7 implies

i(A, BR ∩ K, K) = 1.

Consequently,

i(A, (BN \ BR) ∩ K, K) = i(A, BN ∩ K, K) − i(A, BR ∩ K, K) = −1,

i(A, (BR \ Bσ ) ∩ K, K) = i(A, BR ∩ K, K) − i(A, Bσ ∩ K, K) = 1.

So A has two fixed points ϕ1 ∈ (BR \ Bσ ) ∩ K and ϕ2 ∈ (BN \ BR) ∩ K respectively,
and 0 < σ < ‖ϕ1‖ < R < ‖ϕ2‖ ≤ N . Then BVP (1.5)–(1.6) has two positive solution
(ϕ1, ψ1), (ϕ2, ψ2), and satisfy ϕi(t) > 0, ψi(t) > 0(i = 1, 2) for any t ∈ (0, 1). This
completes the proof of Theorem 2.3. �

Remark 2.4. From Examples 1.1–1.4 we know that all conclusions in this paper are
different from the ones in [1, 5, 7–11] and the conditions that we use are more general
than the ones in papers [1, 5, 7–11].
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