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Abstract

This paper concerns quasilinear elliptic equations of the form

−div(|∇u|p−2∇u) = λa(x)u(x)|u|p−2(1− |u|γ)

in RN with p > 1 and a(x) changes sign. We discuss the question of existence and
multiplicity of solutions when a(x) has some specific properties.
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1. Introduction

In this paper we study the problem of existence of solutions for quasilinear elliptic
equations in RN of the type

−∆pu = λa(x)u|u|p−2(1− |u|γ), (1.1)

where p > 1, λ > 0, γ <
p2

N − p
, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator

and a(x) is a smooth weight function which changes sign inRN . Here we say a function
a(x) changes sign if the measures of the sets {x ∈ RN : a(x) > 0} and {x ∈ RN :
a(x) < 0} are both positive.
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It is known [2] that when a(x) satisfies proper conditions, the eigenvalue problem

−∆pu = λa(x)u|u|p−2

in RN allows positive eigenvalue λ+
1 with positive eigenfunction u+

1 . Thus we can study
the bifurcation problem when λ is near λ+

1 .
The bifurcation problem of this type on bounded domains has received extensive

attention recently, and we refer to [4, 6] and [7, 8] for details. The variational method
was used there to prove the main results. On the other hand, the study of the existence
of global positive solutions of the p-Laplacian also sees great increase in number of
papers published. We mention [9, 12, 13], to name a few. For the case p = 2, [11, 15]
studied the bifurcation from the first eigenvalue in RN and obtained the existence of
bifurcating branches, where a(x) was assumed positive. We note that topological degree
arguments and fixed point theory are employed in [15] and [11] respectively. However,
their principal operator is defined via a Green’s function which is not available to the
p-Laplacian.

Also we can mention the work of Alama and Tarantello [1], Berestycki et al. [3]
and Ouyang [14]. Bifurcation results are also obtained in [1, 14]. For p 6= 2, Le and
Schmitt [17] study this equation on bounded domain as an example in their more general
framework and obtain the existence of nontrivial solutions.

In this work we investigate the situation where a(x) decays as |x| → ∞ and satisfies
∫

RN

a(x)(u+
1 )p+γ < 0.

Using variational arguments we prove that λ+
1 is a bifurcation point of (1.1) and there

exists λ∗ > λ+
1 , such that (1.1) has at least two positive solutions for λ ∈ (λ+

1 , λ∗).
Moreover, under proper conditions, we give information about the bifurcating branches.

This paper is organized as follows: In Section 2 we introduce some assumptions and
notations which we use in this paper. In Section 3 we prove the existence of multiple
solutions in a certain range of λ. We then verify the case λ = λ+

1 in this section.

2. Some Notations and Preliminaries

In this section we introduce some basic assumptions and notations which we will need in

this paper. We assume first that 1 < p < N and γ <
p2

N − p
. Write a(x) = a1(x)−a2(x)

with a1, a2 ≥ 0, a1 ∈ L∞(RN) ∩ LN/p(RN) and a2 ∈ L∞(RN). Let

ω(x) = (1 + |x|)−p, x ∈ RN ,

W (x) = max{a2(x), ω(x)} > 0, x ∈ RN .

The weight function ω(x) satisfies the inequality
∫

(1 + |x|)−p|u|p ≤
(

p

N − p

)p ∫
|∇un|p,
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where here and henceforth the integrals are taken over RN unless otherwise specified.
We define as in [9], the norm

||u|| =
(∫

|∇un|p +

∫
W (x)|u|p

)1/p

and introduce the uniformly convex Banach space V by the completion of C∞
0 (RN)

with respect to the norm || · ||. We assume that a(x) satisfies

(a1) |a(x)| ≤ cW (x) for some c > 0,

(a2) a(x) ∈ Lγ1(RN) where γ1 =
p∗

p∗ − p− γ
.

To introduce the last condition we first give the following result.

Proposition 2.1. Assume that above conditions are satisfied. The eigenvalue problem

−∆pu = λa(x)u|u|p−2 (2.1)

has a pair of principal eigenvalue and eigenfunction (λ+
1 , u+

1 ) with λ+
1 > 0 and 0 < u+

1 ∈
V . Moreover, such λ+

1 is simple, unique. If a2 6≡ 0 and ai ∈ L∞(RN) ∩ LN/p(RN),
i = 1, 2, then by symmetry there is also principal eigenpair (λ−1 , u−1 ) with λ−1 < 0
and 0 < u−1 ∈ V with analogous properties. Moreover the principal eigenvalue λ+

1 is
isolated ([2, 9]).

Also we have (from [9, Lemma 2.3, Theorem 4.1, 4.4 and 4.5]) the following result.

Proposition 2.2. There is a continuum C of positive decaying solutions of (1.1) such
that (λ+

1 , 0) ∈ C, and C is either unbounded in E = R× V , where E is equipped with
the norm

||(λ, u)||E = (|λ|2 + ||u||2)1/2, (λ, u) ∈ E,

or there is another eigenvalue λ̂ 6= λ+
1 such that (λ̂, 0) ∈ C. If for some δ > 0 the

problem (1.1) in λ+
1 has no nonzero solution u ∈ V for 0 < ||u|| < δ, then C is

unbounded in E. Moreover, for any solution u ∈ V , u ∈ LQ(RN), where p∗ ≤ Q ≤ ∞
and u ∈ C1,α

loc (RN).

Finally we assume that

(a3)
∫

a(x)(u+
1 )p+γ < 0.

Now we define the functionals I1, I2, I3 : V → R as follows: for u ∈ V

I1(u) =

∫
|∇u|p,

I2(u) =

∫
a(x)|u|p,

I3(u) =

∫
a(x)|u|p+γ.
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Sometimes we split I2 as I2 = I+
2 − I−2 , where

I+
2 (u) =

∫
a1(x)|u|p,

I−2 (u) =

∫
a2(x)|u|p.

The situation for I3 is similar by symmetry. We use some properties of these operators
in the next section.

By a (weak) solution of problem (1.1), we mean a function u ∈ V such that for
every v ∈ C∞

0 (RN), we have
∫
|∇u|p−2∇u∇v − λ

∫
a(x)|u|p−2uv + λ

∫
a(x)|u|p+γ−2uv = 0. (2.2)

Since the seminal work of Drábek and Huang [9], problems like (1.1) have captured
great interest.

Now let us define the variational functional corresponding to problem (1.1). We set
Jλ : V → R as

Jλ(u) =
1

p
(I1(u)− λI2(u))− λ

p + γ
I3(u). (2.3)

It is easy to see that J ∈ C1(V,R), and for all v ∈ V we have

(J ′λ(u), v) =

∫
|∇u|p−2∇u∇v−λ

∫
a(x)|u|p−2uv+λ

∫
a(x)|u|p+γ−2uv = 0. (2.4)

Since C∞
0 (RN) ⊂ V , we know that critical points of Jλ(u) are weak solutions of (1.1).

When Jλ is bounded below on V , Jλ has a minimizer on V which is a critical point
of Jλ. In many problems such as (1.1), Jλ is not bounded below on V . In order to obtain
an existence result in this case, motivated by Brown and Zhang [5], we introduce the
Nehari manifold

S(λ) = {u ∈ V : (J ′λ(u), u) = 0}.
It is clear that u ∈ S(λ) if and only if

∫
|∇u|p − λ

∫
a(x)|u|p = λ

∫
a(x)|u|p+γ,

and so

Jλ(u) =

(
1

p
− 1

p + γ

)
(I1(u)− λI2(u))

=

(
1

p
− 1

p + γ

)
(λI3(u)).

It is useful to study S(λ) it terms of the stationary points of the functions of the form
ϕu : t → Jλ(tu) (t > 0). Such maps are known as fibrering maps and were introduced
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by Drábek and Pohozaev in [10], and also mentioned in Brown and Zhang [5]. In this
case we have

ϕu(t) = Jλ(tu) =
1

p
(I1(tu)− λI2(tu))− λ

p + γ
I3(tu)

=
tp

p
(I1(u)− λI2(u))− λtp+γ

p + γ
I3(u),

ϕ′u(t) = tp−1(I1(u)− λI2(u))− λtp+γ−1I3(u),

ϕ′′u(t) = (p− 1)tp−2(I1(u)− λI2(u))− λ(p + γ − 1)tp+γ−2I3(u).

Hence if we define

S+(λ) = {u ∈ S : (p− 1)(I1(u)− λI2(u)) > λ(p + γ)I3(u)},
S−(λ) = {u ∈ S : (p− 1)(I1(u)− λI2(u)) < λ(p + γ)I3(u)},

and

S0(λ) = {u ∈ S : (p− 1)(I1(u)− λI2(u)) = λ(p + γ)I3(u)},
then for u ∈ S(λ) we have

(i) ϕ′u(1) = 0.

(ii) u ∈ S+(λ), S−(λ), S0(λ) if ϕ′u(1) > 0, ϕ′u(1) < 0, ϕ′u(1) = 0 respectively.

(iii) S+(λ) (S−(λ), S0(λ), resp.) = {u ∈ S(λ) : I3(u) < (>, =, resp.) 0} so that
S+(λ), S−(λ), S0(λ) correspond to minima, maxima and points of inflection of
fibrering map, respectively.

(iv) The condition (a3) on a(x) implies that u+
1 6∈ S−(λ).

Remark 2.3. If u ∈ S(λ) is a minimizer of Jλ on S(λ), then |u| ∈ S(λ) is also a
minimizer of Jλ on S(λ).

3. Properties of the Bifurcation Diagram

In this section we will consider the problem (1.1) in viewpoint of the bifurcation theory.
By using Proposition 2.2 we consider (un, λn) on the bifurcation diagram with λn →

0 and λn ≤ λ+
1 , λn → λ+

1 . By the means of the structure of the Nehari manifold S(λ),
we have ∫

|∇un|p − λn

∫
a(x)|un|p = λ

∫
a(x)|un|p+γ. (3.1)

Let vn =
un

||un|| . Observe that, by the uniform convexity of V , we may assume that

vn ⇀ v for some v ∈ V . By dividing (2.3) by ||un||p we have
∫
|∇vn|p − λn

∫
a(x)|vn|p = λn||un||γ

∫
a(x)|vn|p+γ.
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Using the compactness argument mentioned in [10], we have I+
2 (vn) → I+

2 (v) and so

0 ≤
∫
|∇v|p − λ+

1

∫
a(x)|v|p ≤ lim inf

n→∞

(∫
|∇vn|p − λn

∫
a(x)|vn|p

)

= lim
n→∞

(∫
|∇vn|p − λn

∫
a(x)|vn|p

)
= 0.

Note that we use the variational characteristic of λ+
1 in the first inequality. It then follows

that v = 0 or v = t(v)u+
1 for some positive constant t(v). We show that the first is

impossible. Suppose otherwise, then I+
2 (vn) → 0 and 0 ≤

∫
|∇v|p−λ+

1

∫
a(x)|v|p →

0. So we conclude λn

∫
a2(x)|vn|p → 0, hence

∫
a2(x)|vn|p → 0. To obtain ||vn|| →

0, that is our contradiction, it suffices to show that
∫

W (x)|vn|p → 0. This follows

from
0 ≤

∫
W (x)|vn|p ≤

∫
(ā2(x) + ω(x))|vn|p,

where ā2(x) = max
x∈RN

a2(x), and Hardy’s inequality. Hence ||vn|| → 0, contradicting the

fact ||vn|| = 1.
We now turn our attention to

0 ≤ 1

||un||γ
∫
|∇vn|p − λn

∫
a(x)|vn|p = λn

∫
a(x)|vn|p+γ,

and conclude that
∫

a(x)(u+
1 )p+γ ≥ 0, contradicting (a3).

Note that as un → 0, vn → t(v)u+
1 and

1

||un||p+γ

∫
a(x)|un|p+γ → t(v)p+γ

∫
a(x)(u+

1 )p+γ ≥ 0.

Thus un ∈ S+(λ). So we have proved the following result.

Theorem 3.1. The solution branch C bends to the right of λ+
1 at (λ+

1 , 0) and for (λ, u)
close enough to (λ+

1 , 0), we have u ∈ S+(λ).

Now we turn our attention to S−(λ) and investigate the behavior of Jλ on S−(λ).
For u ∈ S−(λ) we have

Jλ(u) =

(
1

p
− 1

p + γ

)
(I1(u)− λI2(u))

=

(
1

p
− 1

p + γ

)
(λI3(u)) > 0.
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So Jλ is bounded below by 0 on S−(λ). We now show that there exists a minimizer on
S−(λ) which is a critical point of Jλ and so another nontrivial solution of (1.1).

Theorem 3.2. Suppose (a1)–(a3) hold. There exists δ > 0 such that the problem (1.1)
has two positive solutions whenever λ+

1 < λ < λ+
1 + δ.

Proof. Step 1. First we claim that there exists δ > 0 such that S−(λ) is closed in V and
open in S(λ) whenever λ+

1 < λ < λ+
1 + δ.

Suppose otherwise. Then there exist λn and un ∈ S−(λ) such that λn → λ+
1 and

un → u0 ∈ S−(λ), i.e.,

0 < λ+
1

∫
a(x)|un|p+γ =

∫
(|∇un|p − λna(x)|un|p) → 0.

Let vn =
un

||un|| . Then we can assume vn ⇀ v0 in V for some v0 ∈ V . By dividing the

last relation by ||un||p we get
∫

(|∇vn|p − λna(x)|vn|p) = λn||un||γ
∫

a(x)|vn|p+γ

= λn||un||−p

∫
a(x)|un|p+γ → 0.

From the weak convergence of vn to v0 in V and
∫

a(x)|vn|p+γ →
∫

a(x)|v0|p+γ , we

conclude that

0 ≤
∫

(|∇v0|p − λ+
1 a(x)|v0|p) ≤ lim

n→∞

(∫
(|∇vn|p − λna(x)|vn|p)

)
= 0.

If v0 = 0, we then derive that
∫

a(x)|vn|p → 0 and
∫

(|∇vn|p − λna1(x)|vn|p) → 0,

the latter contradicting the fact that ||vn|| = 1. It then follows from the uniqueness of u+
1

that v0 = t(v0)u
+
1 for some positive constant t(v0). We now have by the compactness

argument

λ+
1

∫
a(x)|t(v0)u

+
1 |p+γ = lim

n→∞
λn

∫
a(x)|vn|p+γ > 0,

which is impossible due to (a2).

Step 2. Now we claim that there exist M > 0 and δ1 > 0 such that for all u ∈ S−(λ)
and λ+

1 < λ < λ+
1 + δ1

∫
(|∇u|p − λa(x)|u|p) ≥ M ||u||p. (3.2)

We prove the claim by contradiction. Assume there exist λn → λ+
1 and un ∈ S−(λn)

such that ∫
(|∇un|p − λna(x)|un|p) <

1

n
||un||p.
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Let vn =
un

||un|| . We may assume vn ⇀ v0 in V for some v0 ∈ V . On the other hand

0 <

∫
(|∇vn|p−λna(x)|vn|p) <

1

n
→ 0. Note that the first inequality follows from the

variational characteristic of λ+
1 . So

∫
(|∇vn|p − λna(x)|vn|p) → 0. (3.3)

Using the compactness argument we have I+
2 (vn) → I+

2 (v0). It then follows from
vn ⇀ v0 that

0 ≤
∫

(|∇v0|p − λ+
1 a(x)|v0|p) ≤ lim inf

n→∞

∫
(|∇vn|p − λna(x)|vn|p)

= lim
n→∞

∫
(|∇vn|p − λna(x)|vn|p) = 0.

So
∫
|∇v0|p = λ+

1

∫
a(x)|v0|p. If v0 = 0, then we arrive at a contradiction like in

Step 1, and so the possibility of v0 = 0 is excluded. Hence there exists a positive
constant t(v0) ∈ (0, 1] such that v0 = t(v0)u

+
1 . Again by the compactness argument, we

obtain I3(vn) → I3(v0) and

0 <

∫
(|∇un|p − λna(x)|un|p) = λn

∫
a(x)|un|p+γ

= λn||un||p+γ

∫
a(x)|vn|p+γ = 0.

From un ∈ S−(λn), we get

0 < λn

∫
a(x)|vn|p+γ → λ+

1

∫
a(x)|v0|p+γ

= λ+
1 t(v0)

p+γ

∫
a(x)(u+

1 )p+γ < 0,

a contradiction.

Step 3. Jλ(u) satisfies the Palais–Smale condition on S−(λ) for λ+
1 < λ < λ+

1 + δ1.
Suppose there is a sequence un ∈ S−(λ) such that Jλ(un) ≤ c and J ′λ(un) → 0. Note

that Step 2 implies that such sequence {un} is bounded by
c

M

(
1

p
− 1

p + γ

)−1

, and so

we may assume un ⇀ u0 in V for some u0 ∈ V . Using the compactness argument
we then derive that I+

2 (un) → I+
2 (u0) and I3(un) → I3(u0). Now we can estimate

(J ′λ(un)− J ′λ(um), un − um) as in the proof of [9, Lemmas 2.3 and 3.3] and derive that
I1(un) → I1(u0) and I−2 (un) → I−2 (u0). We thus obtain by Hardy’s inequality that
||un|| → ||u0|| and hence a subsequence of un converges to u0 strongly in V .
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Step 4. Existence of a positive solution on S−(λ). From the above steps we obtain
that Jλ has a nonnegative minimizer u∗ ∈ S−(λ). Hence by the Lagrange multiplier
theorem there exists µ ∈ R such that

(J ′λ(u
∗), ϕ) = µ(I ′1(u

∗)− λI ′2(u
∗)− λI ′3(u

∗), ϕ)

for all ϕ ∈ V . Taking ϕ = u∗ and using he fact that u∗ ∈ S−(λ), we get

−γµλI3(u
∗) = 0,

which implies µ = 0 and hence u∗ is a solution of (1.1) on S−(λ). [16, Theorem 1.2]
implies that u∗ > 0 in RN . This concludes the proof. ¥

Now we study the existence of positive solutions at the point λ+
1 .

Lemma 3.3. S(λ+
1 ) \ {0} is a closed nonempty set.

Proof. First we show that S(λ+
1 ) \ {0} is nonempty. Note that a1(x) 6≡ 0. So there

exists a set B ⊂ RN with a(x) > 0 in B. Take u(x) 6≡ 0 such that ∅ 6= suppu ⊂ B and
so

λ+
1

∫

RN

a(x)|u|p+γ = λ+
1

∫

B

a(x)|u|p+γ > 0.

Consider the auxiliary function

h(t) = |t|p
∫

(|∇u|p − λ+
1 a(x)|u|p)− |t|p+γλ

∫
a(x)|u|p+γ,

and observe that if t → ±∞, we have h(t) → −∞. Using the facts that h(0) = 0 and
h′(0) = 0 and considering the sign of h′(t) when t → 0+, we obtain that h(t0) = 0 for
some t0 > 0 and hence 0 6= t0u ∈ S(λ+

1 ) and the claim is proved.
Now suppose there exists a sequence {un} in S(λ+

1 ) \ {0} such that un → 0 in V .
Since un ∈ S(λ+

1 ) we have

0 ≤
∫

(|∇un|p − λ+
1 a(x)|un|p) = λ+

1

∫
a(x)|un|p+γ. (3.4)

The first inequality follows from the variational characteristic of λ+
1 . Dividing (3.4) by

||un||p+γ , we arrive at

0 ≤
∫

(|∇vn|p − λ+
1 a(x)|vn|p) = λ+

1 ||un||γ
∫

a(x)|vn|p+γ, (3.5)

where vn =
un

||un|| . Without loss of generality we can assume vn ⇀ v0 in V for some

v0 ∈ V . The compactness argument shows that I3(vn) → I3(v0) and so {I3(vn)} is
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bounded. Hence the right-hand side of (3.5) tends to 0. From the weak convergence of
vn to v0 in V and I+

2 (vn) → I+
2 (v0), we obtain that

0 ≤
∫

(|∇v0|p − λ+
1 a(x)|v0|p) ≤ lim

n→∞

∫
(|∇vn|p − λ+

1 a(x)|vn|p).

The possibility v0 = 0 is excluded, as in Step 2 of Theorem 3.2. So there exists some
positive constant t(v0) such that v0 = t(v0)u

+
1 . On the other hand we have

0 ≤ ||un||γ
∫

(|∇vn|p − λ+
1 a(x)|vn|p) = λ+

1

∫
a(x)|vn|p+γ.

Letting n → ∞ we conclude that
∫

a(x)(u+
1 )p+γ ≥ 0. This contradiction proves the

lemma. ¥

Theorem 3.4. Equation (1.1) has a positive solution at λ+
1 .

Proof. We do steps similar to those in the proof of Theorem 3.2. Indeed Step 2 with
λ = λ+

1 implies either v0 = 0 or v0 = t(v0)u
+
1 for some nonzero t(v0). In either case

we obtain a contradiction. Note that for 0 6= u ∈ S(λ+
1 )

Jλ+
1
(u) =

(
1

p
− 1

p + γ

) ∫
(|∇u|p − λ+

1 a(x)|u|p) ≥ 0,

and so Jλ+
1
(u) is bounded below and we can look for a nontrivial minimizer of this

functional on S(λ+
1 ). Arguments similar to Steps 3 and 4 yield that the functional Jλ+

1

satisfies the Palais–Smale condition on S(λ+
1 ) \ {0} and µ = 0 as in Theorem 3.4. [16,

Theorem 1.2] further implies that the solution is positive in RN . ¥

Theorem 3.5. Let 0 ≤ λ < λ+
1 . Then problem (1.1) has at least one solution.

Proof. To prove that Jλ satisfies the Palais–Smale condition on S(λ) for 0 ≤ λ < λ+
1 ,

we can do it as in Theorem 3.4, step by step. We omit the details. ¥

Remark 3.6. Also in [5] with the condition (a3), similar to these results by using a
different approach in bounded domains are obtained for the case p = 2. In this paper
we generalized the results in [5] for the more general cases p > 1 and whole of RN .
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