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Abstract

In this paper, by using Mawhin coincidence degree, we study the global existence
of positive periodic solutions for a class of mutualism systems with several delays
and obtain a new and interesting criterion, which is much different from those of
Yang etc. [8]. Moreover, our arguments for obtaining bounds of solutions to the
operator equatiohz = ANz are much different from those used in [8]. So some
new arguments are employed for the first time.
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1. Introduction

Traditional Lotka—\olterra type predator-prey model or competitive model has received
great attention from both theoretical and mathematical biologists and has been studied
extensively (for example, see [1-5, 9, 11-22]). But there are few papers considering the
mutualism system. Goh [6] discussed the stability in models of mutualism of the form

{ ZIJ1(t> = I1<t) [T1<t) — CLH(t)Il(t) + a12<t).752<t)],
Bo(t) = @a(t)[r2(t) + an (t)z1(t) — axn(t)za(t)].
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Then Gopalsamy and He [7] studied the following system with discrete delay
{ ZCl(t) = l’l(t) [T1<t) — an(t):cl(t - 7') + a12<t)$2<t — T)},

ia(t) = @o(t)[ra(t) + az (t)z1(t — 7) — an(t)z(t — 7).

Some sufficient conditions were obtained for the persistence and global attractivity of
system (1.2). Then Yang etc. [8] obtained some sufficient conditions for the existence
of positive periodic solutions of the system

(1.2)

{ n(t) = n)[r@) —an®)y(t —n(t) + an(t)y(t — n(t))], .3)
ga(t) = ya(t) [ra(t) + az (O)ya(t = 71()) — asa(t)ya(t — 7o(1))]
Now we generalize the system to
{ n(t) = n)[rt) —an®)y(t — (1) + ann(t)ya(t — (1)), 1.4)
B(t) = ya(t)[r2(t) + an )y (t — 01(t)) — asa(t)ya(t — 0a(t))],
wherea;;(t),i,j = }},Q,Ti(t),gi(t),i = 1,...,n are positive periodic functions with

periodw > 0 and/ r;(t)dt > 0,7 = 1,2. The assumption of periodicity of the para-

metersa;;(t) is a wgly of incorporating the periodicity of the environment (e.g., seasonal
effects of weather condition, food supplies, temperature, mating habits, harvesting etc.).
The growth functions:;(¢) are unnecessary to remain positive, since the environment
fluctuates randomly, in bad condition(t) may be negative.

Obviously, system (1.3) is a special case of system (1.4). Unlike system (1.3),
o:(t) # m:i(t). Thus the existing argument in Yang etc. [8] for obtaining bounds of
solutions to the operator equatidi: = ANz are not applicable to our case and some
new arguments are employed for the first time.

The initial conditions for system (1.4) take the form of

Ui(s) = i(s), 7=max sup {7;(t),0;(t),1 = 1,2}
' te[0,w] (15)
wl(t) € O([_T7 0]7R+)777bl<0) > 07 1= 17 2.

Throughout this paper, we will use the following natation:

7= [ s0an = min 10, 5% = max 1)
0

te0,w] te|0,w]

wheref(t) is anw-periodic function.

2. Existence of Positive Periodic Solutions

In order to obtain the existence of positive periodic solutions of (1.4), for convenience,
we shall summarize in the following a few concepts and results from [10] that will be
prerequisite for this section.
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Let X, Y be real Banach spaces, let DomL C X — Y be a linear mapping, and
N : X — Y be a continuous mapping. The mappihgs called a Fredholm mapping
of index zero if dimKel, = codim ImL < +oo and ImL is closed inY. If Lis a
Fredholm mapping of index zero and there exist continuous projecifonX — X,
and@ : Y — Y such that InP = KerL, Ker@ = ImL = Im(/ — Q). It follows that
Ll|domL NKerP : (I — P)X — ImL is invertible. We denote the inverse of that map
by K,. If Q is an open bounded subset®f the mappingV will be called L-compact
on Q if QN(Q) is bounded and<,(I — Q)N : Q — X is compact. Sincémq@ is
isomorphic toKer L, there exists an isomorphisi: Im@) — KerL.

Lemma 2.1. [10] Let 2 C X be an open bounded set. Libe a Fredholm mapping
of index zero andV be L-compact orf). Assume

(a) foreach\ € (0,1), z € 9Q N DomL, Lx # ANx;
(b) for eachr € 0QY N KerL, QNx # 0;
(c) deg{JQN, QN KerL,0} # 0.

ThenLxz = Nz has at least one solution 2N DomL.

Lemma 2.2. Assume thatf, g are continuous nonnegative functions defined on the in-
terval[a, b]. Then there exist$ € [a, b] such that

[ rgtar=s(e) [ oo

Theorem 2.3. Let

t t
bj, = min _aull) b, = max L(),
teow] 1 — Tl(t> telow] 1 — 7o(t)
t t
by, = min ( by, = max az(t)

tefow] 1 — oy (t) '

)
te[0w] 1 09 (t)
)

If bY b4, > bh VY and7i(t) < 1, oy(t
least one positive-periodic solutlon

< 1, (¢ = 1,2) hold, then system (1.4) has at

Proof. We make the change of variables

Then (1.4) is rewritten as

{ a1(t) = m(t) —an(t) exp{zi(t — 71(2))} + ar2(t) exp{z2(t — m2(t))},
To(t) = ro(t) + ani(t) exp{z1(t — o1(t))} — agn(t) exp{xa(t — o2(t))}. 22
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Take
X =Y ={z=(21,22)" € CR,R?) : 2t +w) =x(t)}
and define
|lz]| = max |z1(t)| + max |25(t)], z = (z1,22)" € XorY
te[0,w] te[0,w]

(here| - | denotes the Euclidean norm). Th&nandY” are Banach spaces with the norm
| - ||. Foranyx = (x1,2,)" € X, because of the periodicity, we can easily check that

r1(t) — a1 (t) exp{az1(t — 71(t))} + ar2(t) exp{za(t — 2(1))} := Ay (2, t) € C(R,R),

ro(t) 4 ag1(t) exp{x1(t — o1(t))} — ax(t) exp{xa(t — 02(t))} := Ag(z,t) € C(R,R),
arew-periodic. Set

dt 7 dt /7

whereDom L = {(x(t), z2(t)) € C*(R, R*)} andN : X — X,

L:DomLNX, L(x(t),z(t)) = (

Define

It is not difficult to show that
KerL = {z|x € X, 2 = C,, Cy € R?},
ImL = {y|y €y, /w y(t)dt = O} is closed in Y,
dim KerLO: codim ImL = 2,
and P and( are continuous projections such that
ImP = KerL, KerQ =ImL =Im(I — Q).

It follows that L is a Fredholm mapping of index zero. Furthermore, the invaisef
L, exists and has the forf¥,, : Im.Z — DomZL N KerP

Kp(y) = /Oty(s)ds — i/ow /Oty(s)dsdt.
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Then@N : X — Y andK,(/ — Q)N : X — X read

1 w
1 / Ay(x, t)dt

w
1
w

QNzx = Ow
/ AQ(SL’,t)dt
0

K,(I — Q)Nz = /Ot Nx(s)ds — i/ow /Ot Na(s)dsdt — (5 - %) /Ow Nz(s)ds.

Clearly, QN and K,,(I — Q)N are continuous. By using the ArzelAscoli Theorem,

it is not difficult to prove that/<,,(I — Q)N (f2) is compact for any open bounded set
Q0 C X. Moreover,QN(Q) is bounded. Thereforey is L-compact orf) for any open
bounded sef C X.

Now we reach the position to search for an appropriate open bounded Sutoset
the application of Lemma 2.1.

Corresponding to the operator equation = ANz, A € (0, 1), we have
{ #1(t) = A[ri(t) — an(t) exp{zi(t — 71(t)} + ara(t) exp{za(t — (1)) }],
l'g(t) A [TQ(f) + Q91 (t) exp{xl(t — 01 (t))} — agz(t) eXp{xQ(t — UQ(t))}] .
(2.3)
Supposer = (z,2,)" € X is a solution of (2.3) for a certaih € (0,1). Integrating
(2.3) over the intervald, w], we obtain

/Ow [7“1(75) —aq(t) exp{z1(t — 71(t))} + ar2(t) exp{xa(t — Tg(t))}}dt =0,
/0‘“ [72(t) + a2 (t) exp{a1 (t — 01(t))} — ana(t) exp{za(t — 0a(t))}]dt = 0.
Hence,

Fiw + / " aralt) explaa(t — () hdt = / Can(tyexpla (- n(n)}d,  (2.4)

Tow + /Ow ag (t) exp{z1(t — oy1(t))}dt = /Ow ags(t) exp{zy(t — oo(t))}dt.  (2.5)

oo d
Lets =t — 71 (t). We note that(t) < 1, which |mpI|esd—j =1—-7(t) >0,ds =

(1 —71(¢))dt. Therefore, the functios = ¢ — 7, (¢) has the continuous inverse function
t=17(s), s € [-71(0),w — 71 (w)]. SO we have

« wmnl@) g T (s
/0 a1 (£) explan (t — 7 (1))}t — / _anlTi(s) v ()},

) L=71((s))
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By Lemma 2.2, there existse [—71(0),w — 7 (w)] = [-71(0),w — 71 (0)] such that

: - _ e @) Y s
[ et -nma = 2B [ ()

an () wex " o
I [ expdan ()3ar. (n = 7))

For the equations (2.3) and (2.4), similar to the above discussion, therenexist
[0,w], (i = 1,2, 3,4) such that

_ ai2(n2) “ o a1 (m) wex T
rio+ 22 / e | evtnia @o)

_ Cl21(773) “ - a22(774) wex "
o T /0 exp{n (1)}t = 7220 /0 plma(B}dt. (27)

1—o1(ns 1 — Ga(ny
We denote
. ayi(m) _ ai2(n2) _ az1(n2) o a22(N4)
bll—.—7 12 — 7 . /7 21 — 7 </ b22—.—-
1 —71(m) 1 —75(n2) 1—61(n2) 1 — &2(n4)
It follows from (2.6)—(2.7) that
P16 + brs / exp{a(t) 1t = biy / expan (1) dt, (2.8)
0 0
Tow + bgl/ exp{z(t)}dt = bgg/ exp{z(t) }dt. (2.9)
0 0
Under the assumption of Theorem 2.3, it is not difficult to derive that
« biaTo + booTy biyTa + bhyTy
exp{x(t)}dt = w < w 2.10
/0 pin(t)} bi1bas — barbia T by by — by, (2.10)

and

bo171 + b117o - bh 71 + biyTo

expl{xzo(t)}dt = w w. 2.11
/0 piza(t)} biibas — barbia T biybhy — bbby (11)
Therefore, there exists € [0,w],7 = 1,2 such that

IS B
b127/.2 + b227/'1

VRV EE Qfg(tg) < ln
b11b22 - bglb/fQ

z1(t) < In <In 21T 2
i b by — Dby by

Obviously, there exists positive constants > 0,7 = 1, 2 such that

|2i(t:)] < M;, i=1,2. (2.12)
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On the other hand, it follows from (2.3), (2.4) and (2.10) that
/0 |[L’1(t>|dt = )\/0 ’Tl(t) — au(t) exp{xl(t — 7'1<t)>}
+ara(t) exp{aa(t — 2(t))}]dt,

< Tw+ /Ow a1a(t) exp{za(t — o(t)) }dt

) (2.13)
+/0 a1 (t) exp{zi(t — 71(t))}dt

= 2 /Ow ay(t) exp{z1(t — 7 (t)) }dt

s [
1170 1 N
b11b22 - b21b12

Similarly, it follows from (2.3), (2.5) and (2.11) that

< 2b‘1‘1/ exp{x1(t)}dt < 2b = H,.
0

L= b=

io(t)|dt < 208 22— 2 .= H,. (2.14)
A’“” POt — Wb,
It follows from (2.12)—(2.14) that
(0] < laslt)] + [ |a(®lde < M+
0

Clearly, M;, H;,i = 1,2 are independent of the choice xf We note that
1 w 1 w—71(0) *
aj; = —/ Clll(t)dt = —/ Ll(f))ds
w Jo W J_7m(0) 1 — 71 (7 (s))

__an(m(s1))
1— (7 (s1))’

wheret = 7/(s) is the inverse function of = ¢ — 71(¢). Similar to the discussion of
(2.15),

s1 € [—11(0),w — 11(0)], (2.15)

a,— ) o an(oi(s) o an(oi(se)
1= 7a(75(s2))’ 1—61(07(s3))’ 1= 6(05(s4))

Thus, under the assumptions in Theorem 2.3, it follows from (2.15)—(2.16) that

(2.16)

a11Q99 — Q19091 > bL11b§2 — b/fzbgl > 0. (217)
Now it is easy to show that the system of algebraic equations

T, — QiU + &ijvj = O, 1,] = 172
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has a unique solutiofv;, v;)" € R% with z} > 0. TakeH = max{M; + H; +C, M;+
H;+C%}, whereC > 0 is taken sufficiently large such thigin v}, In v3)”|| < C. Define
Q={z(t) € X : ||z|| < H}. Itis clear that? satisfies condition (a) of Lemma 2.1. Let
x € 00 NKerL = 00 NIR?, x be a constant vector iiR* with ||z|| = H. Then

Furthermore, let/ : Im@) — KerL. In view of assumptions in Theorem 2.3 and (2.15)—
(2.17), it is easy to see that

deg{JQN,QNKerL,0} = sgndet [ _(_Ldll aéz } > sgn (b, bhy — Disbh) # 0,
21 — 22
wheredeg(+) is the Brouwer degree and theis the identity mapping sincen@ =
KerlL.
By now, we have shown that verifies all requirements of Lemma 2.1. Then it
follows thatLxz = Nz has at least one solution IbomZ N 2. By (2.1), we derive that
(1.4) has at least one positiveperiodic solution. The proof is completed. [ |

Remark 2.4. Our results and the method used in the proof are much different from
those in the known literature. We remark that we generalize system (1.3) in [8] to
system (1.4), where(t) # o,(), i.e., all the delays are different. Itis in this aspect that
we generalize the results in [8].
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