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Abstract

In this paper we shall investigate the oscillatory properties of the equations
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1. Introduction

Consider the third order nonlinear functional differential equations of the form

d2

dt2

(
1

a(t)

(
dx(t)

dt

)α)
+ q(t)f (x[g(t)]) = 0 (1.1)

and
d2

dt2

(
1

a(t)

(
dx(t)

dt

)α)
= q(t)f (x[g(t)]) + p(t)h(x[σ(t)]), (1.2)

where

(i) α is the ratio of two positive odd integers,

(ii) a, p, q ∈ C([t0, ∞), [0, ∞)) such that sup{p(t) : t ≥ T } > 0 and sup{q(t) : t ≥
T } > 0 for any T ≥ t0 ≥ 0, and a(t) > 0, t ≥ t0,

(iii) g, σ ∈ C1([t0, ∞), R) satisfying g′(t) ≥ 0, σ ′(t) ≥ 0, g(t) < t , σ(t) > t and
lim

t→∞ g(t) = ∞,

(iv) f, h ∈ C(R, R), xf (x) > 0, xh(x) > 0, f ′(x) ≥ 0 and h′(x) ≥ 0 for x �= 0.

By a solution of equation (1.1) or (1.2) we mean a function x ∈ C1([Tx, ∞), R),
Tx ≥ t0 which has the property that (1/a)(x′)α ∈ C2([Tx, ∞), R) and satisfies equation
(1.1) or (1.2) for all large t ≥ Tx . A solution is said to be oscillatory if it has a sequence
of zeros clustering at t = ∞, otherwise, a solution is said to be nonoscillatory. An
equation is said to be oscillatory if all its solutions are oscillatory.

In the last three decades there has been an increasing interest in studying the os-
cillatory and nonoscillatory behavior of solutions of functional differential equations.
Most of the work on the subject, however, has been restricted to first and second order
equations, equations of type (1.1) and (1.2) with α = 1 as well as higher order equations
and half-linear equations of the form

d

dt

(
1

a(t)

(
dx(t)

dt

)α)
+ δq(t)f (x[g(t)]) = 0,

where δ = ±1. For recent contributions, we refer to [1, 4] and the references cited
therein.

It appears that only little is known regarding the oscillation of equations (1.1) and
(1.2). Therefore, the main goal here is to present asymptotic study of the oscillation of
all solutions of equations (1.1) and (1.2). Moreover, we shall establish some new criteria
for the oscillation of similar type equations, namely,

d

dt

(
1

a(t)

(
d2x(t)

dt2

)α
)

+ q(t)f (x[g(t)]) = 0 (1.3)
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and
d

dt

(
1

a(t)

(
d2x(t)

dt2

)α
)

= q(t)f (x[g(t)]) + p(t)h(x[σ(t)]). (1.4)

The obtained results extend, improve and correlate many known criteria which have
appeared recently in the literature.

2. Oscillation of Equation (1.1)

We shall assume throughout that∫ ∞
a1/α(s)ds = ∞. (2.1)

We define the operators

L0x(t) = x(t), L1x(t) = 1

a(t)

(
d

dt
L0x(t)

)α

,

(2.2)

L2x(t) = d

dt
L1x(t), L3x(t) = d

dt
L2x(t).

Thus, equation (1.1) can be written as

L3x(t) + q(t)f (x[g(t)]) = 0.

If we letx be an eventually positive solution of equation (1.1), thenL3x(t) ≤ 0 eventually,
and hence Lix(t), i = 0, 1, 2 are eventually of one sign.

There are two possibilities to consider:

(I) Lix(t) > 0, i = 0, 1, 2 eventually, or

(II) L0x(t) > 0, L1x(t) < 0 and L2x(t) > 0 eventually.

Case (I) Let Lix(t) > 0, i = 0, 1, 2 for t ≥ t0 ≥ 0. Then, it follows that

L1x(t) =
∫ t

t0

L2x(s)ds ≥ (t − t0)L2x(t) for t ≥ t0,

or
x′(t) ≥ a1/α(t)(t − t0)

1/αL
1/α
2 x(t) for t ≥ t0.

Integrating the above inequality from t0 to t , we have

x(t) ≥
(∫ t

t0

a1/α(s)(s − t0)
1/αds

)
L

1/α
2 x(t) for t ≥ t0. (2.3)
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Case (II) Let L0x(t) > 0, L1x(t) < 0 and L2x(t) > 0 for t ≥ t0 ≥ 0. Then, for
t ≥ s ≥ t0,

L1x(t) − L1x(s) =
∫ t

s

L2x(u)du

and so,

−L1x(s) = − 1

a(s)
(x′(s))α ≥ (t − s)L2x(t),

or
−x′(s) ≥ a1/α(s)(t − s)1/αL

1/α
2 x(t).

Thus, it follows that

x(s) ≥
(∫ t

s

a1/α(u)(t − u)1/αdu

)
L

1/α
2 x(t) for t ≥ s ≥ t0. (2.4)

In what follows we shall use the following notations. For t ≥ s ≥ T ≥ t0 ≥ 0, we
let

A1[t, T ] =
∫ t

T

a1/α(s)(s − t0)
1/αds

and

B1[t, s] =
∫ t

s

a1/α(u)(t − u)1/αdu.

Thus, inequalities (2.3) (of Case (I)) and (2.4) (of Case (II)) can be written as

x(t) ≥ A1[t, t0]L1/α
2 x(t), t ≥ t0 (2.5)

and
x(s) ≥ B1[t, s]L1/α

2 x(t), t ≥ s ≥ t0. (2.6)

For equation (1.3), we define

L0x(t) = x(t), L1x(t) = d

dt
L0x(t),

(2.7)

L2x(t) = 1

a(t)

(
d

dt
L1x(t)

)α

, L3x(t) = d

dt
L2x(t).

Then, the equation (1.3) takes the form

L3x(t) + q(t)f (x[g(t)]) = 0.

If x is an eventually positive solution of equation (1.3), then the cases (I) and (II) are to
be considered with L replaced by L. For Case (I) one can easily conclude that

x(t) ≥ A3[t, t0]L1/α

2 x(t) for t ≥ t0, (2.8)
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where

A3[t, T ] =
∫ t

T

(∫ s

T

a1/α(u)du

)
ds for t ≥ T ≥ t0

and if Case (II) holds, then for t ≥ s ≥ t0, we see that

x(s) ≥ B3[t, s]L1/α

2 x(t), (2.9)

where

B3[t, s] =
∫ t

s

(∫ t

u

a1/α(τ )dτ

)
du.

We are now ready to prove oscillatory criteria for the equation (1.1). For this, we shall
assume that

−f (−xy) ≥ f (xy) ≥ f (x)f (y) for xy > 0, (2.10)

f (u1/α)

u
≥ k > 0, k is a real constant, u �= 0 (2.11)

and ∫ ±ε

0

du

f (u1/α)
< ∞ for every ε > 0. (2.12)

Theorem 2.1. Let conditions (i)–(iv), (2.1), (2.10) and (2.11) hold. If for t ≥ t0 ≥ 0,

lim sup
t→∞

∫ t

g(t)

q(s)f (A1[g(s), t0])ds >
1

k
(2.13)

and

lim sup
t→∞

∫ t

g(t)

q(s)f (B1[g(t), g(s)])ds >
1

k
, (2.14)

then equation (1.1) is oscillatory.

Proof. Let x be an eventually positive solution of equation (1.1). Then, L3x(t) ≤ 0
eventually and hence Lix(t), i = 1, 2, 3 are eventually of one sign. This leads to the
two possibilities (I) and (II). For Case (I), we obtain (2.5). Now there exists a T ≥ t0
such that

x[g(t)] ≥ A1[g(t), t0]L1/α
2 x[g(t)] for t ≥ T . (2.15)

Integrating equation (1.1) from g(t) to t (≥ T ), we have

−L2x(t) + L2x[g(t)] =
∫ t

g(t)

q(s)f (x[g(s)])ds

≥
∫ t

g(t)

q(s)f (A1[g(s), t0]L1/α
2 x[g(s)])ds

≥
∫ t

g(t)

q(s)f (A1[g(s), t0])f (L
1/α
2 x[g(s)])ds

≥ f (L
1/α
2 x[g(t)])

∫ t

g(t)

q(s)f (A1[g(s), t0])ds.
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Thus, it follows that

L2x[g(t)] ≥ f (L
1/α
2 x[g(t)])

∫ t

g(t)

q(s)f (A1[g(s), t0])ds,

or
L2x[g(t)]

f (L
1/α
2 x[g(t)]) ≥

∫ t

g(t)

q(s)f (A1[g(s), t0])ds.

Taking lim sup of both sides of the above inequality as t → ∞, we arrive at a contradiction
to condition (2.13).

Next for the Case (II), we obtain (2.6). Substituting g(s) and g(t) for s and t

respectively, we have

x[g(s)] ≥ B1[g(t), g(s)]L1/α
2 x[g(t)] for t ≥ s ≥ t0. (2.16)

Integrating equation (1.1) from g(t) to t , we find

L2x[g(t)] ≥ −L2x(t) + L2x[g(t)]

=
∫ t

g(t)

q(s)f (x[g(s)])ds

≥
∫ t

g(t)

q(s)f (B1[g(t), g(s)]L1/α
2 x[g(t)])ds

≥ f (L
1/α
2 x[g(t)])

∫ t

g(t)

q(s)f (B1[g(t), g(s)])ds,

or
L2x[g(t)]

f (L
1/α
2 x[g(t)]) ≥

∫ t

g(t)

q(s)f (B1[g(t), g(s)])ds.

Taking lim sup of both sides of the above inequality as t → ∞, we obtain a contradiction
to condition (2.14). This completes the proof. �

The following corollary is immediate.

Corollary 2.2. Let conditions (i)–(iv), (2.1), (2.10) and (2.11) hold. If condition (2.14)
holds, then all bounded solutions of equation (1.1) are oscillatory.

Theorem 2.3. Let conditions (i)–(iv), (2.1), (2.10) and (2.12) hold. If for t ≥ t0 ≥ 0,∫ ∞
q(s)f (A1[g(s), t0])ds = ∞ (2.17)

and ∫ ∞
q(s)f (B1[g(t), g(s)])ds = ∞, (2.18)

then equation (1.1) is oscillatory.
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Proof. Let x be an eventually positive solution of equation (1.1). Proceeding as in the
proof of Theorem 2.1 we obtain (2.15) for Case (I) and (2.16) for Case (II). Now for
Case (I), from equation (1.1), we obtain

− d

dt
L2x(t) = q(t)f (x[g(t)])

≥ q(t)f (A1[g(t), t0]L1/α
2 x[g(t)])

≥ q(t)f (A1[g(t), t0])f (L
1/α
2 x(t)),

or
− d

dt
L2x(t)

f (L
1/α
2 x(t))

≥ q(t)f (A1[g(t), t0]) for t ≥ T ≥ t0.

Integrating the above inequality from T to t , we have∫ L2x(T )

L2x(t)

du

f (u1/α)
≥

∫ t

T

q(s)f (A1[g(s), t0])ds.

Taking limit of both sides of the above inequality as t → ∞, we obtain a contradiction
to condition (2.17).

Next for Case (II), from equation (1.1), we see that

−L3x(s) = q(s)f (x[g(s)]) ≥ q(s)f (B1[g(t), g(s)])f (L
1/α
2 x(s)) for t ≥ s ≥ T ≥ t0,

or
− d

ds
L2x(s)

f (L
1/α
2 x(s))

≥ q(s)f (B1[g(t), g(s)]).

The rest of the proof is similar to that of Case (I) and hence omitted. This completes the
proof. �

The following corollary is immediate.

Corollary 2.4. Let conditions (i)–(iv), (2.1) and (2.10) hold. If

u

f (u1/α)
→ 0 as u → 0 (2.19)

and

lim sup
t→∞

∫ t

g(t)

q(s)f (B1[g(t), g(s)])ds > 0, (2.20)

then all bounded solutions of equation (1.1) are oscillatory.
Next, we present the following comparison result for the oscillation of equation (1.1).

Theorem 2.5. Let conditions (i)–(iv), (2.1) and (2.10) hold. If the first order delay
equations

y′(t) + q(t)f (A1[g(t), t0])f (y1/α[g(t)]) = 0, t0 ≥ 0 (2.21)
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and

z′(t) + q(t)f

(
B1

[
t + g(t)

2
, g(t)

])
f

(
z1/α

[
t + g(t)

2

])
= 0 (2.22)

are oscillatory, then equation (1.1) is oscillatory.

Proof. Let x be an eventually positive solution of equation (1.1). Proceeding as in the
proof of Theorem 2.1 we obtain (2.15) for Case (I) and (2.6) for Case (II). Now for Case
(I), using (2.10) and (2.15) in equation (1.1), we have

−L3x(t) = q(t)f (x[g(t)])
≥ q(t)f (A1[g(t), t0]L1/α

2 x[g(t)])
≥ q(t)f (A1[g(t), t0])f (L

1/α
2 x[g(t)]) for t ≥ T ≥ t0.

Setting y(t) = L2x(t) > 0 for t ≥ T , we obtain

y′(t) + q(t)f (A1[g(t), t0])f (y1/α[g(t)]) ≤ 0 for t ≥ T .

Integrating the above inequality from t (≥ T ) to u and letting u → ∞, we have

y(t) ≥
∫ ∞

t

q(s)f (A1[g(s), t0])f (y1/α[g(s)])ds, t ≥ T .

As in [5] it is easy to conclude that there exists a positive solution y of equation (2.21)
with lim

t→∞ y(t) = 0, which contradicts the fact that equation (2.21) is oscillatory.

Next for Case (II), substituting g(t) and (t +g(t))/2 for s and t , respectively in (2.6),
we have

x[g(t)] ≥ B1

[
t + g(t)

2
, g(t)

]
L

1/α
2 x

[
t + g(t)

2

]
for t ≥ T .

Using this inequality in equation (1.1) and proceeding as in Case (I), we obtain

z′(t) + q(t)f

(
B1

[
t + g(t)

2
, g(t)

])
f

(
z1/α

[
t + g(t)

2

])
≤ 0 for t ≥ T ,

where z(t) = L
1/α
2 x(t), t ≥ T . The rest of the proof is similar to that of Case (I) above

and hence omitted. �

The following corollary is immediate.

Corollary 2.6. Let conditions (i)–(iv), (2.1), (2.10) and (2.11) hold. If

lim inf
t→∞

∫ t

g(t)

q(s)f (A1[g(s), t0])ds >
1

ke
, t0 ≥ 0 (2.23)
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and

lim inf
t→∞

∫ t

(t+g(t))/2
q(s)f

(
B1

[
s + g(s)

2
, g(s)

])
ds >

1

ke
, (2.24)

then equation (1.1) is oscillatory.

Remark 2.7. We note that identical results as those presented above for the oscillation of
equation (1.3) can be easily obtained by replacing A1 and B1 with A3 and B3, respectively.
The details are left to the reader.

3. Oscillation of Equation (1.2)

In this section, we shall give some new criteria for the oscillation of equations (1.2) and
(1.4). For t ≥ s ≥ T ≥ t0, we let

A2[t, s] =
∫ t

s

a1/α(u)(u − s)1/αdu,

B2[t, T ] =
∫ t

T

a1/α(u)(t − u)1/αdu,

A4[t, s] =
∫ t

s

(∫ u

s

a1/α(τ )dτ

)
du,

and

B4[t, T ] =
∫ t

T

(∫ t

s

a1/α(u)du

)
ds.

Using (2) in equation (1.2), we get

L3x(t) = q(t)f (x[g(t)]) + p(t)h(x[σ(t)]).
Now, if x is an eventually positive solution of equation (1.2), then L3x(t) ≥ 0 eventually
and hence Lix(t), i = 0, 1, 2 are eventually of one sign. We shall distinguish the
following two cases:

(I1) Lix(t) > 0, i = 0, 1, 2 eventually,

(II1) L0x(t) > 0, L1x(t) > 0 and L2x(t) < 0 eventually.

Case (I1) Let Lix(t) > 0, i = 0, 1, 2 for t ≥ t0 ≥ 0. Then, for t ≥ s ≥ t0,

L1x(t) − L1x(s) =
∫ t

s

L2x(u)du

and so
L1x(t) ≥ (t − s)L2x(s),
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or
x′(t) ≥ a1/α(t)(t − s)1/αL

1/α
2 x(s).

Thus, it follows that

x(t) ≥
(∫ t

s

(a(u)(u − s))1/α du

)
L

1/α
2 x(s) = A2[t, s]L1/α

2 x(s), t ≥ s ≥ t0.

(3.1)

Case (II1) Let L0x(t) > 0, L1x(t) > 0, L2x(t) < 0 for t ≥ t0 ≥ 0. Then, for
t ≥ s ≥ t0,

−L1x(s) ≤ L1x(t) − L1x(s) =
∫ t

s

L2x(u)du

and so,

L1x(s) ≥
∫ t

s

(−L2x(u))du,

or
x′(s) ≥ (a(s)(t − s))1/α(−L

1/α
2 x(t)).

Thus, we have

x(t) ≥
(∫ t

t0

(a(s)(t − s))1/α ds

)
(−L

1/α
2 x(t)) = B2[t, t0](−L

1/α
2 x(t)), t ≥ t0.

(3.2)

Next using (2) in equation (1.4), we see that

L3x(t) = q(t)f (x[g(t)]) + p(t)h(x[σ(t)]).
Now if x is an eventually positive solution of equation (1.4), then the Cases (I1) and (II1)
are considered with L replacing L.

Now for Case (I1) one can easily see that for t ≥ s ≥ t0,

x(t) ≥ A4[t, s]L1/α
2 x(s) (3.3)

and for Case (II1), we obtain

x(t) ≥ B4[t, t0](−L
1/α
2 x(t)) for t ≥ t0. (3.3)

We shall assume that

−h(−xy) ≥ h(xy) ≥ h(x)h(y) for xy > 0 (3.4)

and
h(u1/α)

u
≥ k1 > 0, where k1 is a constant, u �= 0. (3.5)
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Theorem 3.1. Let conditions (i)–(iv), (2.1), (2.10), (2.11), (3.4) and (3.5) hold. If

lim sup
t→∞

∫ σ(t)

t

p(s)h(A2[σ(s), σ (t)])ds >
1

k1
(3.6)

and

lim sup
t→∞

∫ t

g(t)

q(s)f (B2[g(s), t0])ds >
1

k1
for t0 ≥ 0, (3.7)

then equation (1.2) is oscillatory.

Proof. Let x be an eventually positive solution of equation (1.2). Then, L3x(t) ≥ 0
eventually and hence Lix(t), i = 0, 1, 2 are eventually of one sign. Next, we distinguish
the two Cases (I1) and (II1). For Case (I1) we obtain (3.1). Letting s = σ(t) and t = σ(s)

in (3.1), we have

x[σ(s)] ≥ A2[σ(s), σ (t)]L1/α
2 x[σ(t)], s ≥ t. (3.8)

From equation (1.2), we find that

L3x(s) ≥ p(s)h(x[σ(s)])
≥ p(s)h(A2[σ(s), σ (t)]L1/α

2 x[σ(t)])
≥ p(s)h(A2[σ(s), σ (t)])h(L

1/α
2 x[σ(t)]).

Integration of the above inequality on [t, σ (t)] yields

L2x[σ(t)] ≥
(∫ σ(t)

t

p(s)h(A2[σ(s), σ (t)])ds

)
h(L

1/α
2 x[σ(t)]),

or
L2x[σ(t)]

h(L
1/α
2 x[σ(t)])

≥
∫ σ(t)

t

p(s)h(A2[σ(s), σ (t)])ds.

Taking lim sup of both sides as t → ∞, we have a contradiction to condition (3.6).
Next for Case (II1), we obtain (3.2) for t ≥ t0 ≥ 0. There exists a T ≥ t0 such that

x[g(t)] ≥ B2[g(t), t0](−L
1/α
2 x[g(t)]) for t ≥ T . (3.9)

It follows from equation (1.2) that

L3x(t) ≥ q(t)f (x[g(t)]) ≥ q(t)f (B2[g(t), t0])f (−L
1/α
2 x[g(t)]).

Integrating the above inequality on [g(t), t], we find

−L2x[g(t)] ≥
(∫ t

g(t)

q(s)f (B2[g(s), t0]ds

)
f (−L

1/α
2 x[g(t)]).



24 Ravi P. Agarwal, Said R. Grace and Patricia J.Y. Wong

The rest of the proof is similar to that of Case (I1) above and hence omitted. �

Next, we replace conditions (2.10) and (2.11) by

f 1/α(u)

u
≥ m > 0, m is a constant, for u �= 0 (3.10)

and conditions (3.4) and (3.5) by

h1/α(u)

u
≥ m1 > 0, m1 is a constant, for u �= 0 (3.11)

and prove the following result.

Theorem 3.2. Let conditions (i)–(iv), (2.1), (3.10) and (3.11) hold. If

lim sup
t→∞

∫ σ(t)

t

(
a(η)

∫ η

t

∫ β

t

p(s)dsdβ

)1/α

dη >
1

m1
(3.12)

and

lim sup
t→∞

B2[g(t), t0]
(∫ ∞

t

q(s)ds

)1/α

>
1

m
for t0 ≥ 0, (3.13)

then equation (1.2) is oscillatory.

Proof. Let x be an eventually positive solution of equation (1.2). As in the proof of
Theorem 3.1 the Cases (I1) and (II1) are considered. Suppose (I1) holds. It follows from
equation (1.2) that for β ≥ t ≥ t0,

L2x(β) ≥
∫ β

t

p(s)h(x[σ(s)])ds ≥
(∫ β

t

p(s)ds

)
h(x[σ(t)])

and for η ≥ t ≥ t0, we have

L1x(η) ≥
∫ η

t

L2x(β)dβ ≥
(∫ η

t

∫ β

t

p(s)dsdβ

)
h(x[σ(t)]),

or

x′(η) ≥
(

a(η)

∫ η

t

∫ β

t

p(s)dsdβ

)1/α

h1/α(x[σ(t)]).
Now for ξ ≥ t ≥ t0, we find

x(ξ) ≥
∫ ξ

t

x′(η)dη ≥
(∫ ξ

t

(
a(η)

∫ η

t

∫ β

t

p(s)dsdβ

)1/α

dη

)
h1/α(x[σ(t)]).

Putting ξ = σ(t) in the above inequality, we get

x[σ(t)]
h1/α(x[σ(t)]) ≥

∫ σ(t)

t

(
a(η)

∫ η

t

∫ β

t

p(s)dsdβ

)1/α

dη.
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Taking lim sup of the above as t → ∞, we obtain a contradiction to condition (3.12).
Suppose (II1) holds. It follows from equation (1.2) that

−L2x(t) ≥
∫ ∞

t

q(s)f (x[g(s)])ds ≥
(∫ ∞

t

q(s)ds

)
f (x[g(t)]), t ≥ T ≥ t0.

Using inequality (3.9) and the fact that −L2x(t) is nonincreasing, we have

x[g(t)] ≥ B2[g(t), t0](−L
1/α
2 x[g(t)])

≥ B2[g(t), t0](−L
1/α
2 x(t))

≥ B2[g(t), t0]
(∫ ∞

t

q(s)ds

)1/α

f 1/α(x[g(t)]),

or

x[g(t)]
f 1/α(x[g(t)]) ≥ B2[g(t), t0]

(∫ ∞

t

q(s)ds

)1/α

, t ≥ T ≥ t0.

The rest of the proof is similar to that of Case (I1) and hence omitted. �

In what follows for t ≥ s ≥ T ≥ t0, we let

C[t, s] =
∫ t

s

a1/α(u)du.

Now we shall prove the following comparison results.

Theorem 3.3. Let conditions (i)–(iv), (2.1), (2.10) and (3.4) hold. If all unbounded
solutions of the second order advanced equation

d2y(t)

dt2
− p(t)h

(
C

[
σ(t),

t + σ(t)

2

])
h

(
y1/α

[
t + σ(t)

2

])
= 0 (3.14)

and all bounded solutions of the second order delay equation

d2z(t)

dt2
− q(t)f (C[g(t), t0])f (z1/α[g(t)]) = 0, t0 ≥ 0 (3.15)

are oscillatory, then equation (1.2) is oscillatory.
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Proof. Let x be an eventually positive solution of equation (1.2). As in the proof of
Theorem 3.1, we have the Cases (I1) and (II1) to consider. For Case (I1) we have
Lix(t) > 0, i = 1, 2 for t ≥ t0. Thus, for s ≥ t ≥ t0 it follows that

x(s) = x(t) +
∫ s

t

x′(u)du = x(t) +
∫ s

t

a1/α(u)L
1/α
1 x(u)du

≥
(∫ s

t

a1/α(u)du

)
L

1/α
1 x(t) = C(s, t)L

1/α
1 x(t).

Let y(t) = L1x(t). Substituting σ(t) and (t + σ(t))/2 for s and t respectively in the
above inequality, we obtain

x[σ(t)] ≥ C

[
σ(t),

t + σ(t)

2

]
y1/α

[
t + σ(t)

2

]
for t ≥ T ≥ t0. (3.16)

Using (3.16) in equation (1.2), we have

d2y(t)

dt2 ≥ p(t)h(x[σ(t)]) ≥ p(t)h

(
C

[
σ(t),

t + σ(t)

2

])
h

(
y1/α

[
t + σ(t)

2

])
for t ≥ T .

By a comparison theorem in [2, 3], we see that equation (3.14) has an unbounded even-
tually positive solution, which is a contradiction.

For Case (II1) we have L0x(t) > 0, L1x(t) > 0 and L2x(t) < 0 for t ≥ t0. Thus,
for t ≥ t0 ≥ 0 it follows that

x(t) = x(t0) +
∫ t

t0

x′(u)du = x(t0) +
∫ t

t0

a1/α(u)L
1/α
1 x(u)du

≥
(∫ t

t0

a1/α(u)du

)
L

1/α
1 x(t) = C[t, t0]L1/α

1 x(t).

Let z(t) = L1x(t). Substituting g(t) for t in the above inequality, we get

x[g(t)] ≥ C[g(t), t0]z1/α[g(t)] for t ≥ T1 ≥ t0. (3.17)

Using (2.10) and (3.17) in equation (1.2), we obtain

d2z(t)

dt2
≥ q(t)f (x[g(t)]) ≥ q(t)f (C[g(t), t0])f (z1/α[g(t)]) for t ≥ T1.

Once again, by a comparison result in [2, 3], one can easily see that equation (3.15) has
a bounded eventually positive solution, which is a contradiction. This completes the
proof. �

Theorem 3.4. Let conditions (i)–(iv), (2.1), (2.10) and (3.4) hold. If the first order
advanced equation

dy(t)

dt
− p(t)h

(
A2

[
σ(t),

t + σ(t)

2

])
h

(
y1/α

[
t + σ(t)

2

])
= 0 (3.18)
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and the first order delay equation

dz(t)

dt
+ q(t)f (B2[g(t), t0])f (z1/α[g(t)]) = 0, t0 ≥ 0 (3.19)

are oscillatory, then equation (1.2) is oscillatory.

Proof. Let x be an eventually positive solution of equation (1.2). As in the proof of
Theorem 3.1, we consider the Cases (I1) and (II1). If Case (I1) holds, then from (3.1),
we have

x[σ(t)] ≥ A2

[
σ(t),

t + σ(t)

2

]
L

1/α
2 x

[
t + σ(t)

2

]
for t ≥ T ≥ t0. (3.20)

Using (3.20) and (3.4) in equation (1.2), we get

L3x(t) ≥ p(t)h(x[σ(t)]) ≥ p(t)h

(
A2

[
σ(t),

t + σ(t)

2

])
h

(
L

1/α
2 x

[
t + σ(t)

2

])
.

Setting L2x(t) = y(t) for t ≥ T , we find

dy(t)

dt
≥ p(t)h

(
A2

[
σ(t),

t + σ(t)

2

])
h

(
y1/α

[
t + σ(t)

2

])
for t ≥ T .

As in [2,3], we see that the equation (3.18) has an eventually positive solution, which is
a contradiction.

Next if (II1) holds, then as in the proof of Theorem 3.1, we obtain (3.9) for t ≥ T .
Now using (3.9) and (2.10) in equation (1.2), we find

L3x(t) ≥ q(t)f (x[g(t)]) ≥ q(t)f (B2[g(t), t0])f (−L
1/α
2 x[g(t)]), t ≥ T .

Putting z(t) = −L2x(t), t ≥ T we have

dz(t)

dt
+ q(t)f (B2[g(t), t0])f (z1/α[g(t)]) ≤ 0.

The rest of the proof is similar to that of Theorem 2.5 and hence omitted. �

From Theorem 3.4, one can easily deduce the following corollaries.

Corollary 3.5. Let conditions (i)–(iv), (2.1), (2.10), (2.11), (3.4) and (3.5) hold. If

lim inf
t→∞

∫ (t+σ(t))/2

t

p(s)h

(
A2

[
σ(s),

s + σ(s)

2

])
ds >

1

ek1
(3.21)

and

lim inf
t→∞

∫ t

g(t)

q(s)f (B2[g(s), t0])ds >
1

ek
, (3.22)

then equation (1.2) is oscillatory.
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Corollary 3.6. Let conditions (i)–(iv), (2.1), (2.10), (2.12) and (3.4) hold and∫ ±∞

±ε

du

h(u1/α)
< ∞ for ε > 0. (3.23)

If ∫ ∞
p(s)h

(
A2

[
σ(s),

s + σ(s)

2

])
ds = ∞ (3.24)

and ∫ ∞
q(s)f (B2[g(s), t0])ds = ∞, t0 ≥ 0, (3.25)

then equation (1.2) is oscillatory.

Remark 3.7. We note that identical results as those obtained above for the oscillation of
equation (1.4) can be easily established by replacing A2 and B2 by A4 and B4 respectively
and equations (3.14) and (3.15) in Theorem 3.3 by

d

dt

(
1

a(t)

(
dy(t)

dt

)α)
− p(t)h

(
C

[
σ(t),

t + σ(t)

2

])
h

(
y1/α

[
t + σ(t)

2

])
= 0

(3.26)
and

d

dt

(
1

a(t)

(
dz(t)

dt

)α)
− q(t)f (C[g(t), t0])f (z1/α[g(t)]) = 0, t0 ≥ 0 (3.27)

respectively. The details are left to the reader.

4. Examples and Remarks

Remark 4.1. By applying Theorem 2.1 to the equation

d2

dt2

(
dx(t)

dt

)α

+ qxα[t − τ ] = 0, (4.1)

where α is as in (i), q and τ are positive constants, we find that equation (4.1) is oscillatory
if

q >
α + 2

τ 2

(
α + 1

ατ

)α

. (4.2)

Also, we see that the equation

d2

dt2

(
dx

dt

)α

+ qxβ[t − τ ] = 0 (4.3)

is oscillatory by Theorem 2.3 provided that α, q and τ are as in equation (4.1) and β is
the ratio of two positive odd integers with 0 < β < α.
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Remark 4.2. By applying Theorem 3.1 to the equation

d2

dt2

(
dx(t)

dt

)α

= qxα[t − τ ] + pxα[t + σ ], (4.4)

where α is as in (i), p, q, τ and σ are positive real constants, it follows that equation
(4.4) is oscillatory if

p >
α + 2

σ 2

(
α + 1

ασ

)α

. (4.5)

Remark 4.3. By applying Theorem 3.3 to equation (4.4), one may conclude that
equation (4.4) is oscillatory if all unbounded solutions of the advanced second order
equation

y′′(t) − p
(σ

2

)α

y
[
t + σ

2

]
= 0 (4.6)

and all bounded solutions of the second order delay equation

z′′(t) − q(t − τ − t0)
αz[t − τ ] = 0, t0 ≥ 0 (4.7)

are oscillatory.

We note that if we apply Theorem 3.4 to equation (4.4), then we can easily see that
equation (4.4) is oscillatory if the first order equation with advanced argument

y′(t) − σ

2
p

(
ασ

2(α + 1)

)α

y
[
t + σ

2

]
= 0 (4.8)

and the first order delay equation

z′(t) + q

(
α

α + 1

)α

(t − τ − t0)
α+1z[t − τ ] = 0, t0 ≥ 0 (4.9)

are oscillatory.
Next, by applying Corollary 3.5 to equation (4.4), we see that equation (4.4) is

oscillatory for any q > 0 and

p >
1

e

(
2

σ

)2 (
2(α + 1)

ασ

)α

,

and by Corollary 3.6, we see that the equation

d2

dt2

(
dx(t)

dt

)α

= qxβ[t − τ ] + pxγ [t + σ ] (4.10)

is oscillatory provided that p, q, τ and σ are positive constants, α, β and γ are ratios of
two positive odd integers with 0 < β < α < γ.

Remark 4.4. Similar oscillation results as those presented above can be obtained for
equations (1.3) and (1.4) with constant coefficients and deviations. The details are left
to the reader.

We note that our results in this paper are new even for the special cases of the equations
considered with constant coefficients and deviations.
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