Existence of Positive Periodic Solutions of Mutualism Systems with Several Delays¹

Yonghui Xia

College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350002, P.R.China E-mail: yhxia@fzu.edu.cn; xiayonhui@163.com

Abstract

In this paper, by using Mawhin coincidence degree, we study the global existence of positive periodic solutions for a class of mutualism systems with several delays and obtain a new and interesting criterion, which is much different from those of Yang etc. [8]. Moreover, our arguments for obtaining bounds of solutions to the operator equation $Lx = \lambda Nx$ are much different from those used in [8]. So some new arguments are employed for the first time.

AMS subject classification: 34C25, 92D25, 92B05. **Keywords:** Periodic solutions, coincidence degree, mutualism model.

1. Introduction

Traditional Lotka–Volterra type predator-prey model or competitive model has received great attention from both theoretical and mathematical biologists and has been studied extensively (for example, see [1–5, 9, 11–22]). But there are few papers considering the mutualism system. Goh [6] discussed the stability in models of mutualism of the form

$$\begin{cases} \dot{x}_1(t) = x_1(t) [r_1(t) - a_{11}(t)x_1(t) + a_{12}(t)x_2(t)], \\ \dot{x}_2(t) = x_2(t) [r_2(t) + a_{21}(t)x_1(t) - a_{22}(t)x_2(t)]. \end{cases}$$
(1.1)

¹This work was supported by the Foundation of Developing Science and Technology of Fuzhou University under the grant 2004-XY-12 and the National Natural Science Foundation of China under Grant (No.10671127) and Shanghai Shuguang Genzong Project (06SGG07).

Received March 11, 2006; Accepted June 9, 2006

Then Gopalsamy and He [7] studied the following system with discrete delay

$$\begin{cases} \dot{x}_1(t) = x_1(t) [r_1(t) - a_{11}(t)x_1(t-\tau) + a_{12}(t)x_2(t-\tau)], \\ \dot{x}_2(t) = x_2(t) [r_2(t) + a_{21}(t)x_1(t-\tau) - a_{22}(t)x_2(t-\tau)]. \end{cases}$$
(1.2)

Some sufficient conditions were obtained for the persistence and global attractivity of system (1.2). Then Yang etc. [8] obtained some sufficient conditions for the existence of positive periodic solutions of the system

$$\begin{cases} \dot{y}_1(t) = y_1(t) [r_1(t) - a_{11}(t)y_1(t - \tau_1(t)) + a_{12}(t)y_2(t - \tau_2(t))], \\ \dot{y}_2(t) = y_2(t) [r_2(t) + a_{21}(t)y_1(t - \tau_1(t)) - a_{22}(t)y_2(t - \tau_2(t))]. \end{cases}$$
(1.3)

Now we generalize the system to

$$\begin{cases} \dot{y}_1(t) = y_1(t) \big[r_1(t) - a_{11}(t) y_1(t - \tau_1(t)) + a_{12}(t) y_2(t - \tau_2(t)) \big], \\ \dot{y}_2(t) = y_2(t) \big[r_2(t) + a_{21}(t) y_1(t - \sigma_1(t)) - a_{22}(t) y_2(t - \sigma_2(t)) \big], \end{cases}$$
(1.4)

where $a_{ij}(t), i, j = 1, 2, \tau_i(t), \sigma_i(t), i = 1, \ldots, n$ are positive periodic functions with period $\omega > 0$ and $\int_0^{\omega} r_i(t) dt > 0, i = 1, 2$. The assumption of periodicity of the parameters $a_{ij}(t)$ is a way of incorporating the periodicity of the environment (e.g., seasonal effects of weather condition, food supplies, temperature, mating habits, harvesting etc.). The growth functions $r_i(t)$ are unnecessary to remain positive, since the environment fluctuates randomly, in bad condition, $r_i(t)$ may be negative.

Obviously, system (1.3) is a special case of system (1.4). Unlike system (1.3), $\sigma_i(t) \neq \tau_i(t)$. Thus the existing argument in Yang etc. [8] for obtaining bounds of solutions to the operator equation $Lx = \lambda Nx$ are not applicable to our case and some new arguments are employed for the first time.

The initial conditions for system (1.4) take the form of

$$\begin{cases} \dot{y}_i(s) = \psi_i(s), \quad \tau = \max \sup_{t \in [0,\omega]} \{\tau_i(t), \sigma_i(t), i = 1, 2\} \\ \dot{\psi}_i(t) \in C([-\tau, 0], R_+), \psi_i(0) > 0, \quad i = 1, 2. \end{cases}$$
(1.5)

Throughout this paper, we will use the following natation:

$$\overline{f} = \frac{1}{\omega} \int_0^\omega f(t) \mathrm{d}t, \ f^\iota = \min_{t \in [0,\omega]} f(t), \ f^\mu = \max_{t \in [0,\omega]} f(t),$$

where f(t) is an ω -periodic function.

2. Existence of Positive Periodic Solutions

In order to obtain the existence of positive periodic solutions of (1.4), for convenience, we shall summarize in the following a few concepts and results from [10] that will be prerequisite for this section.

Let X, Y be real Banach spaces, let $L : \text{Dom}L \subset X \to Y$ be a linear mapping, and $N : X \to Y$ be a continuous mapping. The mapping L is called a Fredholm mapping of index zero if dimKer $L = \text{codim Im}L < +\infty$ and ImL is closed in Y. If L is a Fredholm mapping of index zero and there exist continuous projections $P : X \to X$, and $Q : Y \to Y$ such that ImP = KerL, KerQ = ImL = Im(I - Q). It follows that $L|\text{dom}L \cap \text{Ker}P : (I - P)X \to \text{Im}L$ is invertible. We denote the inverse of that map by K_p . If Ω is an open bounded subset of X, the mapping N will be called L-compact on $\overline{\Omega}$ if $QN(\overline{\Omega})$ is bounded and $K_p(I - Q)N : \overline{\Omega} \to X$ is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism $J : \text{Im}Q \to \text{Ker}L$.

Lemma 2.1. [10] Let $\Omega \subset X$ be an open bounded set. Let L be a Fredholm mapping of index zero and N be L-compact on $\overline{\Omega}$. Assume

- (a) for each $\lambda \in (0, 1), x \in \partial \Omega \cap \text{Dom}L, Lx \neq \lambda Nx$;
- (b) for each $x \in \partial \Omega \cap \text{Ker}L$, $QNx \neq 0$;
- (c) deg{JQN, $\Omega \cap \text{Ker}L$, 0} $\neq 0$.

Then Lx = Nx has at least one solution in $\overline{\Omega} \cap \text{Dom}L$.

Lemma 2.2. Assume that f, g are continuous nonnegative functions defined on the interval [a, b]. Then there exists $\xi \in [a, b]$ such that

$$\int_{a}^{b} f(t)g(t)dt = f(\xi) \int_{a}^{b} g(t)dt$$

Theorem 2.3. Let

$$b_{11}^{\iota} = \min_{t \in [0,\omega]} \frac{a_{11}(t)}{1 - \dot{\tau}_1(t)}, \quad b_{12}^{\mu} = \max_{t \in [0,\omega]} \frac{a_{12}(t)}{1 - \dot{\tau}_2(t)},$$
$$b_{22}^{\iota} = \min_{t \in [0,\omega]} \frac{a_{22}(t)}{1 - \dot{\sigma}_2(t)}, \quad b_{21}^{\mu} = \max_{t \in [0,\omega]} \frac{a_{21}(t)}{1 - \dot{\sigma}_1(t)}.$$

If $b_{11}^{\iota}b_{22}^{\iota} > b_{21}^{\mu}b_{12}^{\mu}$ and $\dot{\tau}_i(t) < 1$, $\dot{\sigma}_i(t) < 1$, (i = 1, 2) hold, then system (1.4) has at least one positive ω -periodic solution.

Proof. We make the change of variables

$$x_i(t) = \ln y_i(t), \quad i = 1, 2.$$
 (2.1)

Then (1.4) is rewritten as

$$\begin{cases} \dot{x}_1(t) = r_1(t) - a_{11}(t) \exp\{x_1(t - \tau_1(t))\} + a_{12}(t) \exp\{x_2(t - \tau_2(t))\}, \\ \dot{x}_2(t) = r_2(t) + a_{21}(t) \exp\{x_1(t - \sigma_1(t))\} - a_{22}(t) \exp\{x_2(t - \sigma_2(t))\}. \end{cases}$$
(2.2)

Take

$$X = Y = \{ x = (x_1, x_2)^T \in C(\mathbb{R}, \mathbb{R}^2) : x(t + \omega) = x(t) \}$$

and define

$$||x|| = \max_{t \in [0,\omega]} |x_1(t)| + \max_{t \in [0,\omega]} |x_2(t)|, \quad x = (x_1, x_2)^T \in X \text{ or } Y$$

(here $|\cdot|$ denotes the Euclidean norm). Then X and Y are Banach spaces with the norm $\|\cdot\|$. For any $x = (x_1, x_2)^T \in X$, because of the periodicity, we can easily check that

$$r_1(t) - a_{11}(t) \exp\{x_1(t - \tau_1(t))\} + a_{12}(t) \exp\{x_2(t - \tau_2(t))\} := \Delta_1(x, t) \in C(\mathbb{R}, \mathbb{R}),$$

 $r_2(t) + a_{21}(t) \exp\{x_1(t - \sigma_1(t))\} - a_{22}(t) \exp\{x_2(t - \sigma_2(t))\} := \Delta_2(x, t) \in C(\mathbb{R}, \mathbb{R}),$ are ω -periodic. Set

$$L: \operatorname{Dom} L \cap X, \ L(x_1(t), x_2(t)) = \left(\frac{\mathrm{d}x_1(t)}{\mathrm{d}t}, \frac{\mathrm{d}x_2(t)}{\mathrm{d}t}\right),$$

where $\operatorname{Dom} L = \{(x_1(t), x_2(t)) \in C^1(R, R^2)\}$ and $N: X \to X$,

$$N\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} \Delta_1(x,t)\\ \Delta_2(x,t) \end{array}\right).$$

Define

$$P\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = Q\left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} \frac{1}{\omega} \int_0^\omega x_1(t) dt\\ \frac{1}{\omega} \int_0^\omega x_2(t) dt \end{array}\right), \quad \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) \in X = Y.$$

It is not difficult to show that

$$\operatorname{Ker} L = \{ x | x \in X, \ x = C_0, \ C_0 \in \mathbb{R}^2 \},$$
$$\operatorname{Im} L = \left\{ y | y \in Y, \ \int_0^\omega y(t) \mathrm{d}t = 0 \right\} \text{ is closed in } Y,$$
$$\operatorname{dim} \operatorname{Ker} L = \operatorname{codim} \operatorname{Im} L = 2,$$

and P and Q are continuous projections such that

$$\operatorname{Im} P = \operatorname{Ker} L, \quad \operatorname{Ker} Q = \operatorname{Im} L = \operatorname{Im} (I - Q).$$

It follows that L is a Fredholm mapping of index zero. Furthermore, the inverse K_p of L_p exists and has the form $K_p : \text{Im}L \to \text{Dom}L \cap \text{Ker}P$

$$K_p(y) = \int_0^t y(s) \mathrm{d}s - \frac{1}{\omega} \int_0^\omega \int_0^t y(s) \mathrm{d}s \mathrm{d}t.$$

Then $QN: X \to Y$ and $K_p(I-Q)N: X \to X$ read

$$QNx = \begin{pmatrix} \frac{1}{\omega} \int_0^{\omega} \Delta_1(x, t) dt \\ \frac{1}{\omega} \int_0^{\omega} \Delta_2(x, t) dt \end{pmatrix}$$
$$K_p(I-Q)Nx = \int_0^t Nx(s) ds - \frac{1}{\omega} \int_0^{\omega} \int_0^t Nx(s) ds dt - \left(\frac{t}{\omega} - \frac{1}{2}\right) \int_0^{\omega} Nx(s) ds dt$$

Clearly, QN and $K_p(I-Q)N$ are continuous. By using the Arzelà–Ascoli Theorem, it is not difficult to prove that $\overline{K_p(I-Q)N(\overline{\Omega})}$ is compact for any open bounded set $\Omega \subset X$. Moreover, $QN(\overline{\Omega})$ is bounded. Therefore, N is L-compact on $\overline{\Omega}$ for any open bounded set $\Omega \subset X$.

Now we reach the position to search for an appropriate open bounded subset Ω for the application of Lemma 2.1.

Corresponding to the operator equation $Lx = \lambda Nx$, $\lambda \in (0, 1)$, we have

$$\begin{cases} \dot{x}_{1}(t) = \lambda \big[r_{1}(t) - a_{11}(t) \exp\{x_{1}(t - \tau_{1}(t))\} + a_{12}(t) \exp\{x_{2}(t - \tau_{2}(t))\}\big], \\ \dot{x}_{2}(t) = \lambda \big[r_{2}(t) + a_{21}(t) \exp\{x_{1}(t - \sigma_{1}(t))\} - a_{22}(t) \exp\{x_{2}(t - \sigma_{2}(t))\}\big]. \end{cases}$$
(2.3)

Suppose $x = (x_1, x_2)^T \in X$ is a solution of (2.3) for a certain $\lambda \in (0, 1)$. Integrating (2.3) over the interval $[0, \omega]$, we obtain

$$\begin{cases} \int_0^{\omega} \left[r_1(t) - a_{11}(t) \exp\{x_1(t - \tau_1(t))\} + a_{12}(t) \exp\{x_2(t - \tau_2(t))\} \right] dt = 0, \\ \int_0^{\omega} \left[r_2(t) + a_{21}(t) \exp\{x_1(t - \sigma_1(t))\} - a_{22}(t) \exp\{x_2(t - \sigma_2(t))\} \right] dt = 0. \end{cases}$$

Hence,

$$\bar{r}_1\omega + \int_0^\omega a_{12}(t) \exp\{x_2(t-\tau_2(t))\} dt = \int_0^\omega a_{11}(t) \exp\{x_1(t-\tau_1(t))\} dt, \quad (2.4)$$

$$\bar{r}_2\omega + \int_0^\omega a_{21}(t) \exp\{x_1(t - \sigma_1(t))\} dt = \int_0^\omega a_{22}(t) \exp\{x_2(t - \sigma_2(t))\} dt.$$
 (2.5)

Let $s = t - \tau_1(t)$. We note that $\dot{\tau}_1(t) < 1$, which implies $\frac{ds}{dt} = 1 - \dot{\tau}_1(t) > 0$, $ds = (1 - \dot{\tau}_1(t))dt$. Therefore, the function $s = t - \tau_1(t)$ has the continuous inverse function $t = \tau_1^*(s), s \in [-\tau_1(0), \omega - \tau_1(\omega)]$. So we have

$$\int_0^\omega a_{11}(t) \exp\{x_1(t-\tau_1(t))\} dt = \int_{-\tau_1(0)}^{\omega-\tau_1(\omega)} \frac{a_{11}(\tau_1^*(s))}{1-\dot{\tau}_1(\tau_1^*(s))} \exp\{x_1(s)\} ds$$

By Lemma 2.2, there exists $\xi \in [-\tau_1(0), \omega - \tau_1(\omega)] = [-\tau_1(0), \omega - \tau_1(0)]$ such that

$$\int_{0}^{\omega} a_{11}(t) \exp\{x_{1}(t-\tau_{1}(t))\} dt = \frac{a_{11}(\tau_{1}^{*}(\xi))}{1-\dot{\tau}_{1}(\tau_{1}^{*}(\xi))} \int_{-\tau_{1}(0)}^{\omega-\tau_{1}(\omega)} \exp\{x_{1}(s)\} ds$$
$$= \frac{a_{11}(\eta_{1})}{1-\dot{\tau}_{1}(\eta_{1})} \int_{0}^{\omega} \exp\{x_{1}(t)\} dt, \ (\eta_{1} = \tau_{1}^{*}(\xi)).$$

For the equations (2.3) and (2.4), similar to the above discussion, there exist $\eta_i \in [0, \omega], (i = 1, 2, 3, 4)$ such that

$$\bar{r}_1\omega + \frac{a_{12}(\eta_2)}{1 - \dot{\tau}_2(\eta_2)} \int_0^\omega \exp\{x_2(t)\} dt = \frac{a_{11}(\eta_1)}{1 - \dot{\tau}_1(\eta_1)} \int_0^\omega \exp\{x_1(t)\} dt,$$
(2.6)

$$\bar{r}_{2}\omega + \frac{a_{21}(\eta_{3})}{1 - \dot{\sigma}_{1}(\eta_{3})} \int_{0}^{\omega} \exp\{x_{1}(t)\} dt = \frac{a_{22}(\eta_{4})}{1 - \dot{\sigma}_{2}(\eta_{4})} \int_{0}^{\omega} \exp\{x_{2}(t)\} dt.$$
 (2.7)

We denote

$$b_{11} = \frac{a_{11}(\eta_1)}{1 - \dot{\tau}_1(\eta_1)}, \quad b_{12} = \frac{a_{12}(\eta_2)}{1 - \dot{\tau}_2(\eta_2)}, \quad b_{21} = \frac{a_{21}(\eta_2)}{1 - \dot{\sigma}_1(\eta_2)}, \quad b_{22} = \frac{a_{22}(\eta_4)}{1 - \dot{\sigma}_2(\eta_4)}.$$

It follows from (2.6)–(2.7) that

$$\bar{r}_1\omega + b_{12}\int_0^\omega \exp\{x_2(t)\}dt = b_{11}\int_0^\omega \exp\{x_1(t)\}dt,$$
 (2.8)

$$\bar{r}_2\omega + b_{21}\int_0^\omega \exp\{x_1(t)\}dt = b_{22}\int_0^\omega \exp\{x_2(t)\}dt.$$
 (2.9)

Under the assumption of Theorem 2.3, it is not difficult to derive that

$$\int_{0}^{\omega} \exp\{x_{1}(t)\} dt = \frac{b_{12}\bar{r}_{2} + b_{22}\bar{r}_{1}}{b_{11}b_{22} - b_{21}b_{12}} \omega \le \frac{b_{12}^{\mu}\bar{r}_{2} + b_{22}^{\mu}\bar{r}_{1}}{b_{11}^{\iota}b_{22}^{\iota} - b_{21}^{\mu}b_{12}^{\mu}} \omega$$
(2.10)

and

$$\int_{0}^{\omega} \exp\{x_{2}(t)\} dt = \frac{b_{21}\bar{r}_{1} + b_{11}\bar{r}_{2}}{b_{11}b_{22} - b_{21}b_{12}} \omega \le \frac{b_{21}^{\mu}\bar{r}_{1} + b_{11}^{\mu}\bar{r}_{2}}{b_{11}^{\mu}b_{22}^{\mu} - b_{21}^{\mu}b_{12}^{\mu}} \omega.$$
(2.11)

Therefore, there exists $t_i \in [0,\omega], i=1,2$ such that

$$x_1(t_1) \le \ln \frac{b_{12}^{\mu} \bar{r}_2 + b_{22}^{\mu} \bar{r}_1}{b_{11}^{\iota} b_{22}^{\iota} - b_{21}^{\mu} b_{12}^{\mu}}, \quad x_2(t_2) \le \ln \frac{b_{21}^{\mu} \bar{r}_1 + b_{11}^{\mu} \bar{r}_2}{b_{11}^{\iota} b_{22}^{\iota} - b_{21}^{\mu} b_{12}^{\mu}}.$$

Obviously, there exists positive constants $M_i > 0, i = 1, 2$ such that

$$|x_i(t_i)| \le M_i, \ i = 1, 2.$$
 (2.12)

On the other hand, it follows from (2.3), (2.4) and (2.10) that

$$\begin{split} \int_{0}^{\omega} |\dot{x}_{1}(t)| dt &= \lambda \int_{0}^{\omega} |r_{1}(t) - a_{11}(t) \exp\{x_{1}(t - \tau_{1}(t))\} \\ &+ a_{12}(t) \exp\{x_{2}(t - \tau_{2}(t))\} | dt, \\ &< \bar{r}_{1}\omega + \int_{0}^{\omega} a_{12}(t) \exp\{x_{2}(t - \tau_{2}(t))\} dt \\ &+ \int_{0}^{\omega} a_{11}(t) \exp\{x_{1}(t - \tau_{1}(t))\} dt \\ &= 2 \int_{0}^{\omega} a_{11}(t) \exp\{x_{1}(t - \tau_{1}(t))\} dt \\ &\leq 2b_{11}^{\mu} \int_{0}^{\omega} \exp\{x_{1}(t)\} dt \leq 2b_{11}^{\mu} \frac{b_{12}^{\mu} \bar{r}_{2} + b_{22}^{\mu} \bar{r}_{1}}{b_{12}^{\iota} - b_{21}^{\mu} b_{12}^{\mu}} \omega := H_{1}. \end{split}$$

Similarly, it follows from (2.3), (2.5) and (2.11) that

$$\int_{0}^{\omega} |\dot{x}_{2}(t)| \mathrm{d}t < 2b_{11}^{\mu} \frac{b_{21}^{\mu} \bar{r}_{1} + b_{11}^{\mu} \bar{r}_{2}}{b_{11}^{\iota} b_{22}^{\iota} - b_{21}^{\mu} b_{12}^{\mu}} \omega := H_{2}.$$
(2.14)

It follows from (2.12)–(2.14) that

$$|x_i(t)| \le |x_i(t_i)| + \int_0^\omega |\dot{x}_i(t)| \mathrm{d}t < M_i + H_i.$$

Clearly, $M_i, H_i, i = 1, 2$ are independent of the choice of λ . We note that

$$\bar{a}_{11} = \frac{1}{\omega} \int_0^\omega a_{11}(t) dt = \frac{1}{\omega} \int_{-\tau_1(0)}^{\omega - \tau_1(0)} \frac{a_{11}(\tau_1^*(s))}{1 - \dot{\tau}_1(\tau_1^*(s))} ds$$
$$= \frac{a_{11}(\tau_1^*(s_1))}{1 - \dot{\tau}_1(\tau_1^*(s_1))}, \quad s_1 \in [-\tau_1(0), \omega - \tau_1(0)], \tag{2.15}$$

where $t = \tau_1^*(s)$ is the inverse function of $s = t - \tau_1(t)$. Similar to the discussion of (2.15),

$$\bar{a}_{12} = \frac{a_{12}(\tau_2^*(s_2))}{1 - \dot{\tau}_2(\tau_2^*(s_2))}, \quad \bar{a}_{21} = \frac{a_{21}(\sigma_1^*(s_3))}{1 - \dot{\sigma}_1(\sigma_1^*(s_3))}, \quad \bar{a}_{22} = \frac{a_{22}(\sigma_2^*(s_4))}{1 - \dot{\sigma}_2(\sigma_2^*(s_4))}.$$
 (2.16)

Thus, under the assumptions in Theorem 2.3, it follows from (2.15)-(2.16) that

$$\bar{a}_{11}\bar{a}_{22} - \bar{a}_{12}\bar{a}_{21} > b_{11}^{\iota}b_{22}^{\iota} - b_{12}^{\mu}b_{21}^{\mu} > 0.$$
(2.17)

Now it is easy to show that the system of algebraic equations

$$\bar{r}_i - \bar{a}_{ii}v_i + \bar{a}_{ij}v_j = 0, \ i, j = 1, 2$$

has a unique solution $(v_1^*, v_2^*)^T \in R^2_+$ with $x_i^* > 0$. Take $H = \max\{M_i + H_i + C, M_i + H_i + C\}$, where C > 0 is taken sufficiently large such that $\|(\ln v_1^*, \ln v_2^*)^T\| < C$. Define $\Omega = \{x(t) \in X : \|x\| < H\}$. It is clear that Ω satisfies condition (a) of Lemma 2.1. Let $x \in \partial \Omega \cap \operatorname{Ker} L = \partial \Omega \cap \mathbb{R}^2$, x be a constant vector in \mathbb{R}^2 with $\|x\| = H$. Then

$$QNx = \left[\bar{r}_i - \bar{a}_{ii} \exp\{x_i\} + \bar{a}_{ij} \exp\{x_j\} = 0 \right]_{2 \times 1} \neq 0.$$

Furthermore, let $J : ImQ \rightarrow KerL$. In view of assumptions in Theorem 2.3 and (2.15)–(2.17), it is easy to see that

$$\deg\{JQN, \Omega \cap \operatorname{Ker} L, 0\} = \operatorname{sgn} \det \begin{bmatrix} -\bar{a}_{11} & \bar{a}_{12} \\ \bar{a}_{21} & -\bar{a}_{22} \end{bmatrix} \ge \operatorname{sgn}(b_{11}^{\iota}b_{22}^{\iota} - b_{12}^{\mu}b_{21}^{\mu}) \neq 0,$$

where $deg(\cdot)$ is the Brouwer degree and the J is the identity mapping since ImQ = KerL.

By now, we have shown that Ω verifies all requirements of Lemma 2.1. Then it follows that Lx = Nx has at least one solution in $\text{Dom}L \cap \overline{\Omega}$. By (2.1), we derive that (1.4) has at least one positive ω -periodic solution. The proof is completed.

Remark 2.4. Our results and the method used in the proof are much different from those in the known literature. We remark that we generalize system (1.3) in [8] to system (1.4), where $\tau_i(t) \neq \sigma_i(t)$, i.e., all the delays are different. It is in this aspect that we generalize the results in [8].

Acknowledgement

The authors would like to express their gratitude to the reviewers and editor for their valuable comments and careful reading.

References

- [1] L. Chen. Mathematical Models and Methods in Ecology, Science Press, Bejing, 1998, (in Chinese).
- [2] Y. Kuang. Delay Differential Equations With Application Dynamic, New York, Academic Press, 1988.
- [3] M. Fan and K. Wang. Positive periodic solutions of a periodic integro-differential competition system with infinite delays, Z. Angew. Math. Mech., 81(3):197–203, 2001.
- [4] M. Fan and K. Wang. Periodicity in a delayed ratio-dependent pedator-prey system, *J. Math. Anal. Appl.*, 262:179–190, 2001.
- [5] B.S. Goh. Management and Analysis of Biological Populations, Elsevier Scientific, The Netherlands, 1980.
- [6] B.S. Goh. Stability in models of mutualism, Amer. Natural, 113:261–275, 1979.

- [7] K. Gopalsamy and X.Z. He. Persitence, attractivity, and delay in facultative mutualism, *J. Math. Anal. Appl.*, 215:154–173, 1997.
- [8] F. Yang, D. Jiang, and A. Ying. Existence of positive solution of multidelays facultative mutualism system, *Journal of Engineering Mathematics*, 3:64–68, 2002.
- [9] Y. Xia and J. Cao. Almost periodicity in an ecological model with *M*-predators and *N*-preys by "pure-delay type" system, *Nonlinear Dynamics*, 39(3):275–304, 2005.
- [10] R.E. Gaines and J.L. Mawhin. Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin, 1977.
- [11] Y. Xia, M. Lin and J. Cao. The existence of almost periodic solutions of certain perturbation systems, J. Math. Anal. Appl., 310(1):81–90, 2005.
- [12] Y. Xia and J. Cao. Almost periodic solutions for an ecological model with infinite delays, *Proc. Edinburgh Math. Soc.*, 50(1):229–249, 2007.
- [13] K. Gopalsamy. "Stability and Oscillation in Delay Differential Equations of Population Dynamics," Mathematics and its Applications 74, Kluwer Academic Publishers Group, Dordrecht, 1992.
- [14] Y.K. Li. Periodic solutions of a periodic delay predator-prey system, Proc. Amer. Math. Soc., 127:1331–1335, 1999.
- [15] Y.K. Li and Y. Kuang. Periodic solutions in periodic state-dependent delay equations and population models, *J. Math. Anal. Appl.*, 255:265–280, 2001.
- [16] L.L. Wan and W.T. Li. Existence and global stability of positive periodic solutions of a predator-prey system with delays, *Appl. Math. Comput.*, 146:167–185, 2003.
- [17] Y. Xia, F. Chen, A. Chen, and J. Cao. Existence and global attractivity of an almost periodic ecological model, *Appl. Math. Comput.*, 157(2):449–475, 2004.
- [18] Y. Xia, J. Cao, H. Zhang, and F. Chen. Almost periodic solutions of *n*-species competitive system with feedback controls, *J. Math. Anal. Appl.*, 294(2):503–522, 2004.
- [19] M. Fan and K. Wang. Global existence of positive periodic solutions of periodic predator-prey system with infinite delay, *J. Math. Anal. Appl.*, 262:1–11, 2001.
- [20] H.I. Freedman and Y. Kuang. Stability switches in linear scalar neutral delay equations, *Funkc. Ekvac.*, 34:187–209, 1991.
- [21] M. Fan, P.J.Y. Wong, and R.P. Agarwal. Periodicity and stability in periodic *n*-species Lotka-Volterra competition system with feedback controls and deviating arguments, *Acta Mathematica Sinica*, 19:801–822, 2003.
- [22] M. Fan, P.J.Y. Wong, and R.P. Agarwal. Periodicity in a class of nonautonomous scalar equations with deviating arguments and applications to population models, *Dynamical Systems*, 19:279–301, 2004.