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Abstract

We present two map examples such that bifurcations of their fixed point which is
embedded in a topologically transitive invariant chaotic set can generate global map
phase portrait changes. To be more precise, we consider two coupled map families
such that the family maps all have the same fixed point which is nested within the
same topologically transitive invariant set which is nested in turn within the same
invariant subspace. We prove in such a case that these point bifurcations which are
transversal to the invariant subspace generate two periodic of period 2 points in a
neighbourhood of the given point and besides can simultaneously give rise to orbits
that are homoclinic to the periodic points. These orbits appear suddenly and consist
of points of transversal intersections of stable manifolds and unstable ones built up at
the periodic points. Therefore, at a moment immediately just after the bifurcation, a
countable set of periodic points and, moreover, a whole large invariant topologically
transitive set appear in a neighbourhood of the invariant set. Thus, in the case under
study, a local bifurcation of fixed point initiates a global one of phase portrait of map.
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1. Introduction and Main Results

Although there are very many results concerning dynamical system properties, one can
determine very seldom a priori whether a system has a certain property or not. A bright
example is orbits homoclinic (biasymptotic) to fixed and periodic points. It is well
known how much of dynamical system phase pattern complexity arises in a vicinity of
these orbits. However we know very little on causes and conditions favourable for an
appearance of such orbits. The present paper is devoted to the mechanics of appearance
of new homoclinic orbits at maps used to study a synchronization phenomenon. These
are so-called coupled maps. We shall examine further the coupled maps which have a
fixed point embedded into the map “diagonal”. The latter is their invariant subspace. For
such kind of maps, we shall show that these point bifurcations which are transversal to the
“diagonal” can initiate a new transversal homoclinic orbit appearance and, as a corollary,
generate global changes of the phase map portrait. Thus bifurcations of the fixed point
embedded in the invariant subspace (to be more precise, in the invariant topologically
transitive set of the given subspace) can differ very strongly from those for isolated fixed
points.

So, let ẑ ≡ (x̂, ŷ) ∈ R
2. Consider

F̂ :
(

x̂

ŷ

)
�→

(
(1 − ε)�a(x̂) + ε�a(ŷ)

(1 − ε)�a(ŷ) + ε�a(x̂)

)
. (1.1)

Here �a(t) = at (1 − t) and a ∈ (2, 4), ε ∈ (0, 1/2) are parameters. Usually ε is called
the coupling parameter. This map family is known as one of coupled logistic maps and
is used very often as a sample for researching of coupled map properties. It is easy to
show that there are parameter values such that the map F̂ has a nontrivial topologically
transitive attractor on the “diagonal” x̂ = ŷ. Indeed, denote by � ⊂ (0,4) a set of values
of a such that �̂a : t �→ �̂a(t) has the aforesaid attractor provided a ∈ �. As is well
known [6], � �= ∅. Moreover, mes(�) > 0, where mes(·) is the Lebesgue measure.
Therefore, if a ∈ � and the “diagonal” is an asymptotically stable subspace, then F̂ has
the aforementioned attractor.

Further we shall deal with the following map family of R
2:

F :
(

x

y

)
�→

( −(1 − 2ε)xy

a(a − 2)/2 − (x2 + y2)/2

)
, (1.2)

where z ≡ (x, y) ∈ R
2, and a, ε are the same as in (1.1). The family (1.2) can be

obtained from (1.1) by a change of variables (see [4]). At that the “diagonal” x̂ = ŷ

transforms to the y-axis.
Denote O = (0, 0), � = [F 2(O), F (O)], P+ = (0, a − 2) and let UP+ , U� be

neighbourhoods of the point P+ and the set � respectively.

Theorem 1.1. There exists A ∈
(

1 +
√

4 + 2
√

2, 4
)

so that, for any a ∈ (A, 4) and

arbitrary UP+ , U�, there is εa ∈
(

0,
a − 3

2(a − 2)

)
such that if ε ∈

(
εa,

a − 3

2(a − 2)

)
, then
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the following is satisfied:

1) F has a couple of periodic of period 2 points belonging to UP+ \ {(x, y) : x = 0};
2) F has a nontrivial, invariant, topologically transitive set belonging to U�\{(x, y) :

x = 0}, and periodic points of F are dense on it.

Corollary 1.2. There exists A ∈
(

1 +
√

4 + 2
√

2, 4
)

so that, for any a ∈ (A, 4) ∩ �

and arbitrary UP+ , U�, there is εa ∈
(

0,
a − 3

2(a − 2)

)
such that if ε ∈

(
εa,

a − 3

2(a − 2)

)
,

then the following is satisfied:

1) � is a simply connected topologically transitive attractor for the restriction
F |{(x,y):x=0};

2) F has a couple of periodic of period 2 points belonging to UP+ \ {(x, y) : x = 0};
3) F has a nontrivial, invariant, topologically transitive set belonging to U�\{(x, y) :

x = 0}, and periodic points of F are dense on it.

To show that the same results take place for diffeomorphisms also, let us consider
the following maps of R

4:

ϒ0 :




x

z

y

t


 �−→




−(1 − 2ε)xy

x

{a(a − 2) − (x2 + y2)}/2
y


 ,

ϒb :




x

z

y

t


 �−→




−(1 − 2ε)xy + (1 − 2η)bz

x

{a(a − 2) − (x2 + y2)}/2 + bt

y


 .

Here 0 < |b| < 1, η �= 1/2 and a, ε are the same as above. Let O = (0, 0, 0, 0),
P+(ϒb) be the fixed point of ϒb such that lim

b→0
P+(ϒb) = (0, 0, a−2, a−2) ≡ P+(ϒ0).

Denote by �b, UP+(ϒb), U�b(ϒb) a closure of the unstable manifold of ϒb at P+(ϒb), a
neighbourhood of P+(ϒb) and a neighbourhood of �b(ϒb), respectively.

Theorem 1.3. There exist A ∈
(

1 +
√

4 + 2
√

2, 4
)

and B > 0 so that, for any a ∈
(A, 4), |b| ∈ (0, B) and arbitrary UP+(ϒb), U�b(ϒb), there is εa ∈

(
0,

a − 3

2(a − 2)

)
such

that if ε ∈
(

εa,
a − 3

2(a − 2)

)
, then the following is satisfied:
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1) ϒb has a couple of periodic of period 2 points belonging to UP+(ϒb) \ {(x, z, y, t) :
x = z = 0};

2) ϒb has a nontrivial, invariant, topologically transitive set belonging to U�b(ϒb) \
{(x, z, y, t) : x = z = 0}, and periodic points of ϒb are dense on it.

Considering ϒb one can easily see that the plane {(x, z, y, t) : x = z = 0} is invariant
with respect to ϒb and the restriction of ϒb to this plane ϒb|{(x,z,y,t):x=z=0} is (within
the accuracy of change of variables and parameters) the Hénon diffeomorphism.

2. Proof of Theorem 1.1

An idea is to show that, at the moment of bifurcation of fixed point embedded in an
invariant subspace, the following takes place: 1) two “saddle” hyperbolic periodic of
period 2 points appear outside this subspace in a vicinity of the given fixed point; 2)

there are nontrivial points of transversal intersection of the stable manifolds and unstable
ones of F which are built up at the periodic points. The latter implies an existence
of transversal orbits homoclinic to these points. As is well known [5, 9] an arbitrary
small neighbourhood of such kind of orbit contains a nontrivial, invariant, topologically
transitive set. Periodic points of F are everywhere dense on this set. Since the stable
manifolds of periodic points (due to their definition) are located outside the invariant
subspace, the aforesaid homoclinic orbits as well as the invariant sets associated with
ones are located outside this subspace too. The phase map portrait bifurcation enlarges
upon a whole neighbourhood of the chaotic topologically transitive set because the above
mentioned unstable manifolds expand along the whole chaotic set at once as soon as these
manifolds appear.

From now on we assume that a > 3. Designate a closure by Cl(·), an inte-
rior by Int(·), a neighbourhood by U(·), an ε-neighbourhood by Uε(·) and an ori-
gin of coordinates by O = (0, 0). Let P+ = (0, a − 2) be the fixed point of F ,
λ1(P+) = 2 − a, λ2(P+) = (2 − a)(1 − 2ε) be eigenvalues of DF at P+, S± =(
±
√

a(a − 2) − (3 − 4ε)(1 − 2ε)−2, 1/(1 − 2ε)
)

be two periodic of period 2 points of

F and µı(S±), ı ∈ {1, 2} be eigenvalues of DF 2 at S±. One can easily see that S± exists
for any a > 3 provided ε > 0 such that 1/(1 − 2ε) < a − 2. If 1/(1 − 2ε) → a − 2,

then S± → P+ and coincides with the latter provided ε = ε0, where ε0 ≡ a − 3

2(a − 2)
.

Lemma 2.1. There exists ε̃ ∈ (0, ε0) such that 0 < µ1(S±) < 1 < µ2(S±) for all
ε ∈ (ε̃, ε0).

Proof. It is easy to see that µı(S±), ı ∈ {1, 2} are solutions of the equation

0 = [
µ + a(a − 2)(1 − 2ε) − 3 − (1 − 2ε)−1]

× [
µ + a(a − 2)(1 − 2ε) − 2 − (1 − 2ε)−1 − (1 − 2ε)−2]
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+ 4ε2/(1 − 2ε)
[
a(a − 2) − 2/(1 − 2ε) − (1 − 2ε)−2] .

µı(ε) → µı(ε0) as ε ↗ ε0. Here µ1(ε0) = 1, µ2(ε0) = (a − 2)2 > 1. It is clear too
that µ2(ε) > 1 for ε < ε0 close enough to ε0. Let us show that µ1(ε) < 1 for the same
ε. Choose ε so that γ ≡ a − 2 − 1/(1 − 2ε) > 0 is small enough. Accurate to O(γ 2),
eigenvalues of DF 2 at S± coincide with solutions of the equation

0 = µ2 − [
1 + (a − 2)2 − 2γ (a2 − 2a + 2)/(a − 2)

]
µ

+ (a − 2)2 − γ (3a2 − 10a − 8)/(a − 2). (2.1)

Solving (2.1) one can find accurate to o(γ ) that

µ1(ε) = 1 + (a − 2)2

2
− a2 − 2a + 2

a − 2

−
√

[1 − (a − 2)2]2

4
− γ [(a − 2)2 − 1](a2 − 2a + 1)

a − 2

= 1 − γ

a − 2
.

Hence 0 < µ1(ε) < 1 for ε0 − ε > 0 small enough. Thus S± are the hyperbolic
“saddles”. �

Denote by Ws
loc(S±), Wu

loc(S±) locally stable and unstable manifolds of F at S±. Due
to analyticity of F , these manifolds are analytic [1]. Consider Wu

loc(S+), Wu
loc(S−). It

is easy to see that Wu
loc(S+), Wu

loc(S−) are curves symmetric with respect to the y-axis.
Let x = ω(y) be a function whose graph coincides with Wu

loc(S+). The analyticity of
Wu

loc(S+) implies the one of x = ω(y). Substituting coordinates of S+ one can find that

ω (1/(1 − 2ε)) =
√

a(a − 2) − (3 − 4ε)(1 − 2ε)−2. Let us designate the graph of x =
ω(y) by graph(ω) and Graph(ω) =

∞⋃
=0

F 2 (graph(ω)). Since F
(
Wu(S±)

) = Wu(S∓),

we have F :
(

ω(y)

y

)
�−→

(−ω(ȳ)

ȳ

)
, where

ȳ = a(a − 2) − (ω(y))2 − y2

2
, ω(ȳ) = (1 − 2ε)yω(y).

Thus the equation

ω

(
a(a − 2)

2
− [ω(y)]2 + y2

2

)
= (1 − 2ε)yω(y) (2.2)

holds. The latter means an invariance of Graph(ω) with respect to the map

F̄ :
(

x

y

)
�−→

(
(1 − 2ε)xy

a(a − 2)/2 − (x2 + y2)/2

)
.
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Denoting

Y = a(a − 2)

2
− [ω(y)]2 + y2

2
, δ =

√
a(a − 2) − (3 − 4ε)(1 − 2ε)−2,

we obtain

ω

(
1

1 − 2ε

)
= δ, ω(Y ) = (1 − 2ε)yω(y). (2.3)

Differentiating the latter we find

ω′(Y ) = −(1 − 2ε)
yω′(y) + ω(y)

ω(y)ω′(y) + y
. (2.4)

Changing y, ω(y) here to 1/(1 − 2ε), δ respectively and taking into account that Y =
1/(1−2ε) when y = 1/(1−2ε), we obtain an equation with respect to ω′ (1/[1 − 2ε]).
Solving it we find

ω′ (1/[1 − 2ε]) = −(1 − ε)(1 − 2ε)−1

δ
±

√
(1 − ε)2δ−2(1 − 2ε)−2 − (1 − 2ε).

Since the sign “+” corresponds to a direction tangent to Wu
loc(S+) at S+, accurate to

O(δ3), we have

ω′
(

1

1 − 2ε

)
= −δ

(1 − 2ε)2

2(1 − ε)
.

Formulas for ω′′ (1/[1 − 2ε]), ω′′′ (1/[1 − 2ε]) can be found in the same way. Keeping
in mind that 1/(1−2ε0) = a −2, let us take limits for ω′ (1/[1 − 2ε]), ω′′ (1/[1 − 2ε]),
ω′′′ (1/[1 − 2ε]) as ε ↗ ε0. We find lim

ε↗ε0
ω′

(
1

1 − 2ε

)
= ω′(a − 2) < 0,

lim
ε↗ε0

ω′′
(

1

1 − 2ε

)
= ω′′(a − 2) < 0, lim

ε↗ε0
ω′′′

(
1

1 − 2ε

)
= ω′′′(a − 2) < 0. There-

fore, for ε close enough to ε0, there is a neighbourhood of y = 1/(1 − 2ε) within which
x = ω(y) is a convex function. That is, for the same ε, there exists a neighbourhood
of S+ in which Wu

loc(S+) is a convex curve. Here and further we call a curve convex
(concave) when it is a graph of a convex (concave) function.

Denote κ = ω′ (1/[1 − 2ε]). In view of (2.3) and (2.4), δκ2 +2κ(1−ε)/(1−2ε) =
−(1 − 2ε)δ. Since x = ω(y) is a function convex in a vicinity of y = 1/(1 − 2ε),
there exist ỹ− < 0 < ỹ+ such that graph(ω) is located under and to the left of x =
δ+κ [y − 1/(1 − 2ε)] providedy ∈ (1/[1−2ε]+ỹ−, 1/[1−2ε]+ỹ+). We show now that
the whole graph graph(ω) is located under and to the left of x = δ + κ [y − 1/(1 − 2ε)]
too. Let us make a change of variables x̃ = x − δ, ỹ = y − 1/(1 − 2ε). Taking into
account that a(a − 2) − (1 − 2ε)−2 − δ2 = 2/(1 − 2ε), one can easily observe that the
map (1.2) takes the following form in coordinates x̃, ỹ:

F̃ :
(

x̃

ỹ

)
�−→

(
x̃ + (1 − 2ε)(δ + x̃)ỹ

−δx̃ − ỹ/(1 − 2ε) − (x̃2 + ỹ2)/2

)
. (2.5)
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In doing so the tangent equation simplifies to x̃ = κỹ. Consider F̃ ((x̃ = κỹ)). This is a
curve x̃ = q(ỹ), where

x̃ = κt + (1 − 2ε)(δ + κt)t, ỹ = − [1/(1 − 2ε) + κδ] t − (1 + κ2)t2/2.

We prove that the curve locates under and to the left of x̃ = κỹ. Computing its derivative

we find q ′(ỹ) = −κ + (1 − 2ε)δ + 2(1 − 2ε)κt

1/(1 − 2ε) + κδ + (1 + κ2)t
. Let us show that q ′(ỹ) > κ provided

ỹ < 0 and q ′(ỹ) < κ when ỹ > 0. In view of (2.5) it is clear that

κ
[
1 + 1/(1 − 2ε)(3 − 4ε + κ2)t + κδ

]
< −(1 − 2ε)δ, for t > 0, (2.6)

κ
[
1 + 1/(1 − 2ε)(3 − 4ε + κ2)t + κδ

]
> −(1 − 2ε)δ, for t < 0. (2.7)

Besides, (2.6) implies −κ − (1 − 2ε)δ − 2(1 − 2ε)κt > κ/(1 − 2ε)+ κ2δ + κ(1 + κ2)t .
Since δ → 0, κ → 0 as ε ↗ ε0, there exists ε̃ < ε0 such that 1/(1 − 2ε) > δ|κ| when
ε ∈ (ε̃, ε0) and a ∈ (1 + √

5, 4). It implies in turn that if a and ε are the same as above,
then the inequality 1/(1 − 2ε) + κδ + (1 + κ2)t > 0 is satisfied for any t > 0. Keeping
in mind that ỹ < 0 for t > 0, we see that q ′(ỹ) > κ for ỹ < 0. On the other hand, in the
same way (2.7) implies −κ − (1−2ε)δ−2(1−2ε)κt < κ/(1−2ε)+κ2δ+κ(1+κ2)t .
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If − [1/(1 − 2ε) + κδ]

1 + κ2
< t < 0, then q ′(ỹ) < κ and simultaneously ỹ > 0. However if

t < − [1/(1 − 2ε) + κδ]

1 + κ2
, then q ′(ỹ) > κ and simultaneously ỹ < 0. Hence the graph

x̃ = q(ỹ) is indeed located under and to the left of x̃ = κỹ.
Let us study x̃ = q(ỹ) in detail. One can easily see that its graph consists of two

arcs which merge in one curve at the point (x̃0, ỹ0), where x̃0 = x̃(t0), ỹ0 = ỹ(t0),

t0 = − [1/(1 − 2ε) + κδ]

1 + κ2
. One of the arcs is convex and another is concave. Indeed,

computing q ′′(ỹ), we find q ′′(ỹ) = − (1 − κ2)[(1 − 2ε)δ − κ][
1/(1 − 2ε) + κδ + (1 + κ2)t

]3 . Keeping this in

mind, one can easily infer that q ′′(ỹ) < 0 for t > t0 and q ′′(ỹ) > 0 for t < t0. Then
lim

ỹ→±∞
q ′(ỹ) = −2(1 − 2ε)κ/(1 + κ2) exists.

Let us locate graph(ω) when 0 ≤ y ≤ √
a(a − 2). Consider the quadrangle �

bounded by segments of the lines x = 0, y = 0, y = √
a(a − 2) and x = δ +

κ [y − 1/(1 − 2ε)]. Computing F̄ (�), we find that F̄ (�) is a “curvilinear” quadrangle
bounded by arcs of the curves y = 0, y = a(a − 2)/2 − x/(1 − 2ε), x2 = −2a(a −
2)(1 − 2ε)2y and x̃ = q(ỹ). Taking into account mutual positions of x̃ = κỹ and
x̃ = q(ỹ), we see that F̄ (�) ∩ {(x, y) : 0 ≤ y ≤ √

a(a − 2)} ⊂ �. Denote �n =
F̄ (�n−1) ∩ {(x, y) : 0 ≤ y ≤ √

a(a − 2)}, n = 1, 2, . . . , �0 = � and �∗ =
∞⋂

n=0

�n.

By construction, {�n}∞n=0 is a monotone decreasing sequence of nested “curvilinear”
quadrangles and F̄ (�∗) ∩ {(x, y) : 0 ≤ y ≤ √

a(a − 2)} = �∗. Due to the invariance
of �∗ with respect to F̄ , it is clear that graph(ω) ⊂ �∗. This implies

max
0≤y≤√

a(a−2)
ω(y) < δ − κ/(1 − 2ε) ≈ δ

[
1 + 0.5(1 − 2ε)2/(1 − ε)

]
< 2δ.

Let us consider the fraction of boundary of �∗ which is a limit of sequence of images of
the line x = δ + κ [y − 1/(1 − 2ε)]. We denote it by Lω and show that Lω is a smooth
function graph.

Let  > 0 be a constant, ρ = √
a(a − 2), I ≡ [0.99

√
ρ2 − 2ρ, ρ] be a line segment,

x = χ(y) be a C2-smooth function such that 0 ≤ χ(y) < 2δ <
4
√

δ < 0.4
√

ρ2 − 2ρ,
|χ ′(y)| < , |χ ′′(y)| < 100 on I . Set x = χ

F
(y) by the formulas x = (1 − 2ε)tχ(t),

y = [
a(a − 2) − t2 − χ2(t)

]
/2.

Lemma 2.2. Let a > 1 +
√

4 + 2
√

2 and x = χ(y) as above. There exists ε
F

< ε0
so close to ε0 that a domain of the function x = χ

F
(y) includes I and |χ ′

F
(y)| < ,

|χ ′′
F
(y)| < 100 for ε ∈ (ε

F
, ε0).

Proof. Computations give y(0.99
√

ρ2 − 2ρ) > ρ, y(ρ) < 0. Thus, the domain of
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x = χ
F
(y) includes I . Computing |χ ′

F
(y)|, we find

|χ ′
F
(y)| < (1−2ε)

∣∣∣∣ tχ ′(t) + χ(t)

χ(t)χ ′(t) + t

∣∣∣∣ < (1−2ε) ·
(∣∣∣∣ tχ ′(t)

χ(t)χ ′(t) + t

∣∣∣∣ +
∣∣∣∣ χ(t)

χ(t)χ ′(t) + t

∣∣∣∣
)

,

where t ∈ [0.99
√

ρ2 − 2ρ, ρ]. If a > 1 + √
5, then 1/(a − 2) < (1 + √

5)/4 < 0.9.
So, 1 − 2ε < 0.9 for ε sufficiently close to ε0. Fix ε

F
so that δ < 0.001

√
ρ2 − 2ρ,

1 − 2ε < 0.9, δ2 <  for all ε ∈ (ε
F
, ε0). In doing so we get |χ ′

F
(y)| <  for any

y ∈ I . As for |χ ′′
F
(y)| we can estimate it by

|χ ′′
F
(y)| = (1 − 2ε)

∣∣∣∣ [tχ ′(t) − χ(t)][1 − χ ′2(t)] + χ ′′(t)[t2 − χ2(t)]
[χ(t)χ ′(t) + t]3

∣∣∣∣
< (1 − 2ε)

[ |tχ ′(t) − χ(t)|
|χ(t)χ ′(t) + t |3 + t2|χ ′′(t)|

|χ(t)χ ′(t) + t |3
]

.

Keeping in mind that
√

ρ2 − 2ρ =
√

a(a − 2) − 2
√

a(a − 2) > 1 for a > 1 +√
4 + 2

√
2, we find |χ ′′(t)| < 100. �

Let us choose  = 10−6. As is shown above, values of the x-coordinate of points
belonging to images of the line x = δ + κ [y − 1/(1 − 2ε)] are less than 2δ. Since
|κ| < 2 for ε

F
sufficiently close to ε0, it means due to Lemma 2.2 that the absolute values

of derivatives of these images are uniformly bounded on I and do not exceed 10−6. By
construction, the images constitute a monotone sequence. Therefore the sequence limit
is a one-valued C1-smooth function. Obviously its domain includes I and the absolute
value of its derivative is less than 10−6. But this is a fraction of Lω only. However if we
consider the F̄ -image of the given fraction, one can prove then the same for whole Lω.
Let us show now that Lω = graph(ω). Indeed, by definition, the arc Lω is a graph of
the one-valued C1-smooth function having uniformly bounded derivative. It is invariant
with respect to F̄ and includes S+. However there is a unique curve which is situated in
a vicinity of S+, belongs to �∗, is invariant with respect to F̄ and has the absolute value
of the derivative less than 10−6. It is Wu

loc(S+). Hence Wu
loc(S+) ⊂ Lω. The contrary is

true: Wu(S+) ⊃ Lω. Actually if not, then Cl(Wu(S+))\Wu(S+) is a couple of periodic
of period 2 points which belong to Lω by construction. Straightforward computations

show that these points exist when ε ∈ (0, ε̂), where ε̂ =
(

1 − √
3/[a(a − 2)]

)
/2,

and disappear or, to be more precise, merge with S+ at ε = ε̂. Moreover, the same
computations show that if ε ∈ (ε̂, ε0), then, excluding S±, F has no other periodic
points in R

2 \ {(x, y) : x = 0}. Therefore Lω = graph(ω).

Remark 2.3. The same arguments show Graph(ω) ≡ Wu(S+) provided ε ∈ (ε̂, ε0).

Keeping in mind that Graph(ω) consists of the F̄ -images of graph(ω), and using (2.3),
one can estimate the absolute x-coordinate value of points of Graph(ω) by |ω(y)| <
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2δ [a(a − 2)/2]n. Here n is the number of iterations of graph(ω). We shall see later that
it is enough to consider not more than 5 iterations of Lω. As for values of derivatives of
Graph(ω), those can be estimated in an appropriate way on suitable subsets of Graph(ω).
To determine these subsets, one should use a critical set of F [2, 3]. In the case under
study, the critical set is K = {(x, y) : x = y} ∪ {(x, y) : x = −y}.

Consider F̄ 2(Lω). Let t > 0 be small enough. Denote Z+ ≡ (X+, Y+) = F̄ 2(Lω)∩
{(x, y) : x > 0, y > 0}, Z− ≡ (X−, Y−) = F̄ 2(Lω) ∩ {(x, y) : x > 0, y < 0},
Zt = Lω ∩ {(x, y) : y = Y+ + t} and by Lωt the arc of Graph(ω) stretching of F̄ 2(Zt)

to F̄ (Zt).

Lemma 2.4. Let a ∈ (1 + √
5, 4) and t > 0 small enough. There exists ε

F
> 0 such
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that max
(x,y)∈Lωt

ω(y) < t2 � t , max
(x,y)∈Lωt

|ω′(y)| < t2 � t provided ε ∈ (ε
F
, ε0).

Proof. Choose ε̆ > 0 so close to ε0 that δ < t4, ω(y) < 0.01δ for all (x, y) ∈ Lω, ε ∈
(ε̆, ε0). In this case ω(y) < δ/3 for all (x, y) ∈ Lωt . Fix ε̌ > 0 so that 100 < t4 � t ,
|ω′(y)| <  for all (x, y) ∈ Lω, ε ∈ (ε̌, ε0) and consider F̄ (Zt). Using (2.4) we find
accurate to O(δ2) that

ω′ (a[a − 2]/2 − [ω(Y+ + t)]2/2 − [Y+ + t]2/2
)

= −(1 − 2ε)

[
ω′(Y+ + t) + ω(Y+ + t)

Y+ + t

]
.

Taking into account ω(Y+ + t) < 0.01t3, |ω′(Y+ + t)| < 0.01t2, we can see that

|1 − 2ε|
∣∣∣∣ω′(Y+ + t) + ω(Y+ + t)

Y+ + t

∣∣∣∣ <
t

30

of course, provided ε ∈ (ε
F
, ε0), where ε

F
= min(ε̆, ε̌). Computing and estimating

|ω′(y)| on F̄ 2(Zt), we find that it is much less than t . It is clear that analogous reasons
can be used for an arbitrary point of (x, y) ∈ Lω with y > Y+ + t . �

Remark 2.5. To prove that the other fractions of Graph(ω) possess similar properties,
one should make arguments similar to those aforesaid. For example, let us consider an
arc of Graph(ω) between points Z̄t = F̄ 2(Lω) ∩ {(x, y) : y = Y− − t} and F̄ 2(Zt).
If we try to apply the reasoning presented above to this arc, we can see then that these
arguments all remain valid. A crucial circumstance determining the possibility to use
the aforesaid arguments to any arc is that the arc points as well as its images all do not
belong to the critical set K . Moreover, the arc closure should be separated from the set
K̄ ≡ {(x, y) : − ≤ x ≤ 0, x ≤ y ≤ −x} ∪ {(x, y) : 0 ≤ x ≤ , −x ≤ y ≤ x} as
well as from its images.

We now discuss the behaviour of F̄ 3(Lω) inside F̄ (K̄). Analyzing formulas (2.3)
and (2.4), we can see the following. First, F̄ (Zx) ∈ {(x, y) : x = 0}, where Zx ≡
Lω ∩ {(x, y) : y = 0}. Second, since |ω(y)ω′(y)| is O(δ2) and Y± = ±δ, there exists
y̆ ∈ (−δ, δ) such that ω(y̆)ω′(y̆) + y̆ = 0. The latter means in turn that a tangent to
Graph(ω) is parallel to the x-axis. Third, F̄ (Z+) and F̄ (Z−) are situated on different
sides of the y-axis, i.e., F̄ (Z+) ∈ {(x, y) : x > 0}, F̄ (Z−) ∈ {(x, y) : x < 0}.

We have studied properties of F̄ 3(Lω) on F̄ 2(Lω) and within F̄ (K̄). It is clear that
the same approach can be used to research a behaviour of the “remainder” F̄ 3(Lω) \(
F̄ 2(Lω) ∪ F̄ (K̄)

)
. Outside a neighbourhood of F̄ (K̄)∪ F̄ 2(K̄), the given “remainder”

has the same properties as Lωt . However, inside F̄ 2(K̄), its behaviour is similar to that
of F̄ 3(Lωt) inside F̄ (K̄).

An analogous analysis can be made with respect to properties of F̄ 4(Lω), F̄ 5(Lω)

and Wu(S+) in whole. The only thing that should be kept in mind is the following.
When a bit of the arc F̄ 3(Lω) falls inside F̄ (K̄), this gives rise to a necessity to study
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its image properties inside F̄ 2(K̄). Similarly the most essential and principal piece of
researching of behaviour of F̄ 4(Lω) consists in a study of properties of all fractions
of F̄ 4(K̄) \ F̄ 3(K̄) which have a nonempty intersection with F̄ 2(K̄). In order to do
this, it is necessary to locate where the given intersection image is. In order to locate
the latter, it is necessary in turn to consider F̄ 3(K̄), and so on. However if we analyze
reasons which guarantee a validity of the arguments presented above in detail, it becomes
clear then that it is enough to study the behaviour of F̄ 2(Lωt) only. Among the reasons

which should be taken into account, the principal ones are following: 1) a point Pa
def=(

0, a(a − 2)[4 + 2a − a2]/8
)

is a fixed one of F and F̄ at a = 4; 2) there is a continuous
dependence of F̄ j (K̄), j = 1, 2, . . . on parameters; 3) for any j = 1, 2, . . . , F̄ j+1(K̄)

tends to Pa as ε ↗ ε0, a ↗ 4 in the sense that lim
a↗4

lim
ε↗ε0

dist(F̄ j+1(K̄), Pa) = 0. Here

dist(·, ·) is the distance.
Consider the local stable manifolds of F at S± now. As well as the unstable manifolds,

Ws
loc(S+), Ws

loc(S−) are curves symmetric with respect to the y-axis. Let y = �(x) be the
function whose graph coincides with Ws

loc(S+). Since Ws
loc(S+) is an analytic manifold,

y = �(x) is an analytic function. Taking into account coordinates of S+, we find
�(δ) = 1/(1−2ε). Denote the graph of y = �(x) by graph(�). Because F(Ws(S±)) =
Ws(S∓), we infer that F :

(
x

�(x)

)
�→

(
x̆

�(x̆)

)
, where x̆ = −(1 − 2ε)x�(x), �(x̆) =[

a(a − 2) − (�(x))2 − x2] /2. Keeping in mind that �(x̆) = �(−x̆), we obtain the
functional equation a(a − 2)/2 − {[�(x)]2 + x2}/2 = � ((1 − 2ε)x�(x)). Therefore
graph(�) is invariant with respect to F̄ . Setting X = (1 − 2ε)x�(x), we arrive at the
system

�(δ) = 1

1 − 2ε
, �(X) = a(a − 2)

2
− [�(x)]2 + x2

2
. (2.8)

Differentiation of (2.8) gives − [
�(x)�′(x) + x

] = (1 − 2ε)[x�′(x) + �(x)]�′(X).

Changing x, �(x) to δ,
1

1 − 2ε
respectively and taking into account that X = δ

when x = δ, we obtain an equation with respect to �′(δ). Its solution is �′(δ) =
− 1 − ε

δ(1 − 2ε)2
±

√[
1 − ε

δ(1 − 2ε)2

]2

− 1

1 − 2ε
. The sign “+” corresponds to the direction

tangent to Ws
loc(S+) at S+. Therefore, accurate to O(δ3),

�′(δ) = − 1 − ε

δ(1 − 2ε)2
+

√[
1 − ε

δ(1 − 2ε)2

]2

− 1

1 − 2ε
= −(1 − 2ε)δ

2(1 − ε)
.

Formulas of �′′(δ), �′′′(δ) can be found in a similar way. Taking limit as ε ↗ ε0 in
these formulas and keeping in mind that 1/(1 − 2ε0) = a − 2, one can easily check
that lim

ε↗ε0
�′(δ) < 0, lim

ε↗ε0
�′′(δ) < 0, lim

ε↗ε0
�′′′(δ) < 0. Thus, for ε close enough

to ε0, there is a neighbourhood of x = δ within which y = �(x) is a convex function.
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Therefore, for the same ε, there exists a neighbourhood of S+ such that Ws
loc(S+) is a

convex curve inside this neighbourhood.
Consider a curvilinear quadrangle AHF̄ (H)F̄ (A) ⊂ {(x, y) : x ≥ 0, y ≥ 0} which

is constituted in such a manner. AH , F̄ (A)F̄ (H) are arcs of curves (1 − 2ε)2x2y2 +[
a(a − 2) − x2 − y2]2

/4 = a(a − 2), x2 + y2 = a(a − 2) which are adjacent to A and
F̄ (A), respectively. H , F̄ (H) are points of intersection of these arcs with Lω. In doing
so, HF̄ (H) is a fraction of Lω between H and F̄ (H), and AF̄ (A) is a segment of the
y-axis. Obviously, there exist a and ε such that F̄ is a diffeomorphism of AHF̄ (H)F̄ (A)

on F̄ (A)F̄ (H)F̄ 2(H)F̄ 2(A). Indeed, since F̄ (O) = (0, a(a − 2)/2), F̄ (P+) = P+ and
a − 2 <

√
a(a − 2) < a(a − 2)/2 provided a > 1 + √

5, there exists a pre-image of
(0,

√
a(a − 2)) ≡ F̄ (A) inside the interval (O, P+). This is A. Let â ∈ (1 + √

5, 4),
η > 0 such that Uη(O) �� A for all a ∈ (â, 4). Since Lω converges to a segment of
the y-axis uniformly as ε ↗ ε0, there is ε̂ > 0 so that F̄ (A)F̄ (H) ⊂ F̄ (Uη(A)) for
ε ∈ (ε̂, ε0). Therefore AH ⊂ {(x, y) : x ≥ 0, y > 0}. Observing that F̄ (AH) =
F̄ (A)F̄ (H), HF̄ (H) ⊂ F̄ (HF̄ (H)), AF̄ (A) ⊂ F̄ (AF̄ (A)), F̄ 2(A)F̄ 2(H) ⊂ {(x, y) :
x ≥ 0, y = 0} and taking into account that a restriction of F̄ to {(x, y) : x ≥ 0, y ≥ 0}
is a diffeomorphism, one can easily find that F̄ is a diffeomorphism of AHF̄ (H)F̄ (A)

to F̄ (A)F̄ (H)F̄ 2(H)F̄ 2(A).

Lemma 2.6. Let a > 1 + √
5. Then there exists ε̆ < ε0 such that y > x for all points

(x, y) ∈ AH provided that ε ∈ (ε̆, ε0).

Proof. Fix ζ = 0.1
√

a(a − 2) − 2
√

a(a − 2). Then y > x for any (x, y) ∈ Uζ (A),

where A = (0,

√
a(a − 2) − 2

√
a(a − 2)). Choosing ε̆ so close to ε0 that δ ≤ ζ for all

ε ∈ (ε̆, ε0) concludes the proof. �

Denote the map inverse of F̄ on AHF̄ (H)F̄ (A) by F̄−1. Taking into account that
y ≥ x ≥ 0 for all (x, y) ∈ AHF̄ (H)F̄ (A), we find

F̄−1 :
(

x

y

)
�−→




x
√

2

1 − 2ε

[√
a(a − 2)

2
− y + x

1 − 2ε
+

√
a(a − 2)

2
− y − x

1 − 2ε

]−1

√
2

2

[√
a(a − 2)

2
− y + x

1 − 2ε
+

√
a(a − 2)

2
− y − x

1 − 2ε

]

 .

Consider W̃ s+ ≡
∞⋃

=0

F̄ 
(
Ws

loc(S+) ∩ AHF̄ (H)F̄ (A)
)
. Since F̄ 3(AH) ⊂ {(x, y) : x =

0} while W̃ s+ ∩ {(x, y) : x = 0} = ∅, it is clear that W̃ s+ is situated between AH and
F̄ (A)F̄ (H).

Let us show that Cl(W̃ s+) leans against {(x, y) : x = 0}. The map F̄−1 in-
duces a smooth function map in such a manner. Let 0 < σ � 3

√
σ < 10−3 be

small enough. Denote by Sψ the space of C2-smooth functions y = ψ(x) such that
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|ψ(x) − 1/(1 − 2ε)| < σ , |ψ ′(x)| < 0.01, |ψ ′′(x)| < 5 on Ĭ ≡ [0, σ ]. Define
� : Sψ �−→ Sψ by means of the formula � (y = ψ(x)) = (

y
F

= ψ
F
(x

F
)
)
, where

y
F

=
√

2

2

[√
a(a − 2)

2
− ψ(x) + x

1 − 2ε
+

√
a(a − 2)

2
− ψ(x) − x

1 − 2ε

]
,

x
F

=
√

2

2

[√
a(a − 2)

2
− ψ(x) + x

1 − 2ε
−

√
a(a − 2)

2
− ψ(x) − x

1 − 2ε

]
.

(2.9)

Lemma 2.7. Let a > 1 +
√

4 + 2
√

2 and y = ψ(x) as above. There exists ε
F

< ε0 so
that if ε ∈ (ε

F
, ε0), then

∣∣ψ
F
(x

F
) − 1/(1 − 2ε)

∣∣ < σ ,
∣∣ψ ′

F
(x

F
)
∣∣ < 0.01,

∣∣ψ ′′
F
(x

F
)
∣∣ < 5

for all x ∈ Ĭ .

Proof. Denote ψ(x) = a − 2 + r(x). Substituting this expression in the formulas (2.9)
instead of ψ(x), we obtain

y
F

=
√

2

2



√

(a − 2)2

2
− r(x) + x

1 − 2ε
+

√
(a − 2)2

2
− r(x) − x

1 − 2ε


 ,

x
F

=
√

2

2



√

(a − 2)2

2
− r(x) + x

1 − 2ε
−

√
(a − 2)2

2
− r(x) − x

1 − 2ε


 .

Taking into account that
√

b ± c = √
b
[
1 ± c/(2b) + O

(
c2(2b)−2)], |r(x)| < σ ,

|x/(1 − 2ε)| < 2σ , we find y
F

= a−2+r(x)/(a−2)+O
(
σ 2), x

F
= x

(a − 2)(1 − 2ε)
+

O
(
σ 2) for ε close enough to ε0. Since 1 − 2ε0 = 1/(a − 2), the latter implies: ) that

|y
F

− (a − 2)| < σ
√

2/2 when x ∈ Ĭ and ) that the largest value of x
F

≈ σ

when x = σ. As for derivatives, those can be found by differentiating of the identities
x = (1 − 2ε)x

F
ψ

F
(x

F
), ψ(x) = [

a(a − 2) − x2
F

− ψ2
F
(x

F
)
]
/2. We finally find

ψ ′
F
(x

F
) = −(1 − 2ε)ψ

F
(x

F
)ψ ′(x) + x

F

ψ
F
(x

F
) + (1 − 2ε)x

F
ψ ′(x)

,

ψ ′′
F
(x

F
) =

[
1 − ψ ′2

F
(x

F
)
] [

x
F
ψ ′

F
(x

F
) − ψ

F
(x

F
)
] − (1 − 2ε)2

[
x

F
ψ ′

F
(x

F
) + ψ

F
(x

F
)
]3

ψ ′′(x)

ψ2
F
(x

F
) − x2

F

.

Because x
F

< 2σ � ψ
F
(x

F
) ≈ a − 2, we obtain that |ψ ′

F
(x

F
)| = |(1 − 2ε)ψ ′(x) −

O(σ )| < 0.01 when ε is close enough to ε0. Since ψ ′2
F

(x
F
) < 0.0001, |x

F
ψ ′

F
(x

F
)| <

0.02, ψ
F
(x

F
) = a − 2 + O(σ ), we find further that

|ψ ′′
F
(x

F
)| =

∣∣∣∣ 1

ψ
F
(x

F
)

+ (1 − 2ε)2ψ
F
(x

F
)ψ ′′(x) − O(σ )

∣∣∣∣
= ∣∣1/(a − 2) + (1 − 2ε)2ψ ′′(x)/(a − 2) + O(σ )

∣∣ .
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Choosing ε
F

so that 1 − 2ε = 1/(a − 2) + O(σ 2) for any ε ∈ (ε
F
, ε0), we infer that

|ψ ′′
F
(x

F
)| < 5 for all a > 1 +

√
4 + 2

√
2 and ε ∈ (ε

F
, ε0). �

Given a > 1 +
√

4 + 2
√

2, let us consider the function y =
√

a(a − 2) − x2 on
[0, δ̃], where δ̃ < σ . Its graph coincides with the arc F̄ (A)F̄ (H). Denote this function
by y = ψ0(x). The functions y = ψj(x), j = 1, 2, . . . are defined by means of
their graphs in such a manner: The arc F̄ 1−j (AH) is the graph of y = ψj(x). It is
easy to see that Wu(P+) ⊃ F̄ (A)F̄ 2(A) provided a > 1 + √

5. On the other hand,
Wu(S+) ⊃ Lωt for ε ∈ (ε̂, ε0). Because of this, F̄−j (A) → P+, F̄−j (H) → S+
as j → ∞. Hence there is J that F̄−j (A) ∈ Uσ(P+) for all j ≥ J . Due to the
orthogonality of the coordinate axes as well as that the matrix of DF is diagonal at points
belonging to the y-axis, pre-images of F̄−j ({(x, y) : y = 0}) are orthogonal to the y-
axis at their intersection points with the y-axis. Since {(x, y) : x2 + y2 = a(a − 2)} =
F̄−1 ({(x, y) : y = 0}), pre-images of y =

√
a(a − 2) − x2 have the same property. Due

to their smoothness and smooth dependence on parameters, it is clear that the following
statement holds: There is ε̌ < ε0 such that, for any ε ∈ (ε̌, ε0), there is a sub-arc of

F̄−J+1
(
{(x, y) : y =

√
a(a − 2) − x2, 0 ≤ x ≤ σ }

)
which belongs to Ũ = {(x, y) :

1/(1−2ε0)−σ < y < 1/(1−2ε0)+σ, 0 ≤ x ≤ δ̃} and stretches throughout the whole
Ũ from one end to another. Due to Lemma 2.4, we know that Lωt erects and converges
to the y-axis when ε tends to ε0. To be more precise, for any t > 0 (including t → 0),
there is εt > 0 such that if ε ∈ (εt , ε0), then x = ω(y) < t2 � t , |ω′(y)| < t2 � t

for any (x, y) ∈ Lωt . Therefore there is ε̃ = max(ε̌, εt ) so that F̄−J+1(AH) ⊂ Ũ . In
doing so one can fix ε̃ so close to ε0 that |ψ ′

J (x)| < 0.01, |ψ ′′
J (x)| < 5 at those points

(x, y) ∈ F̄−J+1(AH) whose x ∈ [0, δ̃]. Thus y = ψJ (x) is the same as y = ψ(x) of
Lemma 2.7.

Let ℵ be a family of C2-smooth functions of the kind y = ψ(x) and y = ϕm(x) be
restrictions of y = ψJ+m(x), m = 1, 2, . . . to [0, δ̃]. We show that y = ϕm(x) belongs
to ℵ.

Lemma 2.8. Let a, ε, y = ϕm(x) be such that Lemmas 2.1–2.7 are valid. Then

1) {y = ϕm(x)}∞m=1 converges to its limit y = ϕ∗(x) as m → ∞ uniformly with
respect to x and

2) graph(ϕ∗) = Cl(W̃ s+).

Proof. The maps F̄−j shrink AHF̄ (H)F̄ (A) to the y-axis. Therefore F̄−j

(AHF̄ (H)F̄ (A)) is a sequence of nested curvilinear quadrangles. Their sides F̄−2j (AH)

and F̄−2j+1(AH) form two monotone sequences, one of which is increasing while the
other is decreasing. As is shown above F̄−J+1(AH) ⊂ Ũ . It is clear too that we can
without loss of generality assume that F̄−J (AH) ⊂ Ũ . It follows from the latter in-
clusion that F̄−j (AH) ⊂ Ũ for all j ≥ J − 1. Due to Lemma 2.7, this means that
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y = ϕm(x) belongs to ℵ. In view of the compactness of ℵ as a subset of the C1-smooth
function set, there are C1-smooth (invariant with respect to �) functions which are limits
of the sequences {ϕJ+2m}∞m=1 and {ϕJ+2m−1}∞m=1. Denote these functions by ϕ∗ and ϕ∗,
respectively. Obviously ϕ∗ and ϕ∗ are one-valued functions. By definition, their graphs
contain P+ and S+. It is easy to see that y = ϕ∗(x), y = ϕ∗(x) should be solutions
of (2.8). However if a neighbourhood of S+ is small enough, then, as we know, there
exists only one curve invariant with respect to F̄ whose slope is less than 0.01. This
is Ws

loc(S+). Therefore, within the given neighbourhood, the graphs of y = ϕ∗(x),

y = ϕ∗(x) coincide with Ws
loc(S+).

Let us show that graph(ϕ∗) = graph(ϕ∗) = Cl(W̃ s+). Denote det(DF̄ ) = (1 −
2ε)(y2 −x2). Estimating | det(DF̄ )|, we observe | det(DF̄ )| > 1 in Ũ provided ε and σ

are small enough. This implies | det(DF̄−1)| < 1 in Ũ . Due to the smoothness and the
invariance of graph(ϕ∗), graph(ϕ∗) with respect to F̄−1, the latter means graph(ϕ∗) =
graph(ϕ∗). Obviously Cl(W̃ s+) ⊂ graph(ϕ∗). Since y = ϕ∗(x) is a one-valued function,
Cl(W̃ s+) \ W̃ s+ is a fixed point. But inside AHF̄ (H)F̄ (A) except S+ there is one fixed
point only. It is P+. Since P+ belongs to the y-axis, we infer that graph(ϕ∗) = Cl(W̃ s+).
As is well known [1], analytic maps have analytic stable and unstable manifolds at their
hyperbolic fixed points. Therefore, y = ϕ∗(x) is an analytic function. �

The method presented above can be used in a neighbourhood to the right of S+, i.e.,
for x > δ. Indeed let J be fixed in such a manner that the arc F̄−J (AH) coincides with the
graph of the function y = ψJ (x), where ψJ ∈ ℵ. Choose ζ so that 0 < δ < ζ 3 � ζ < σ

and F̄−J (AH) can be prolonged inside the domain U ≡ {(x, y) : 1/(1−2ε0)−σ < y <

1/(1 − 2ε0)+σ, 0 ≤ x ≤ ζ }. Let F̄−J (B) be the first intersection point of prolongation
of F̄−J (AH) with x = ζ . Thus F̄−J (BH) is a simply connected arc in U . This arc
contains F̄−J (AH), intersects x = ζ , and is the graph of a function which belongs to ℵ
at [0, ζ ]. Denote this function by y = �0(x). Without loss of generality, we can assume
that the domain of F̄−1 includes U . Then we can, with the aid of the map �, define
functions y = �m(x) which are restrictions of y = �J+m(x) to [0, ζ ]. For the sake of
simplicity, the restriction of F̄−1 to U will be denoted by the same symbol F̄−1 in the
sequel.

Consider
∞⋃

j=0

F̄−j
(
Ws

loc(S+) ∩ U ∩ {(x, y) : x ≥ δ}) and let Ŵ s+ ⊂ U be its simply

connected component such that S+ ∈ Ŵ s+.

Lemma 2.9. Let a, ε, y = �m(x) be such that Lemmas 2.1–2.7 are valid. Then

1) {y = �m(x)}∞m=1 converges to its limit y = �∗(x) as m → ∞ uniformly with
respect to x and

2) graph(�∗) = Cl(Ŵ s+).

Proof. Let �0 ∈ ℵ. Repeating the computations produced in the proof of Lemma 2.8 it is
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not difficult to check that � transforms y = �0(x) into another function, say, y = �1(x)

such that �1 ∈ ℵ too. That is, � : ℵ �−→ ℵ. Repeating the computations again and
again, one can as above construct two function sequences {�2m}∞m=1 and {�2m+1}∞m=1.
The same reasons as above show that these sequences both are convergent. Their limits
are continuous functions. Let us denote these functions by y = �∗(x) and y = �∗(x),
respectively. We show that the limits coincide and determine a finite size fraction of Ŵ s+.
In order to do this, it is necessary to prove that the domain of y = �m(x), m = 1, 2, . . .

contains the interval [0, ζ ]. We shall do it for ε = ε0. A general case ensues from it by
continuity.

So, let ε = ε0. Then S+ = P+ and 1/(1−2ε0) = a −2. Observe first of all that F̄−1

transforms a line x = ζ into a hyperbola x = ζ

(a − 2)y
. The hyperbola intersects the

line at a point T = (ζ, a − 2). It is clear that there is no loss of generality in assuming
y = �0(x) such that �0(x) > a−2 for all x ∈ [0, ζ ]. Denote T

f
≡ graph(�0)∩{(x, y) :

x = ζ } and let p ∈ (0, σ ) be such that a − 2 + p is the y-coordinate of T
f
. Assume

additionally that σ is chosen so that, in Cl(U), the action of F̄−1 along the y-axis is a
linear (accurate to the second order quantity of smallness) contraction towards the line
y = a − 2. Obviously this can be done. Then the shrinkage coefficient is equal to
1/(a − 2). Therefore, if y

f
denotes the value of the y-coordinate of F̄−1(T

f
), then y

f

can be estimated by y
f

= a −2−p/(a −2)+O(p2). Let us compute now x
f
, the value

of the x-coordinate of F̄−1(T
f
). Denote the angle between x = ζ and x = ζ

(a − 2)y
at

T by h. Then tg(h) = −ζ/(a−2). Since σ is small enough, the hyperbola arc which lies
in Cl(U) coincides (accurate to the second order quantity of smallness) with its tangent

at T . Therefore, accurate to O(p2), x
f

= ζ − ptg(h)

a − 2
= ζ

[
1 + p(a − 2)−2] ≡ ζ ′. So,

we find that the domain of y = �1(x) is approximately equal to [0, ζ ′] which is larger
than [0, ζ ].

In order to treat y = �2(x), it is enough to apply the aforesaid reasons to T ′
f

≡
F̄−1(T

f
). In doing so, one should keep in mind that ζ ′ > ζ. Let us denote the intersection

point of x = ζ ′

(a − 2)y
with x = ζ by T ′, the angle between x = ζ ′

(a − 2)y
and x = ζ

at T ′ by h′, the coordinates of F̄−1(T ′
f
) by x′

f
, y′

f
. Making computations similar to

those presented above, we find accurate to O(p3) that y′
f

= a − 2 + p(a − 2)−2,

tg(h′) = −ζ/(a−2)
[
1 + p(a − 2)−2], x′

f
= ζ

[
1 + p(a − 2)−2] [1 − p(a − 2)−3] =

ζ
[
1 + p(a − 3)(a − 2)−3] ≡ ζ ′′. Thus, we see that the domain of y = �2(x) is

approximately equal to the interval [0, ζ ′′] which is smaller than [0, ζ ′] while larger than
[0, ζ ]. All this takes place provided a is close enough to 4, and so on. As a result we find
that the domains of y = �m(x), m = 1, 2, . . . all are larger than [0, ζ ]. By continuity,
the same is true for ε, a sufficiently close to ε0, 4, respectively. Since σ was fixed
independently of values of the parameters a and ε, there exist limits of the sequences
of {�2m}∞m=1, {�2m+1}∞m=1, and these limits coincide with the arc Ŵ s+. Actually it is
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easy to see that y = �∗(x) and y = �∗(x) should be the solutions of (2.8). However
as we know, the only curve which is invariant with respect to F̄ and has the slope
less than 0.01 is Ŵ s

loc(S+). Hence, in the given neighbourhood, the graphs graph(�∗),
graph(�, ∗) coincide with the arc of Ŵ s+. We show that this arc stretches throughout
the whole interval [0, ζ ]. Indeed, it is evident that Ŵ s+ ⊂ graph(�∗) ∩ graph(�∗). If
Ŵ s+ does not intersect x = ζ , then Cl(Ŵ s+) is inside Cl(U) ∩ {(x, y) : δ ≤ x ≤ ζ }.
Since y = �∗(x), y = �∗(x) are one-valued functions, it is clear that Cl(Ŵ s+) \ Ŵ s+
is a one point set. Due to its invariance with respect to F̄−1, it should be a fixed point.
But as we know, if ε ∈ (ε̂, ε0), then except S+ there are no other fixed points of F in
Cl(U ∩ {(x, y) : δ ≤ x ≤ ζ }). Therefore, our assumption is false. �

Lemma 2.10. There is â ∈ (1+
√

4 + 2
√

2, 4) such that, for any a ∈ (â, 4) and arbitrary
U(P+), U(�a), one can find εa ∈ (0, ε0) and then J = J (a, U(P+), U(�a), εa) such
that, for all ε ∈ (εa, ε0), the following is fulfilled:
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ı)

J⋃
j=0

Fj
(
Wu

loc(S+)
) ⊂ U(�a);

ıı)


 J⋃

j=0

Fj
(
Wu

loc(S+)
) ∩ Ws

loc(S+)


 \ {S+} �= ∅;

ııı) the set


 J⋃

j=0

Fj
(
Wu

loc(S+)
) ∩ Ws

loc(S+)


 \ {S+} contains points of transverse in-

tersection of the manifolds Ws
loc(S+) and Wu(S+).

Proof. Let ζ ∈ (0, σ ) be small enough. Choose ε
F

> 0 so that Lemmas 2.8 and 2.9 are
satisfied for any ε ∈ (ε

F
, ε0). The latter permits us to consider ζ as a size of Ws

loc(S+).
Lemmas 2.8 and 2.9 imply that ı) Ws

loc(S+) ⊂ U , ıı) Cl
(
Ws

loc(S+)
)∩{(x, y) : x = 0} �=

∅, Cl
(
Ws

loc(S+)
) ∩ {(x, y) : x = ζ } �= ∅, ııı) the slope of Ws

loc(S+) to the x-axis does
not exceed 0.01 at all points of Ws

loc(S+). Here, U is the same as in Lemma 2.9.
Since F̄ 2 ≡ F 2 and F̄ j+1 (Wu

loc(S+)
) ⊃ F̄ j

(
Wu

loc(S+)
)

for all natural j , the unstable
manifold of F at S+ coincides with that of F̄ at S+. Therefore, one can study the
F̄ -images of Wu

loc(S+) instead of the F -images of Wu
loc(S+). We shall do this in the

sequel.
Fix t > 0 so that 4

√
t < ζ . Without loss of generality, one can assume that εF is

chosen so that 4
√

δ < t and Lemma 2.4 is fulfilled. This means that there exists the arc
Lωt of Wu(S+) which stretches out of F̄ 2(Zt) to F̄ (Zt) (see the designations preceding
Lemma 2.4) and such that: ) the distance between Lωt and �a is less than t ; )

the slope of Wu(S+) to the x-axis exceeds 1/t � 1 at all points of Lωt . Repeating
the reasons and the computations presented after the proof of Lemma 2.4, we can find
once more a fraction of Wu(S+). This fraction is situated on the other side of �a ,
possesses the same properties as Lωt and stretches out of F 3(K) to F(K). Continuing
computations and repeating reasons similar to those aforesaid, at the next step, we can
obtain once more a fraction of Wu(S+) which is located on the same side of �a as
Lωt , possesses the same properties as Lωt and stretches out approximately of F(K) to
F 3(K). It is easy to verify the validity of the last statements. To do this, it is necessary
to localize F̄ -images of a few remarkable points. For example, let us consider Z±
and Zx , the points of intersection of Lωt with the critical set K and with the x-axis,
respectively. It is not difficult to see that if it is known where F̄ -images of the points
of Z± and Zx are, then F̄ (Lωt) can be localized good enough. In particular because
) we have continuous dependence of Lωt on a and ε; ) Zt ≈ Z+ when a, ε close
to 4, ε0, respectively; ) lim

ε↗ε0
dist(Z±, O) = lim

ε↗ε0
dist(Zx, O) = 0 for a close to 4;

) lim
a↗4

lim
ε↗ε0

dist(F̄ (Lωτ ), [F̄ (O), F̄ 2(O)]) = 0. Analogously in order to localize

F̄ 2(Lωt), it is necessary to find points of intersection of F̄ (Lωt) with the critical set,
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with its F̄ -image and with the coordinate axes, respectively, and then to compute and
to localize F̄ -images of these points, and so on. In doing so, the parameter values can
be fixed such that the end points of F̄ j (Lωt), j = 1, J both belong to a neighbourhood
of F 2(O). Obviously the neighbourhood size (resp. natural J ) can be chosen as small
(resp. large) as desirable. Indeed, since F 2(O) = Fj(O), j ≥ 2 when a = 4 and
Lωt ∩ K → O as ε ↗ ε0, due to the continuous dependence of F on parameters, there

exist â ∈ (1 +
√

4 + 2
√

2, 4) and εa ∈ (ε
F
, ε0) such that the aforesaid assertion is valid

for all j = 1, J provided ε ∈ (εa, ε0). As for slopes of the fractions of F̄ j (Lωt) under
consideration, one can show that these slopes exceed 1/t � 1 at the points of F̄ j (Lωt)

which lie between F(K) and Fj+2(K), j = 1, 2, . . . . This can be done in the same way
as it is done above where the slopes of F̄ (Lωt) are studied.

It is much simpler to collect and to pick up successive steps of the algorithm that is
presented above in figures than to describe those steps by words. That is why we depict
several first steps of the given algorithm in Figs. 4–5.

Studying F̄ j (Lωt), j = 2, 3, . . ., it is easy to observe that F̄ 2(Lωt) is such that
F̄ 2 (Lωt \ Wu

loc(S+)
)

contains an arc which has the necessary properties and intersects

Ws
loc(S+) transversely. Denote by F̄ 2 (Lωt \ Wu

loc(S+)
)∩Ws

loc(S+)
def= � the intersection

point. There is an alternative: either a) � = S+ or b) � �= S+. Let us discuss the
alternative.

If (a) is satisfied, then there is a point �̃ ∈ Wu
loc(S+) \ {S+} such that: 1) F̄−m(�̃) ∈

Wu
loc(S+) for all natural m; 2) lim

m→∞ F̄−m(�̃) = S+; 3) there is natural M such that

F̄M(�̃) = � = S+.
If (b) is fulfilled, then there is a point �̄ ∈ Wu

loc(S+) \ {S+} such that: 1) F̄−m(�̄) ∈
Wu

loc(S+) for all natural m; 2) lim
m→∞ F̄−m(�̄) = S+; 3) there is natural M such that

F̄M(�̄) = �; 4) F̄ m(�) ∈ Ws
loc(S+) for all natural m and lim

m→∞ F̄ m(�) = S+.

Denote

( ∞⋃
n=0

F̄−n(�̆)

)
∪

(
N⋃

n=0

F̄−n(�̆)

)
, the orbit of �̆, by Orb(�̆). Here �̆ is

�̃ or �̄, and N is a natural or countable number. Considering the orbits Orb(�̃) and
Orb(�̄), we can see that these orbits both are homoclinic to S+. Taking into account
that F̄ 2 (Lωt \ Wu

loc(S+)
)

intersects Ws
loc(S+) transversely, we infer that the given orbits

both are transverse homoclinic too.1 (We notice that if (a) takes place, then there
must be a neighbourhood Ṽ of �̃ in Wu(S+) such that F̄M(Ṽ ) = Wu

loc(S+) because

1Recall that the orbit Orb(�̆) is termed homoclinic to the fixed point S+ if it is biasymptotic to the given
point, i.e., when Orb(�̆) ⊂ Ws(S+) ∩ Wu(S+). The homoclinic orbit Orb(�̆) is called the transverse
homoclinic one when, first, S+ is the hyperbolic fixed point and, second, for any sufficiently large natural
m and n such that F̄−m(�̆) ∈ Wu

loc(S+), F̄ n(�̆) ∈ Ws
loc(S+), there is a disc of Wu

loc(S+) possessing the
following properties: ) the disc contains the point F̄−m(�̆); ) F̄m+n is a diffeomorphism of the disc
into its F̄ m+n-image; ) the aforementioned F̄ m+n-image of the disc intersects Ws

loc(S+) at F̄ n(�̆)

transversely.
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S+ is a hyperbolic saddle and there is only one 1-dimensional expansion direction of
F̄ at S+.) �

Proof of Theorem 1.1. Theorem 1.1 is a corollary of Lemma 2.10. Indeed, according to
[5,9], any neighbourhood of an orbit which is transverse homoclinic to a hyperbolic fixed
point contains a nontrivial topologically transitive set chaotic in the sense of Li andYorke
[7]. This set is invariant with regard to F 2, and periodical points are everywhere dense
on the given set. Because F(S+) = S−, F(Wu

loc(S+)) = Wu
loc(S−), F(Ws

loc(S+)) =
Ws

loc(S−), there exists another set which is symmetric with respect to the y-axis to the
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aforesaid one and has the same properties. Their union gives us a set possessing all the
necessary properties which is invariant with respect to F . �

Concluding the study of F , let us show that, at the bifurcation value ε = ε0, the
phase pattern of F in a vicinity of U(P+) does not differ from that for ε ∈ (ε0, 1/2).

Lemma 2.11. Given ε = ε0 and a > 3. Then F has the 1-dimensional local stable
manifold Ws

loc(P+) at the point P+.

Proof. Let us transfer the origin of coordinates at the point P+ and introduce coordinates
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x̂ = x, ŷ = y − a + 2. Then, for ε = ε0, the map F takes the form

F̂ :
(

x̂

ŷ

)
�→

( −x̂ − x̂ŷ/(a − 2)

−(a − 2)ŷ − [x̂2 + ŷ2]/2

)
.

In what follows, we will omit “hats” above the coordinates x̂, ŷ. The eigenvalues of DF̂

at (0, 0) are equal to −1 and 2 − a. We show that there is a curve y = ϕ(x) which is
invariant with respect to F̂ and that this curve is a locally stable manifold of F̂ at (0, 0).

Assume the curve exists. Because of its invariance with respect to F , the inclusion
F (graph(ϕ)) ⊂ graph(ϕ) holds. In other words, we have the functional identity

−(a − 2)ϕ(x) − {x2 + [ϕ(x)]2}/2 = ϕ (−x − xϕ(x)/(a − 2)) , ϕ(0) = 0.

Differentiating this identity three times, we find ϕ′(0) = 0, ϕ′′(0) = −1/(a − 1),
ϕ′′′(0) = 0. Thus, if the function-solution exists, then y = −x2/[2(a − 1)] + O(x4).

We show that this indeed holds. Denote y = −x2/[2(a − 1)] def= ϕ0(x) and consider its
F̂ -image. Due to

(
x̄

ȳ

)
≡ F̂

((
x

ϕ0(x)

))
=




−x + x3

2(a − 1)(a − 2)

− x2

2(a − 1)

[
1 + x2

4(a − 1)

]

 ,

the image of y = ϕ0(x) is a curve ȳ = ϕ1(x̄), where x̄ = −x + x3

2(a − 1)(a − 2)
,

ȳ = − x2

2(a − 1)

[
1 + x2

4(a − 1)

]
. Since |x̄| < |x| and y(x̄) > y(x) > ȳ(x̄) for (x, y) �=

(0, 0) �= (x̄, ȳ), it is clear that this curve is located under y = ϕ0(x). Denote �0 =
{(x, y) : ϕ1(x) ≤ y ≤ ϕ0(x), −γ ≤ x ≤ γ }, where γ > 0 is a small constant. Consider
F̂ (�0). Since F̂ is a diffeomorphism inside a neighbourhood of (0, 0), F̂ -images of the
curves y = ϕj (x), j = 0, 1 localize F̂ (�0) completely. Computing, we find

(
x̆

y̆

)
≡ F̂

((
x̄

ȳ

))
=




x − x3

(a − 1)(a − 2)
+ O(x5)

− x2

2(a − 1)

[
1 − (a − 3)x2

4(a − 1)
− x2

a − 2

]
+ O(x6)


 .

Hence the image of ȳ = ϕ1(x̄) is a curve y̆ = ϕ2(x̆), where

x̆ = x − x3(a − 1)−1(a − 2)−1 + O(x5),

y̆ = −x2/[2(a − 1)] {1 − (a − 3)x2/[4(a − 1)] − x2/(a − 2)
} + O(x6).

We show that y̆ = ϕ2(x̆) is located above y = ϕ0(x). Computing ϕ0(x̆) we obtain
ϕ0(x̆) = −x2/[2(a − 1)] + x4(a − 2)−1(a − 1)−2 + O(x6). Since

1

(a − 2)(a − 1)2
<

a − 3

8(a − 1)2
+ 1

2(a − 2)(a − 1)
when a > 3,
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for x small enough, we obtain 1) the curve y = ϕ2(x) lies under y = 0 but above
y = ϕ0(x); 2) the cone �0 is located inside the cone F̂ (�0). Notice that Domj , the
domains of y = ϕj (x), shrink slightly under the action of F̂ . That is Dom0 ⊃ Dom1 ⊃
Dom2 ⊃ · · · ⊃ Domj ⊃ . . . .

Choose γ > 0 so that

�0 ∩ {(x, y) : −γ /2 ≤ x ≤ γ /2} ⊂ F̂ (�0) ∩ {(x, y) : −γ /2 ≤ x ≤ γ /2}
and consider a sequence of {�−m}∞m=1, where�−m = F̂−1(�−m+1)∩�0, m = 1, 2, . . . .

What is said above means that {�−m}∞m=1 constitute a set of the nested cones. Denote

� =
∞⋂

m=1

�−m. This is an invariant set. Because | det(DF̂−1(P+))| = 1/(a − 2) < 1,

there is γ > 0 so that | det(DF̂−1((x, y)))| < 1 for any (x, y) ∈ Uγ ((0, 0)). In view of
the invariance of �, the latter means that mes(�) = 0. Therefore, the sides of � which
are limits of sequences of graphs of the functions y = ϕ−2m(x) and y = ϕ−2m+1(x)

coincide. Thus there is only one curve y = ϕ(x) which is invariant with respect to F̂−1.
It is easy to check that this is a smooth arc. In fact, the graphs of y = ϕ0(x), y = ϕ1(x)

touch each other at x = 0 and ϕ′
0(0) = ϕ′

1(0) = 0, ϕ′′
0 (0) = ϕ′′

1 (0) = −1/(a − 2). The
graphs of y = ϕ−j (x), j = 2, 3, . . . , by construction, all are situated between them and
ϕ′−j (0) = 0, ϕ′′−j (0) = −1/(a − 2) for all natural j. Therefore the function y = ϕ(x)

is at least twice differentiable at x = 0 and has a finite continuous first derivative in a
neighbourhood of x = 0. So, there is the neighbourhood of P+ in which the graph of
the function y = ϕ(x) is a C1-smooth arc. Thus, the C1-smooth locally stable manifold
of F at P+ prolongs to exist even when ε = ε0. This means that the phase space pattern
bifurcation does still not take place although the exponential rate of convergence to P+
along Ws

loc(P+) is already lost. �

3. Proof of Theorem 1.3

Proof of Theorem 1.3. The main idea is to find a suitable family of diffeomorphisms so
that the results which are just presented for the endomorphisms can be applied to these
diffeomorphisms. Since our approach consists in a successive use of continuity and
continuous dependence, we restrict ourselves to indicate the proof scheme in considerable
detail.

Consider the families ϒ0 and ϒb. Obviously, the plane x = z = 0 is invariant with
respect to ϒ0, the arc �(ϒ0) ≡ {(0, 0, y, t) : y = [a(a − 2) − t2]/2, f 2

a (0) ≤ t ≤
fa(0)}, where fa(0) ≡ a(a − 2)/2, f 2

a (0) ≡ a(a − 2)[a(a − 2) − 4]/8 belongs to this
plane, P+(ϒ0) = (0, 0, a − 2, a − 2) ∈ �(ϒ0) is a fixed point. It is evident too that
�(ϒ0) is a topologically transitive set for a ∈ (â, 4) ∩ �. Indeed, ϒ0((0, 0, y, t)) ∈
�(ϒ0) for y ∈ [f 2

a (0), fa(0)] as ϒ0((0, 0, y, t)) = (0, 0, [a(a − 2) − y2]/2, y). Since

there exists ŷ ∈ [f 2
a (0), fa(0)] such that Cl


 ∞⋃

j=1

f j
a (ŷ)


 = [f 2

a (0), fa(0)] when a ∈
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(â, 4) ∩ �, projections of
∞⋃

j=1

ϒ
j
0 ((0, 0, ŷ, t)) are dense on the segment [f 2

a (0), fa(0)]
of the y-axis and on the same segment of the t-axis. The latter means that �(ϒ0)

is a topologically transitive set. In a vicinity of P+(ϒ0), there are two periodic of
period 2 points S±(ϒ0) ≡ (±x

S
(0), ±z

S
(0), y

S
(0), t

S
(0)) when ε ∈ (εa, ε0). Here

x
S
(0) = −z

S
(0) =

√
a(a − 2) − (3 − 4ε)(1 − 2ε)−2, y

S
(0) = t

S
(0) = 1/(1 − 2ε).

lim
ε↗ε0

S±(ϒ0) = P+(ϒ0).

Denote by xOy the factor space R
4/ ∼ which is constituted by identification of the

points of R
4 whose coordinates x,y are identical. That is xOy ≡ R

4/ ∼= {(x, ·, y, ·)}
or simply {(x, y)}. Obviously, the action of ϒ0 restricted to xOy coincides with that
of F .

Consider

{(x, z, y, t) : 0 ≤ x ≤ ζ, −∞ < z < ∞, y = �(x), −∞ < t < ∞} ⊂ R
4,

“a suspension” over a fraction of the stable manifold Ws(P+) ⊂ xOy of F at S+.
Denote it by Ws

loc(S+(ϒ0)). It is not difficult to check that Ws
loc(S+(ϒ0)) is a fraction

of the stable manifold of ϒ0 at the point S+(ϒ0) adjoining to S+(ϒ0). Indeed, since
ϒ

j
0 ((x0, z, �(x0), t)) = (

xj , xj−1, �(xj ), �(xj−1)
)
, where

xj = −(1−2ε)xj−1�(xj−1), �(xj ) = a(a − 2) − �2(xj−1) − x2
j−1

2
, j = 1, 2, . . . ,

it is clear that

lim
j→∞ ϒ

2j
0 ((x0, z, �(x0), t)) = S+(ϒ0), lim

j→∞ ϒ
2j−1
0 ((x0, z, �(x0), t)) = S−(ϒ0).

It is obvious that

ϒ0
(
Ws

loc(S+(ϒ0))
) ⊂ Ws

loc(S−(ϒ0)), ϒ2
0

(
Ws

loc(S+(ϒ0))
) ⊂ Ws

loc(S+(ϒ0)).

Consider the set

{(x, z, y, t) : x = (1 − 2ε)wω(w), y = [
a(a − 2) − ω2(w) − w2] /2,

z = −ω(w), t = w, 0 < w < a(a − 2)/2}.
Computing its ϒ0-image, one can easily verify that the given set is a semi-locally unstable
manifold Wu

sl(S+(ϒ0)) of ϒ0 at S+(ϒ0). In fact, the equalities

x = (1 − 2ε)wω(w), y = [
a(a − 2) − ω2(w) − w2] /2,

where ω(t) is the solution of the equation (2.2), are fulfilled for any (x, z, y, t) ∈
Wu

sl(S+(ϒ0)). Therefore x = ω(y). The latter means that

ϒ0 ((x, z, y, t)) = (−(1 − 2ε)w̄ω(w̄), ω(w̄), [a(a − 2) − ω2(w̄) − w̄2]/2, w̄)
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and

ϒ2
0 ((x, z, y, t)) = (−(1 − 2ε)w̆ω(w̆), ω(w̆),

[
a(a − 2) − ω2(w̆) − w̆2] /2, w̆),

where w̄ = y and w̆ = [
a(a − 2) − ω2(w̄) − w̄2] /2. Thus, Wu

sl(S+(ϒ0)) is an invariant
set with respect to ϒ2

0 .
Let zOt be a factor space similar to xOy, namely zOt = {(·, z, ·, t)} or simply

{(z, t)}. Because projections of Wu
sl(S+(ϒ0)) on xOy and zOt are stretched under the

action of ϒ0, the set Wu
sl(S+(ϒ0)) is stretched under the action of ϒ0 too. Therefore,

ϒ0
(
Wu

sl(S+(ϒ0))
) ⊃ Wu

sl(S−(ϒ0)) and ϒ2
0

(
Wu

sl(S+(ϒ0))
) ⊃ Wu

sl(S+(ϒ0)).

Denote by Wu(S+(ϒ0)) =
∞⋃

j=0

ϒ
2j
0

(
Wu

sl(S+(ϒ0))
)

the globally unstable manifold

of ϒ0 at S+(ϒ0). Let us show that there is a point where Wu(S+(ϒ0)) intersects
Ws

loc(S+(ϒ0)) transversely. Since

det


Dϒ2

0 (S±(ϒ0)) − ν(0)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






= ν2(0) · det

(
DF 2

0 (S±) − ν(0)

(
1 0
0 1

))
,

we observe that two eigenvalues ν ,  = 1, 2 of Dϒ2
0 at S±(ϒ0) are equal to 0 and

the other two eigenvalues are nonzero and coincide with those of DF 2 at S±. There-
fore |ν3(0)| < 1, |ν4(0)| > 1. Thus, the dimension of the locally stable manifold of
ϒ0 adjoining to the point S±(ϒ0) is equal to 3 and that of the local unstable mani-
fold of ϒ0 at S±(ϒ0) is equal to 1. Further, considering the manifold projections on
xOy, we find those that coincide with Ws(S+) and Wu(S+), respectively. According to
Lemma 2.8, in any vicinity of U(S+) \ {S+}, there are points of transverse intersection
of Ws(S+) and Wu(S+). Let (x�, y�) ∈ U(S+) \ {S+} be one of such points. Be-
cause (x�, y�) ∈ Wu(S+), there exist w, j such that Fj((x̌�, y̌�)) = (x�, y�), where
(x̌�, y̌�) ∈ Wu

loc(S+), x̌� = (1 − 2ε)wω(w) and y̌� = [
a(a − 2) − ω2(w) − w2] /2.

Consider a point ϒ
j
0

(
(x̌�, ž�, y̌�, ť�)

)
, where ž� = −ω(w), ť� = w. It is obvi-

ous that ϒ
j
0

(
(x̌�, ž�, y̌�, ť�)

) = (x�, z�, y�, t�) ∈ Wu(S+(ϒ0)). On the other hand,
(x�, y�) ∈ Ws(S+) implies y� = �(x�). Therefore (x�, z�, y�, t�) ∈ Ws

loc(S+(ϒ0)).
It is easy to verify that this is a point of transverse intersection of Ws

loc(S+(ϒ0)) and
Wu(S+(ϒ0)).

Indeed, as is known, a curve determined by the equations x = x(w), z = z(w),
y = y(w), t = t (w) is tangent to the hypersurface N(x, z, y, t) = 0 at the point
(x(ŵ), z(ŵ), y(ŵ), t (ŵ)) if the following two conditions are fulfilled: N(x(ŵ), z(ŵ),

y(ŵ), t (ŵ)) = 0 and(
∂N

∂x
x′ + ∂N

∂z
z′ + ∂N

∂y
y′ + ∂N

∂t
t ′
)

|w=ŵ = 0. (3.1)
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In doing so, at least one of the derivatives
∂N

∂x
,
∂N

∂y
,
∂N

∂z
must be nonzero. Applying the

aforesaid reasons to the case under examination, we find that N(x, z, y, t) = y − �(x),

∂N/∂x = −�′(x), ∂N/∂z = 0, ∂N/∂y = 1, ∂N/∂t = 0. Without loss of generality,
one can assume that ŵ is such that (x�, z�, y�, t�) ≡ (x(ŵ), z(ŵ), y(ŵ), t (ŵ)). The
equality (3.1) reduces then to

dy(ŵ)

dw
− d�(x(ŵ))

dx

dx(ŵ)

dw
= 0.

Since the projection of Wu(S+(ϒ0)) on xOy coincides with Wu(S+), at least one of the
derivatives dx(ŵ)/dw, dy(ŵ)/dw should be nonzero. Let it be dx(ŵ)/dw. Taking into

account that

∣∣∣∣dy(ŵ)/dw

dx(ŵ)/dw

∣∣∣∣ =
∣∣∣∣ 1

ω′(y�)

∣∣∣∣ >
1

τ
� 1, we find that

dy(ŵ)

dw
− d�(x(ŵ))

dx

dx(ŵ)

dw
= dx(ŵ)

dw

[
1

ω′(y�)
− �′(x�)

]
�= 0

because |�′(x�)| � 1 at (x�, y�). Therefore, (x�, z�, y�, t�) is a point where
Wu(S+(ϒ0)) intersects Ws

loc(S+(ϒ0)) transversely.
Consider now ϒb. Since Dϒb = (1−2η)b2 �= 0, ϒb is a diffeomorphism of R

4 into
itself.

P+(ϒb) ≡
(

0, 0,
√

a(a − 2) + (1 − b2) − (1 − b),
√

a(a − 2) + (1 − b2) − (1 − b)
)

is a fixed point of ϒb and �(ϒb) ≡ Cl
(
Wu(P+(ϒb)) ∩ {(x, z, y, t) : z = t = 0}). At

ε = εabη, where εabη is a solution of the equation [1 − (1 − 2η)b]/(1 − 2εabη) =√
a(a − 2) + (1 − b2)− (1−b), the point P+(ϒb) bifurcates in a direction transverse to

the plane x = z = 0 and two periodical of period 2 points S±(ϒb) ≡ (±x
S
, ±z

S
, y

S
, t

S
)

appear. Here

x
S

= −z
S

=
√

a(a − 2) − [1 − (1 − 2η)b]2(1 − 2ε)−2 − 2(1 − 2η)[1 − (1 − 2η)b]/(1 − 2ε)

and y
S

= t
S

= [1 − (1 − 2η)b]/(1 − 2ε). The points S±(ϒb) exist as long as the values
of a, ε, b and η satisfy the inequalities

−(1 − b) −
√

a(a − 2) + (1 − b2) ≤ [1 − (1 − 2η)b]/(1 − 2ε)

≤
√

a(a − 2) + (1 − b2) − (1 − b).

Of course, lim
ε→εabη

S±(ϒb) = P+(ϒb). It is clear that ϒb converges to ϒ0 uniformly as

|b| → 0 and lim
b→0

S±(ϒb) = S±(ϒ0). The latter implies lim
b→0

νj (b) = νj (0), where νj (b)

are the eigenvalues of Dϒ2
b at S±(ϒb). Therefore, for |b| small enough, ϒb has the 3-

dimensional stable Ws(S+(ϒ)) manifold and the 1-dimensional unstable Wu(S+(ϒb))
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manifold. We show there exist points where these manifolds intersect each other trans-
versely.

Let a, ε be such that Lemma 2.10 is valid for F . As is known [8], a stable/unstable
manifold of diffeomorphism at its hyperbolic fixed point depends continuously (even Ck-
smoothly, where k is the degree of diffeomorphism smoothness) on the diffeomorphism.
Analyzing the proof of the given fact which is presented in [8], it is not difficult to observe
that this proof remains true for a wide map class. This is because what is really used
there is a non-degeneracy of differential on its contracting/expanding tangent subspace
rather than in the whole tangent space. Since ν4(0) is the only eigenvalue of Dϒ2

0
whose absolute value exceeds 1, we see that Dϒ2

0 (S+(ϒ0)) is an operator which is
non-degenerate on its expanding tangent subspace and, therefore, the aforementioned
theorem is true for Wu (S+(ϒ0)) too. The latter means that an arbitrary compact piece of
Wu (S+(ϒ0)) can be with any desirable accuracy approximated (as b → 0) by compact
pieces of Wu (S+(ϒb)). Unfortunately, a similar general result with regard to properties
of stable manifolds at the hyperbolic fixed point of endomorphisms whose differential
is degenerate on its tangent contracting subspace is unknown to the author. Therefore,
in what follows, the continuous dependence of the stable manifold of Ws (S+(ϒ0)) on
the map will be shown. In other words, we show that Ws

loc (S+(ϒb)) tends uniformly to
Ws

loc (S+(ϒ0)) as b → 0.
Let us look for the locally stable manifold of ϒb at S+(ϒb) as a hypersurface

y = ℘b(x, z, t). Due to symmetry of Ws (S+(ϒb)), Ws (S−(ϒb)) with respect to op-
posite values of x and z, it is clear that ℘b(x, z, t) = ℘b(−x, −z, t). Let (x, z, y, t) ∈
Ws (S+(ϒb)). As ϒb

(
Ws (S+(ϒb))

) = Ws (S−(ϒb)), we have (x̆, z̆, y̆, t̆ ) ∈
Ws (S−(ϒb)), where x̆ = (1 − 2ε)x℘b(x, z, t) + (1 − 2η)bz, z̆ = x, y̆ = [a(a − 2)−
℘2

b(x, z, t) − x2] /2 + bt , t̆ = ℘b(x, z, t) and, in doing so, y̆ = ℘b(x̆, z̆, t̆ ). Since
y̆ = ℘b(x̆, z̆, t̆ ) = ℘b(−x̆, −z̆, t̆ ), what is said above can be expressed in view of an
equation with respect to ℘b:

a(a − 2)

2
+ bt − x2 + ℘2

b(x, z, t)

2
= ℘b ((1 − 2ε)x℘b(x, z, t) + (1 − 2η)bz, −x, ℘b(x, z, t)) .

Differentiation of the given equation with respect to x, z, t gives us three equations

involving
∂℘b

∂x
,
∂℘b

∂z
,
∂℘b

∂t
. Substituting the coordinates of S+(ϒb) to these equations,

we obtain equations for

∂℘b(xS
, z

S
, t

S
)

∂x
,

∂℘b(xS
, z

S
, t

S
)

∂z
,

∂℘b(xS
, z

S
, t

S
)

∂t
.

Solving them and taking then limits, we find that lim
b→0

∂℘b(xS
, z

S
, t

S
)

∂x
= �′(x

S
(0)),

lim
b→0

∂℘b(xS
, z

S
, t

S
)

∂z
= 0, lim

b→0

∂℘b(xS
, z

S
, t

S
)

∂t
= 0. The latter means that, in a small

neighbourhood of S+(ϒ0), a piece of Ws (S+(ϒ0)) adjoining to S+(ϒ0) can be with
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any desirable accuracy approximated as b → 0 by Ws
loc (S+(ϒb)). In view of structural

stability of transverse intersections, this implies that if there is a point of transverse
intersection of Ws

loc (S+(ϒ0)) with Wu (S+(ϒ0)) \ {S+(ϒ0)}, then one can find b̃ > 0
such that the manifolds Ws

loc (S+(ϒb)) and Wu (S+(ϒb))\{S+(ϒb)} intersect each other
transversely in a neighbourhood of the given point when b ∈ (−b̃, b̃). The existence of
an orbit of F which is transverse homoclinic to S+ results in the existence of a similar
orbit of ϒb which is transverse homoclinic to S+(ϒb). The latter means that Theorem
1.3 is valid for sufficiently small |b|. �
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