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Abstract

In this paper, by using Mawhin coincidence degree, we study the global existence
of positive periodic solutions for a class of mutualism systems with several delays
and obtain a new and interesting criterion, which is much different from those of
Yang etc. [8]. Moreover, our arguments for obtaining bounds of solutions to the
operator equationLx = λNx are much different from those used in [8]. So some
new arguments are employed for the first time.
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1. Introduction

Traditional Lotka–Volterra type predator-prey model or competitive model has received
great attention from both theoretical and mathematical biologists and has been studied
extensively (for example, see [1–5, 9, 11–22]). But there are few papers considering the
mutualism system. Goh [6] discussed the stability in models of mutualism of the form

{
ẋ1(t) = x1(t)

[
r1(t)− a11(t)x1(t) + a12(t)x2(t)

]
,

ẋ2(t) = x2(t)
[
r2(t) + a21(t)x1(t)− a22(t)x2(t)

]
.

(1.1)
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Then Gopalsamy and He [7] studied the following system with discrete delay
{

ẋ1(t) = x1(t)
[
r1(t)− a11(t)x1(t− τ) + a12(t)x2(t− τ)

]
,

ẋ2(t) = x2(t)
[
r2(t) + a21(t)x1(t− τ)− a22(t)x2(t− τ)

]
.

(1.2)

Some sufficient conditions were obtained for the persistence and global attractivity of
system (1.2). Then Yang etc. [8] obtained some sufficient conditions for the existence
of positive periodic solutions of the system

{
ẏ1(t) = y1(t)

[
r1(t)− a11(t)y1(t− τ1(t)) + a12(t)y2(t− τ2(t))

]
,

ẏ2(t) = y2(t)
[
r2(t) + a21(t)y1(t− τ1(t))− a22(t)y2(t− τ2(t))

]
.

(1.3)

Now we generalize the system to
{

ẏ1(t) = y1(t)
[
r1(t)− a11(t)y1(t− τ1(t)) + a12(t)y2(t− τ2(t))

]
,

ẏ2(t) = y2(t)
[
r2(t) + a21(t)y1(t− σ1(t))− a22(t)y2(t− σ2(t))

]
,

(1.4)

whereaij(t), i, j = 1, 2, τi(t), σi(t), i = 1, . . . , n are positive periodic functions with

periodω > 0 and
∫ ω

0

ri(t)dt > 0, i = 1, 2. The assumption of periodicity of the para-

metersaij(t) is a way of incorporating the periodicity of the environment (e.g., seasonal
effects of weather condition, food supplies, temperature, mating habits, harvesting etc.).
The growth functionsri(t) are unnecessary to remain positive, since the environment
fluctuates randomly, in bad condition,ri(t) may be negative.

Obviously, system (1.3) is a special case of system (1.4). Unlike system (1.3),
σi(t) 6= τi(t). Thus the existing argument in Yang etc. [8] for obtaining bounds of
solutions to the operator equationLx = λNx are not applicable to our case and some
new arguments are employed for the first time.

The initial conditions for system (1.4) take the form of




ẏi(s) = ψi(s), τ = max sup
t∈[0,ω]

{τi(t), σi(t), i = 1, 2}

ψ̇i(t) ∈ C([−τ, 0], R+), ψi(0) > 0, i = 1, 2.
(1.5)

Throughout this paper, we will use the following natation:

f =
1

ω

∫ ω

0

f(t)dt, f ι = min
t∈[0,ω]

f(t), fµ = max
t∈[0,ω]

f(t),

wheref(t) is anω-periodic function.

2. Existence of Positive Periodic Solutions

In order to obtain the existence of positive periodic solutions of (1.4), for convenience,
we shall summarize in the following a few concepts and results from [10] that will be
prerequisite for this section.
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Let X,Y be real Banach spaces, letL : DomL ⊂ X → Y be a linear mapping, and
N : X → Y be a continuous mapping. The mappingL is called a Fredholm mapping
of index zero if dimKerL = codim ImL < +∞ and ImL is closed inY . If L is a
Fredholm mapping of index zero and there exist continuous projectionsP : X → X,
andQ : Y → Y such that ImP = KerL, KerQ = ImL = Im(I − Q). It follows that
L|domL ∩ KerP : (I − P )X → ImL is invertible. We denote the inverse of that map
by Kp. If Ω is an open bounded subset ofX, the mappingN will be calledL-compact
on Ω if QN(Ω) is bounded andKp(I − Q)N : Ω → X is compact. SinceImQ is
isomorphic toKerL, there exists an isomorphismJ : ImQ → KerL.

Lemma 2.1. [10] Let Ω ⊂ X be an open bounded set. LetL be a Fredholm mapping
of index zero andN beL-compact onΩ. Assume

(a) for eachλ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx 6= λNx;

(b) for eachx ∈ ∂Ω ∩KerL, QNx 6= 0;

(c) deg{JQN, Ω ∩KerL, 0} 6= 0.

ThenLx = Nx has at least one solution inΩ ∩DomL.

Lemma 2.2. Assume thatf, g are continuous nonnegative functions defined on the in-
terval [a, b]. Then there existsξ ∈ [a, b] such that

∫ b

a

f(t)g(t)dt = f(ξ)

∫ b

a

g(t)dt.

Theorem 2.3. Let

bι
11 = min

t∈[0,ω]

a11(t)

1− τ̇1(t)
, bµ

12 = max
t∈[0,ω]

a12(t)

1− τ̇2(t)
,

bι
22 = min

t∈[0,ω]

a22(t)

1− σ̇2(t)
, bµ

21 = max
t∈[0,ω]

a21(t)

1− σ̇1(t)
.

If bι
11b

ι
22 > bµ

21b
µ
12 and τ̇i(t) < 1, σ̇i(t) < 1, (i = 1, 2) hold, then system (1.4) has at

least one positiveω-periodic solution.

Proof. We make the change of variables

xi(t) = ln yi(t), i = 1, 2. (2.1)

Then (1.4) is rewritten as
{

ẋ1(t) = r1(t)− a11(t) exp{x1(t− τ1(t))}+ a12(t) exp{x2(t− τ2(t))},
ẋ2(t) = r2(t) + a21(t) exp{x1(t− σ1(t))} − a22(t) exp{x2(t− σ2(t))}.

(2.2)
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Take
X = Y = {x = (x1, x2)

T ∈ C(R,R2) : x(t + ω) = x(t)}
and define

‖x‖ = max
t∈[0,ω]

|x1(t)|+ max
t∈[0,ω]

|x2(t)|, x = (x1, x2)
T ∈ X or Y

(here| · | denotes the Euclidean norm). ThenX andY are Banach spaces with the norm
‖ · ‖. For anyx = (x1, x2)

T ∈ X, because of the periodicity, we can easily check that

r1(t)− a11(t) exp{x1(t− τ1(t))}+ a12(t) exp{x2(t− τ2(t))} := ∆1(x, t) ∈ C(R,R),

r2(t) + a21(t) exp{x1(t− σ1(t))} − a22(t) exp{x2(t− σ2(t))} := ∆2(x, t) ∈ C(R,R),

areω-periodic. Set

L : DomL ∩X, L(x1(t), x2(t)) =
(dx1(t)

dt
,
dx2(t)

dt

)
,

whereDomL = {(x1(t), x2(t)) ∈ C1(R, R2)} andN : X → X,

N

(
x1

x2

)
=

(
∆1(x, t)
∆2(x, t)

)
.

Define

P

(
x1

x2

)
= Q

(
x1

x2

)
=




1

ω

∫ ω

0

x1(t)dt

1

ω

∫ ω

0

x2(t)dt


 ,

(
x1

x2

)
∈ X = Y.

It is not difficult to show that

KerL = {x|x ∈ X, x = C0, C0 ∈ R2},
ImL =

{
y|y ∈ Y,

∫ ω

0

y(t)dt = 0
}

is closed in Y,

dim KerL = codim ImL = 2,

andP andQ are continuous projections such that

ImP = KerL, KerQ = ImL = Im(I −Q).

It follows thatL is a Fredholm mapping of index zero. Furthermore, the inverseKp of
Lp exists and has the formKp : ImL → DomL ∩KerP

Kp(y) =

∫ t

0

y(s)ds− 1

ω

∫ ω

0

∫ t

0

y(s)dsdt.
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ThenQN : X → Y andKp(I −Q)N : X → X read

QNx =




1

ω

∫ ω

0

∆1(x, t)dt

1

ω

∫ ω

0

∆2(x, t)dt




Kp(I −Q)Nx =

∫ t

0

Nx(s)ds− 1

ω

∫ ω

0

∫ t

0

Nx(s)dsdt−
( t

ω
− 1

2

) ∫ ω

0

Nx(s)ds.

Clearly,QN andKp(I − Q)N are continuous. By using the Arzelà–Ascoli Theorem,

it is not difficult to prove thatKp(I −Q)N(Ω) is compact for any open bounded set
Ω ⊂ X. Moreover,QN(Ω) is bounded. Therefore,N is L-compact onΩ for any open
bounded setΩ ⊂ X.

Now we reach the position to search for an appropriate open bounded subsetΩ for
the application of Lemma 2.1.

Corresponding to the operator equationLx = λNx, λ ∈ (0, 1), we have

{
ẋ1(t) = λ

[
r1(t)− a11(t) exp{x1(t− τ1(t))}+ a12(t) exp{x2(t− τ2(t))}

]
,

ẋ2(t) = λ
[
r2(t) + a21(t) exp{x1(t− σ1(t))} − a22(t) exp{x2(t− σ2(t))}

]
.
(2.3)

Supposex = (x1, x2)
T ∈ X is a solution of (2.3) for a certainλ ∈ (0, 1). Integrating

(2.3) over the interval[0, ω], we obtain





∫ ω

0

[
r1(t)− a11(t) exp{x1(t− τ1(t))}+ a12(t) exp{x2(t− τ2(t))}

]
dt = 0,

∫ ω

0

[
r2(t) + a21(t) exp{x1(t− σ1(t))} − a22(t) exp{x2(t− σ2(t))}

]
dt = 0.

Hence,

r̄1ω +

∫ ω

0

a12(t) exp{x2(t− τ2(t))}dt =

∫ ω

0

a11(t) exp{x1(t− τ1(t))}dt, (2.4)

r̄2ω +

∫ ω

0

a21(t) exp{x1(t− σ1(t))}dt =

∫ ω

0

a22(t) exp{x2(t− σ2(t))}dt. (2.5)

Let s = t − τ1(t). We note thaṫτ1(t) < 1, which implies
ds

dt
= 1 − τ̇1(t) > 0, ds =

(1− τ̇1(t))dt. Therefore, the functions = t− τ1(t) has the continuous inverse function
t = τ ∗1 (s), s ∈ [−τ1(0), ω − τ1(ω)]. So we have

∫ ω

0

a11(t) exp{x1(t− τ1(t))}dt =

∫ ω−τ1(ω)

−τ1(0)

a11(τ
∗
1 (s))

1− τ̇1(τ ∗1 (s))
exp{x1(s)}ds.



214 Yonghui Xia

By Lemma 2.2, there existsξ ∈ [−τ1(0), ω − τ1(ω)] = [−τ1(0), ω − τ1(0)] such that

∫ ω

0

a11(t) exp{x1(t− τ1(t))}dt =
a11(τ

∗
1 (ξ))

1− τ̇1(τ ∗1 (ξ))

∫ ω−τ1(ω)

−τ1(0)

exp{x1(s)}ds

=
a11(η1)

1− τ̇1(η1)

∫ ω

0

exp{x1(t)}dt, (η1 = τ ∗1 (ξ)).

For the equations (2.3) and (2.4), similar to the above discussion, there existηi ∈
[0, ω], (i = 1, 2, 3, 4) such that

r̄1ω +
a12(η2)

1− τ̇2(η2)

∫ ω

0

exp{x2(t)}dt =
a11(η1)

1− τ̇1(η1)

∫ ω

0

exp{x1(t)}dt, (2.6)

r̄2ω +
a21(η3)

1− σ̇1(η3)

∫ ω

0

exp{x1(t)}dt =
a22(η4)

1− σ̇2(η4)

∫ ω

0

exp{x2(t)}dt. (2.7)

We denote

b11 =
a11(η1)

1− τ̇1(η1)
, b12 =

a12(η2)

1− τ̇2(η2)
, b21 =

a21(η2)

1− σ̇1(η2)
, b22 =

a22(η4)

1− σ̇2(η4)
.

It follows from (2.6)–(2.7) that

r̄1ω + b12

∫ ω

0

exp{x2(t)}dt = b11

∫ ω

0

exp{x1(t)}dt, (2.8)

r̄2ω + b21

∫ ω

0

exp{x1(t)}dt = b22

∫ ω

0

exp{x2(t)}dt. (2.9)

Under the assumption of Theorem 2.3, it is not difficult to derive that

∫ ω

0

exp{x1(t)}dt =
b12r̄2 + b22r̄1

b11b22 − b21b12

ω ≤ bµ
12r̄2 + bµ

22r̄1

bι
11b

ι
22 − bµ

21b
µ
12

ω (2.10)

and ∫ ω

0

exp{x2(t)}dt =
b21r̄1 + b11r̄2

b11b22 − b21b12

ω ≤ bµ
21r̄1 + bµ

11r̄2

bι
11b

ι
22 − bµ

21b
µ
12

ω. (2.11)

Therefore, there existsti ∈ [0, ω], i = 1, 2 such that

x1(t1) ≤ ln
bµ
12r̄2 + bµ

22r̄1

bι
11b

ι
22 − bµ

21b
µ
12

, x2(t2) ≤ ln
bµ
21r̄1 + bµ

11r̄2

bι
11b

ι
22 − bµ

21b
µ
12

.

Obviously, there exists positive constantsMi > 0, i = 1, 2 such that

|xi(ti)| ≤ Mi, i = 1, 2. (2.12)



Positive Periodic Solutions of Mutualism Systems with Several Delays 215

On the other hand, it follows from (2.3), (2.4) and (2.10) that
∫ ω

0

|ẋ1(t)|dt = λ

∫ ω

0

∣∣r1(t)− a11(t) exp{x1(t− τ1(t))}

+a12(t) exp{x2(t− τ2(t))}
∣∣dt,

< r̄1ω +

∫ ω

0

a12(t) exp{x2(t− τ2(t))}dt

+

∫ ω

0

a11(t) exp{x1(t− τ1(t))}dt

= 2

∫ ω

0

a11(t) exp{x1(t− τ1(t))}dt

≤ 2bµ
11

∫ ω

0

exp{x1(t)}dt ≤ 2bµ
11

bµ
12r̄2 + bµ

22r̄1

bι
11b

ι
22 − bµ

21b
µ
12

ω := H1.

(2.13)

Similarly, it follows from (2.3), (2.5) and (2.11) that
∫ ω

0

|ẋ2(t)|dt < 2bµ
11

bµ
21r̄1 + bµ

11r̄2

bι
11b

ι
22 − bµ

21b
µ
12

ω := H2. (2.14)

It follows from (2.12)–(2.14) that

|xi(t)| ≤ |xi(ti)|+
∫ ω

0

|ẋi(t)|dt < Mi + Hi.

Clearly,Mi, Hi, i = 1, 2 are independent of the choice ofλ. We note that

ā11 =
1

ω

∫ ω

0

a11(t)dt =
1

ω

∫ ω−τ1(0)

−τ1(0)

a11(τ
∗
1 (s))

1− τ̇1(τ ∗1 (s))
ds

=
a11(τ

∗
1 (s1))

1− τ̇1(τ ∗1 (s1))
, s1 ∈ [−τ1(0), ω − τ1(0)], (2.15)

wheret = τ ∗1 (s) is the inverse function ofs = t − τ1(t). Similar to the discussion of
(2.15),

ā12 =
a12(τ

∗
2 (s2))

1− τ̇2(τ ∗2 (s2))
, ā21 =

a21(σ
∗
1(s3))

1− σ̇1(σ∗1(s3))
, ā22 =

a22(σ
∗
2(s4))

1− σ̇2(σ∗2(s4))
. (2.16)

Thus, under the assumptions in Theorem 2.3, it follows from (2.15)–(2.16) that

ā11ā22 − ā12ā21 > bι
11b

ι
22 − bµ

12b
µ
21 > 0. (2.17)

Now it is easy to show that the system of algebraic equations

r̄i − āiivi + āijvj = 0, i, j = 1, 2.
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has a unique solution(v∗1, v
∗
2)

T ∈ R2
+ with x∗i > 0. TakeH = max{Mi +Hi +C, Mi +

Hi+C}, whereC > 0 is taken sufficiently large such that‖(ln v∗1, ln v∗2)
T‖ < C. Define

Ω = {x(t) ∈ X : ‖x‖ < H}. It is clear thatΩ satisfies condition (a) of Lemma 2.1. Let
x ∈ ∂Ω ∩KerL = ∂Ω ∩ IR2, x be a constant vector inIR2 with ‖x‖ = H. Then

QNx =
[

r̄i − āii exp{xi}+ āij exp{xj} = 0
]
2×1

6= 0.

Furthermore, letJ : ImQ → KerL. In view of assumptions in Theorem 2.3 and (2.15)–
(2.17), it is easy to see that

deg{JQN, Ω ∩KerL, 0} = sgn det

[ −ā11 ā12

ā21 −ā22

]
≥ sgn(bι

11b
ι
22 − bµ

12b
µ
21) 6= 0,

wheredeg(·) is the Brouwer degree and theJ is the identity mapping sinceImQ =
KerL.

By now, we have shown thatΩ verifies all requirements of Lemma 2.1. Then it
follows thatLx = Nx has at least one solution inDomL ∩ Ω. By (2.1), we derive that
(1.4) has at least one positiveω-periodic solution. The proof is completed. ¥

Remark 2.4. Our results and the method used in the proof are much different from
those in the known literature. We remark that we generalize system (1.3) in [8] to
system (1.4), whereτi(t) 6= σi(t), i.e., all the delays are different. It is in this aspect that
we generalize the results in [8].
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