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Abstract

We study historical development of wavelets and introduce basic definitions and
formulations. Wavelets are mathematical tools that cut up data or functions or op-
erators into different frequency components, and then study each component with a
resolution matching to its scale. We discuss different approaches of using wavelets
in the solution of boundary value problems for ordinary differential equations. We
also introduce convenient wavelet representations for the derivatives for certain
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network algorithm are discussed.
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1. Introduction

Wavelet theory involves representing general functions in terms of simpler building
blocks at different scales and positions. The fundamental idea behind wavelets is to
analyze according to scale. Wavelets are mathematical tools that cut up data or func-
tions or operators into different frequency components, and then study each component
with a resolution matching to its scale. In the history of mathematics, wavelet analy-
sis shows many different origins. Much of the work was performed in the 1930s [18].
Before 1930, the main branch of mathematics leading to wavelets began with Joseph
Fourier with his theory of frequency analysis. In 1909, Haar discovered the simplest
solution and at the same time opened a route leading to wavelets.

The rest of this paper is organized as follows. In Section 1, basic definitions of
multiresolution analysis and construction of wavelets is introduced. The relations be-
tween wavelets and differential equations (ODE) and Wavelet—Galerkin methods for
differential equations is introduced in Section 2. Differential and integral equations are
discussed in Section 3. Section 4 is devoted to difference equations. In Section 5, for
certain functions derivative applications are introduced. The theory of wavelet networks
and the idea of combining wavelets and neural networks are discussed in Section 6.

1.1. Multiresolution Analysis and Construction of Wavelets

The objective of this section is to construct a wavelet system, which is a complete or-
thonormal set inL*(R). The idea of multiresolution analysis is to represent a function
(or signal) f as a limit of successive approximations, each of which is a finer version
of the functionf. The basic principle of the multiresolution analysis (MRA) deals with
the decomposition of the whole function space into individual subspggcesV,, . ;.

Definition 1.1. (Multiresolution analysis). A multiresolution analysis (MRA) of*(R)
is defined as a sequence of closed subspecesL*(R), j € Z, that satisfy the follow-
ing properties:

1. Monotonicity V; C Vj,,, forallj € Z.
2. Dilation property f(z) € V; <= f(2z) € V;;;, forallj € Z.

3. Intersection property ﬂ V; ={0}.
JEZ
4. Density property U V; is dense in.*(R).
JEZ

5. Existence of a scaling function. There exists a functioa 1, such thatf{ ¢(z —
n) : n € Z} is an orthonormal basis fdr,

Vo= {Zakgb(x — k) : {aptrez € z2(Z)} .

kEZ
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Density property means that for arfye L*(R), there exists a sequendg,}-

such that eaclf,, € U V; and{f,} 2, converges tq¢f in L*(R), thatis,|| f, — f|| — 0
asn — o0. IeE

The functiong is called thescaling functionor father waveleof the given MRA.
Sometimes condition 5 is relaxed by assuming gtz — n) : n € Z} is a Riesz basis
for V5. In this case, we have a multiresolution analysis with a Riesz basis. Dilation
condition 2 implies thaf (z) € V; <= f(2"x) € Vj;.,, for all j,m € Z. In particular,
f(z) € Vo <= f(2'x) € Vj. Let

djn(x) = 22p(20 2 — k).

The orthonormality of the sef¢(z — n) : n € Z} implies that for eachy € Z,
{¢;r(x),k € Z} is an orthonormal set, because changing variables shows that for
1, k,m € Z,

<¢j»k7 ¢j,m> - <¢O,ka ¢0,m>-

Then{¢,x(x),k € Z} is an orthonormal basis far;. It follows that for eacly € Z,

Vi = {Zak%‘,k(ﬁ) {antrez € lQ(Z)} :

kEZ

Define the orthogonal projection operafdrfrom L*(R) ontoV; by

Pi(f) (@) =Y {f, dju)bin().
keZ

Then we have

lim P;(f) = f and lim P;(f) = 0.

J—00 J——00
The projectionP;(f) can be considered as an approximationfoét the scale2™.
Therefore, the successive approximations of a given functiane defined as the or-
thogonal projection$’;( ) onto the spacé’;. We can choosg € Z such thatP;(f) is
a good approximation of [8,12, 26].

The real importance of a multiresolution analysis lies in the simple fact that it en-
ables us to construct an orthonormal basisifaR) [8,12, 14, 17].

In order to prove this statement, we first assume{hat} is a multiresolution analy-
sis. Sincel, C Vi, we definell, as the orthogonal complement &f in V3; that is,
Vi="1V, @WO. SinceV,, C V,,;1, we definelV/,,, as the orthogonal complement of
V., inV,, .1 for everym € 7Z so that we have

Vi1 = Ve @ W, for eachm € Z.

Since V,, — {0} asm — —oo, we see that

Vm+1=Vm@Wm: é W, forallm e Z.

l=—00
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SinceU V; is dense inL*(R), we may take the limit as: — oo to obtain
JEZ

2= @ m.

l=—00

To find an orthonormal wavelet, therefore, all we need to do is to find a fungtienV;
such thaf{y(x — k) : k € Z} is an orthonormal basis fo#/. In fact, if this is the case,
then{v;x(v) = 27/2y(27x — k) : k € Z} is an orthonormal basis fd#; for all j € Z
due to the condition in the definition of multiresolution analysis and definitior/pf
Hence

{Yin(x) =229 (e — k) k, j € Z}

is an orthonormal basis fdr*(IR), which shows that) is an orthonormal wavelet dR.
Daubechies has constructed, for an arbitrary intégean orthonormal basis for
L*(R) of the form
Vik(z) = 229Xz — k), j,k € Z,

that satisfies the following properties:
1. The support of) is contained inf N + 1, N]. To emphasize this poin; is often
denoted by .
: L 1
2. ¢y hasyN continuous derivatives, where = (1 —3 log, 3) = 0.20752, for

large N [17]. Hence, aC'¥ compactly supported wavelet has a support whose
measure is, roughly /N .

3. ¥y hasN vanishing moments

]/ e*p(z)der =0 for k=0,1,...,N.

—00

Or, equivalently,

[d%(é)
ek

] =0 for k=0,1,...,N.
£=0

The multiresolution analysis (MRA) is well adapted to image analysis. The spaces
V; that appeared in the definition of an MRA can be interpreted as spaces where an
approximation to the image at th&" level is obtained. In addition, the detail in the
approximation occurring i¥;, that is not inV;_, is stored in the spacd$’;_; which
satisfyV;, = V,_4 @ W;_1. This leads to efficient decomposition and reconstruction
algorithms [5, 8, 14, 26]. Choose an MRA with scalingnd wavelet).

The orthogonality property puts a strong limitation on the construction of wavelets.
It is known that the Haar wavelet is the only real valued wavelet that is compactly
supported, symmetric and orthogonal [11].
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Definition 1.2. (Biorthogonal wavelets). Two functions«, 1) € L*(R) are called
biorthogonal wavelets each one of the sd; . : j,k € Z} and{qﬁj,k g,k e Z} isa
Riesz basis of.?(R) and they are biorthogonal,

<1/}j,k7 "&l,m> = 5j,15k,m for all j, l, k, m € 7.
Now let us replace condition 5 in Definition 1.1 by the following

5. Existence of a scaling functiohere exists a function € 14, such that the set
of functions{ ¢,,(z) = 2//2¢(27x — 1) : | € Z} is a Riesz basis df;.

As a result, there is a sequende, : £ € Z} such that the scaling function satisfies
a refinement equation

$(x) =2 had(2z —n).
neL
Define1V; as a complementary spacedfin V;.,, such thatV;, = V; @ W;, and
consequently,
L*(R)= EH W
l=—o00

A function ¢ is a wavelet if the set of functiofw(z — 1) : | € Z} is a Riesz basis of
Wo. Then the set of wavelet functiods; ,(z) = 2//*(2’z — k) : j,k € Z} is a Riesz
basis ofL*(R). Since the wavelet is an elementidf, it satisfies the relation

Y(@) =2 gad(2z — n).

nel

There are dual functions;; and+;; so that the projection operatols andQ; ontoV;
andW;, respectively, are given by

Pi(f)(x) =D (f bin)djn(),

and

Qi(N) (@) =Y {f, djr)vin(x).

kEZ
Then we have

F=> it

J,k€EZ

Here the definitions Oszj,k andlﬁj,k are similar to those fop, , and; . Then, the basis
functions and dual functions are biorthogonal [19],

(bt Gin) = O and (1, Vi) = O;mOr-

Note that if the basis functions are orthogonal, they coincide with the dual function and
the projections are orthogonal.
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2. Wavelets and Differential Equations

Many applications of mathematics require the numerical approximation of solutions
of differential equations. In this section we will present different approaches of using
wavelets in the solution of boundary value problems for ordinary differential equations.
We consider the class of ordinary differential equation of the form

Lu(z) = f(z) forz e 0,1],

where = Zaj(a:)Dj, and with appropriate boundary conditions ofx) for = =
j=0

0,1, !

There are two major solution techniques. First, if the coefficients) of the oper-
ator are constants, then the Fourier transform is well suited for solving these equations
because the complex exponentials are eigenfunctions of a constant coefficient operator
and they form an orthogonal system. As a result, the operator becomes diagonal in the
Fourier basis and can be inverted trivially. If the coefficients are not constant, finite
element or finite difference methods can be used [15].

2.1. Wavelet—Galerkin Methods for Differential Equations

The classical Galerkin methods have the disadvantage that the stiffness matrix becomes
ill conditioned as the problem size grows. To overcome this disadvantage, we use
wavelets as basis functions in a Galerkin method. Then, the result is a linear system that
is sparse because of the compact support of the wavelets, and that, after precondition-
ing, has a condition number independent of problem size because of the multiresolution
structure [1,6,13,15,19, 29].

The methods for numerically solving a linear ordinary differential equation come
down to solving a linear system of equations, or equivalently, a matrix equétion y.
The system has a unique solutiorior everyy if and only if A is an invertible matrix.
However, in applications there are further issues that are of crucial importance. One of
these has to do with the condition number of a matriwhich measures the stability of
the linear systemlz = y. Let us see an example [15].

Definition 2.1. Let A be ann x n matrix. Define|| A|| called the operator norm, or just
the norm, ofA by
ll4z]
2]
where the supremum is taken over all nonzero vect@i'in
Equivalently,

[A[l = sup

[Al} = sup {[[Az]] : ||z]| = 1,2 € C"}.

Definition 2.2. (Condition number of a matrix). Let A be ann x n matrix. Define
Cx(A), the condition number of the matrix, by

Cp(A) = Al ][ A7
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If Ais notinvertible, seC,(A) = co.
Note that the condition numbét,. (A) is scale invariant [7], that is, far # 0,

Lemma 2.3. Suppose thatl is ann x n normal invertible matrix. Let

A L. = max {|A| : Ais an eigenvalue ofi}
and
A, = min{|A| : A is an eigenvalue afl } .
Then N
Cy(A) = ——max
* RY

The condition number oA measures how unstable the linear systém= vy is
under perturbation of the data In applications, a small condition number (i.e., near
1) is desirable [15]. If the condition number dfis high, we would like to replace the
linear systemdx = y by an equivalent system/>z = v whose matrix)}/ has a low
condition number.

We consider the class of ordinary differential equations (known as Sturm-Liouville
equations) of the form

Lu(t) = —a(t)u"(t) — o' (£)u'(t) + b(t)u(t)

=4 (a5 ) +o0ue) = 10
for 0 <t < 1 with Dirichlet boundary conditions
u(0) =u(l) =0.

Herea, b, andf are given real-valued functions and we wish to solvei{die assume¢

andb are continuous andhas a continuous derivative @@ 1] (this always means a one-
sided derivative at the endpoints). Note tlhanay be a variable coefficient differential
operator becausgt) andb(t) are not necessarily constant. We assume that the operator
is uniformly elliptic which means that there exist finite constaritsC,, andC; such

that

for all t € [0,1]. By a result in the theory of ordinary differential equations, there
is a unique function; satisfying the differential equation and the boundary conditions
u(0) = u(1) = 0.

For the Galerkin method, we suppose tlfmjt}j is a complete orthonormal system
for L*[0, 1], and that every; is C* on [0, 1] and it satisfies

’Uj(O) = ?}j(l) = 0.
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We select some finite st of indices; and consider the subspace
S =span{v;; j € A}.

We look for an approximate solutianof the form

Ug = Zxkvk €S,

keA

where each;, is a scalar. These coefficients should be determined such tbahaves
like the true solution: on the subspacs, that is,

(Lug,v;) = (f,v;) forallj € A.
By linearity, it follows that
(Lus,g) = (f,g) forallgesS.

Note that the approximate solutian obviously satisfies the boundary condition$0) =
us(1) = 0.
Using these results we get

<L (Z xkvk> ,vj> = (f,v;) foralljeA,

keA

or
> (Lvg,vj ) xy = (f,v;)  forallj €A

keA
Let 2 denote the vectdfxy), .., andy be the vectofyy), .., wherey, = (f,v;). Let A
be the matrix with rows and columns indexed/bythat is,A = [a;]; ., Where
Ak = <L’Uk, Uj> .
Thus, we get a linear system of equations

Zaﬁkxk =y; foralljeA, or Azx=y.
keA

In the Galerkin method, for each subgetve obtain an approximatiom, € S, by solv-
ing the linear system for and using these components to determineé/Ne expect that
as we increase our s&tin some systematic way, our approximatiaywill converge to
the exact solution.

The nature of the linear system results from choosing a wavelet basis for the Galerkin
method. There are two properties that the mattii the linear system should have.
First, A should have a small condition number to obtain stability of the solution under
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small perturbations in the data. Secordshould be sparse for quick calculations [15,
16].

There is a way of modifying the wavelet system fg(R) so as to obtain a complete
orthonormal system {v; .} ; .y for L?[0,1]. See for more details [2, 13, 16] and
references given therein. The $&it a certain subset & x Z. For each(j, k) € A, ¢
€ C* and satisfies the boundary conditians,(0) = v, (1) = 0. The wavelet system
{tj i} mer also satisfies the following estimate:

There exist constants,, C5 > 0 such that for all functiong of the form

9= cisin

i,k
where the sum is finite, we have
1
Cy Y 2% el < /\g'(t)]z dt < C5) 27 [eju)”. (2.2)
gk 0 3.k

An estimate of this form is called a norm equivalence. It states that up to the two

1
constants, the quantiti€s 2% |c; .|’ and/ |4/ (t)|? dt are equivalent.
j7k 0
For wavelets we write an equation as

us= Y Tk,

(j,k)eEA

and
Z (LY, Vim) i = (f, Yim) forall (I,m) e A
(J,k)eA
for some finite set of indiced. We can write the system as a matrix equation of the
form Az = y, where the vectors = (), ca @Ndy = (Yjk)(; 1)cn @re indexed by
the pairs(j, k) € A, and the matrix

A= [al,m;j,k](z,m),(j,k)eA

defined by
amigke = (L ns Yim)

has its rows indexed by the paifs m) € A and its columns indexed by the pairs
(U, k) € A

As suggested, we would likd to be sparse and have a low condition numbér.
itself does not have a low condition number, however, we can replace the systeny
by an equivalent system/z = v, for which the new matrix)/ has low condition
number. To get this, first define the diagonal matrix

D = [dl,m;j,k](l,m),(j,k)eA
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by

g 20 if (I,m) =
PR 0 i (1,m) # (k).

DefineM = [ml,m;j,k](l’m)ﬁ(ﬁk)a\ by
M =D'AD™".
By writing this out, we get
Mgk = 27 g = 2777 (L g, Y ) -

Then, the systemz = y is equivalenttadD ' AD"' Dz = D™ 'y. Ifwe letz = Dz and
v= D"y, we getMz = v.

Lemma 2.4. Let L be a uniformly elliptic Sturm—Liouville operator. Suppogés C*
on [0, 1] and satisfieg(0) = g(1) = 0. Then

1 1

o / G OFdt < (Lg.g) < (Cy + Cy) / g dt,

0 0
where(C}, C,, andC} are the constants in relation (2.1).

Theorem 2.5. ([15, 17])Let L be a uniformly elliptic Sturm—Liouville operator. Let
{jk}(jper Pe @ complete orthonormal system fot{0, 1] such that eachy;;, is C?,
satisfiesy; ,(0) = ¢;x(1) = 0, and such that the norm equivalence holds. Adte a
finite subset of". Let M be the matrix defined in the above equation. Then the condition
number ofM satisfies
(Cy+C3)Cs

c1Cy

for any finite setA, whereC;, Cs, and(C'; are the constants in relation (2.1), afig Cs
are the constants in relation (2.2).

Cy(M) <

Note that the matrices obtained by using finite differences are sparse, but they have
large condition numbers [15]. Using the Galerkin method with the Fourier system, we
can obtain a bounded condition number but the matrix is not sparse. Using the Galerkin
method with a wavelet system, we obtain both advantages [4, 6, 13, 15].

The derivative operator is not diagonal in a wavelet basis [3, 13, 27]. However,
we can make the differential operator diagonal by using two pairs of biorthogonal or
dual bases of compactly supported wavelets [13]. In this case, we have two related
multiresolution space§l/; } and{V;} such that

Vi CV;, and Vi, cCV;, foraljez,



Survey on Wavelet Transform and Application in ODE and Wavelet Networksl 39

corresponding to two scaling functions¢ and two wavelets, /. They are defined by
two trigonometric polynomials:, andrmy, satisfying

mo(w)mo(w) + mo(w + m)me(w + 7) = 1.
Then we have

~  —— iy
P(w) = EEWO(Q w),

qg(w) = \/_2_7-[- ]1_[17710(2_110),
also, we have
i) = o ()i (5)

and

With (¢ 5, V) = 0;.m0k.n, Where
Vip(x) = 27227 — k), bin(x) = 27922 e — k).

It follows that if we construct two pairs of biorthogonal wavelet bases, one usirg
and the other using™, v*, then we have

@Z’, - 4¢*= or (%,k)/ = 2_]4 ;':k)

and hence

d - y
<%wj,k7 wm7n> =2 ]45j,m6k,n-

This means that we have diagonalized the derivative operator. Note that this is not a
“true” diagonalization because we use two different bases. However, this means that we
can find the wavelet coefficients ¢f, i.e.,

d )
<%f7 1/}j7k> =274 <f7 77Z);,k> :

For more details see [13] and the references therein.
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Another approach of diagonalizing the differential operator, using wavelets, is by
constructing biorthogonal wavelets with respect to the inner product defined by the op-
erator [18, 19].

We consider the class of ordinary differential equation of the form

Lu(x) = f(z) forz e 0,1],

where L = Zaj(m)Dj, and with appropriate boundary conditions ofx) for x =
§=0
0, 1. Define the operator inner product associated with an opefabyr

{{u,v)) = (Lu,v).

An approximate solutiom can be found with a Petrov—Galerkin method, i.e., consider
two spaces andS* and look for a solution. € S such that

{(u,0)) = {f, v)

forall vin S*. If S andS™ are finite dimensional spaces with the same dimension, this
leads to a linear system of equations. The matrix of this system, also referred to as the
stiffness matrix, has as elements the operator inner products of the basis functions of
andsS™.

We assume that is self-adjoint and positive definite and, in particular, we can write

L=V,

whereV™* is the adjoint ofl’. We call V' the square root operator é¢f Suppose that
{¥;,} and{w*,} are bases fof andS* respectively. The entries of the stiffness matrix
are then given by

<<\Ifj,l, \If;*n7n>> = (L\I/N, \Ifj‘nn> = <V\Ifj,l, V\If;‘n7n>.
Now, the idea is to let
\I]j,l = Vﬁlevl and \Ij;l = Vﬁll;j,lu

where and+) are the wavelets of a classical multiresolution analysis. We will call
the ¥ andW™ functions the operator wavelets. Then the operator wavelets are biorthog-
onal with respect to the operator inner product. We want the operator wavelets to be
compactly supported and to be able to construct compactly supported operator scaling
functions®;;. The analysis is relatively straightforward for simple constant coefficient
operators such as the Laplace and polyharmonic operator [19].

Example 2.6. (Laplace operator).Consider the one dimensional Laplace operator

L=-D
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Then the square root operatdris V' = D. The associated operator inner product is
((u,v)) = (Lu,v) = (Vu, Vo) = (u,0) .

Since the action of ! is taking the antiderivative, we define the operator wavelets as
U(z) = / Y(t)dt, and U*(z)= / U(t) dt.

Note that the operator waveleig z) and¥*(z) are compactly supported because the
integral of the original wavelets has to vanish. Also translation and dilation invariance
is preserved, so we define

W, (z) =¥(2r—1) and U (z) = (202 —1).
Now,

<<\I[;l(x)’\pm,”(x)>> = <V\Il;,l<x>>v\1jm,n(x)>
= 28; w6, forjlmneZ.

This means that the stiffness matrix is diagonal with powers o its diagonal. We

now need to find an operator scaling functidn The antiderivative of the original
scaling function is not compactly supported and hence not suited. To find an operator
scaling function® convolute of the original scaling function with the indicator function
X1, @ = ¢*xpa, and defined;;(z) = ®(27z —1). Similarly for the dual functions

®* = ¢ * xj0.1]. Now, define

V;=closspan{®,,: ke Z} and W, =closspan{V;,:kecZ}.

We want to show thalt; C V., andWW; complements’; in V; . By taking the Fourier
transform we get

~ 1 —e W .

b(w) Sw) and ¥(w) = - (w)

Tw
A simple calculation shows that the operator scaling function satisfies the following
equation '

B 1+6—zw

ﬁ)(w):H<%>¢3(%), with  H (w) = ———h(w).

Consequentlyy; C V4. Also

w 1

\il(w):G<§)(i>(%), with - G(w) = 55— (),

whereh(w) andg(w) are defined by the previous equations respectively.
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This implies thatl’; C V. To prove thatV; complements’; in V;;, we have to
prove that
B H(w) H(w+ )
Aw) = det G(w) G(w+m)
does not vanish. In fact,

Aw) = Hw)G(w+ 7) — Hw + 7)G(w)

1+ e 1
— 5 h(w)2(1 — e_i(erﬂ))g(w—f—ﬂ)
1 +€7i(w+ﬂ') 1
L X -

= Jhlw)gw+ ) = Thlw + rg(w) = 5(w)

whered(w) = h(w)g(w + ) — h(w + 7)g(w), and this cannot vanish singeand
generate a multiresolution analysis. Tﬁé@lcomplementy in V;41. The construction

of the dual function®* and¥* from ¢ and) is completely similar. The coefficients of
the trigonometric function&/, H*, G andG™ now define a fast wavelet transform.

Now, we will describe the algorithm in the case of periodic boundary conditions.
This implies that the basis functions on the interjall]| are just the periodization of
the basis functions on the real line.

Let S = V,, and consider the bas{®,,, : 0 <! < 2"}. Define vector$ andz such

that
2" —1

b = <f, ¢:L,l> , and u= Z xlq)n,l'
=0
The Galerkin method with this basis then yields a system
Axr =0 with AkJ = <<(I)n,l7 q)n,k>> .

The matrix A is not diagonal and the condition number grows(¥8%") [19]. Now,
consider the decomposition

Vn:%@WO@"'@anla

and the corresponding wavelet basis. The sggchas dimension one and contains
constant functions. We now switch to a one-index notation such that the sets

{1,U;,:0<j<n0<1<2} and{¥;:0<k < 2"}

coincide. Now, define the vectobsandz such that

2" —1

[N): <f7 \I/D and u = Z V.

=0

There exist matrice® and7™ [19] such thab = T*b andz = T'.
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The matrixT™ corresponds to the fast wavelet transform decomposition with filters
H* andG*, andT corresponds to reconstruction with filteksandG. In the wavelet
basis the system becomes

Az =b with A=T*AT and A= ((V,;, V).
SinceA is diagonal, it can be trivially inverted and the solution is then given by
x =TA'T*D.

Example 2.7. (Helmholtz operator). The one-dimensional Helmholtz operator is de-
fined by

L =—-D*+ k.

Without loss of generality assume thiat= 1 which can always be obtained by a trans-
formation. The square root operator is

V=D+1=e*De®* and V !=e*D e

Note thatl” !¢ will not necessarily give a compactly supported function becatisg,
in general does not have a vanishing integral. Therefore we let

-1 _- — -1
\I’jJ = V e x¢j7l = e JCD QﬂjJ.

If ¢»;, has a vanishing integral, then;; is compactly supported.
In order to diagonalize the stiffness matrix, the original wavelets now need to be
orthogonal with respect to a weighted inner product with weight functicf:

(W0, 0 0 = (VU VI
= <€71¢j7l, €7w¢m’n>

— /OO e‘zxwﬂ(m)@myn(x) dx.

—00

To find the wavelet let supp,, = [2771,277(1 + 1)].

Then the orthogonality of the wavelets on each level immediately follows from their
disjoint support. To get orthogonality between two different levels, we need}hat
orthogonal taV,,, for m > j or

/ 6_2x¢j,z($)7;m,n(m) de =0 for m > j.

o)

Now, let the scaling function coincide with® on the support of the finer scale wavelets,

Pj(x) = ¥ X,
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wherexy;; is the indicator function on the intervé}—7/,27/(I + 1)], normalized so
that the integral of the scaling functions is constant. As in the Haar case we choose the
wavelets as

wj,l = ¢j+1,21 - ¢j+1,2l+1

so that they have vanishing integral. The orthogonality between levels now follows
from the fact that the scaling functions coincide witlf on the support of the finer
scale wavelets, and from the vanishing integral of the wavelets

/ 672I¢j,l<x)1;m,n(x) dx = / X[j,lﬂ;m,n (w) dx
= /Oo U () dz = 0.

One can see that the operator wavelets are now piecewise combinatidnanafe .
The operator scaling functions are chosen as

(I)jJ = e_mD_l(quJ — ¢j,l+1) so that \I/jJ = ®j+1,21-
The operator scaling functions on one level are translates of each other but the ones on

different levels are no longer dilates of each other. They are supported on the same sets.
The operator scaling functions satisfy a relation

2
_ 7
D, = E Hy @41 914 ks

k=0
where .
; . sinh(27771) ;
H)=H)=————+- and H]=1.
0 2 sinh(277) !

The Helmholtz operator in this bases of hyperbolic wavelets is diagonal. So we can con-
clude that a wavelet transform can diagonalize constant coefficient operators similar to
the Fourier transform. The resulting algorithm is faste(/) instead ofO(N log N))
[19].
Now, how should we use wavelets for variable coefficient operators? Consider the
following operator
L= _Dp2<$>D7

wherep is sufficiently smooth and positive. The square root operator now is

1
V=pD and V' '=D'-
p

The analysis is similar to the case of the Helmholtz operator. Applying directly
to a wavelet does not yield a compactly supported function. Therefore we take
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qj]}l = Vﬁlp@bﬂ = Dilw]’,l. Then,
(W50, U0y = (VO VI, ) = (00, D)
= / P*0j(2) () dv,

which implies that the wavelets need to be biorthogonal with respect to a weighted inner
product withp? as weight function. We use the same trick as for the Helmholtz operator.

Let the scaling functior;; coincide with— on the interval2771,277 (1 + 1)],
p

1
¢j,l = EX[M,

and normalize them so that they have a constant integral. We then take the wavelets

Vi1 = Qj1,20 — Pjr1,2041,

so they have vanishing integral and the operator wavelets are compactly supported. The
operator wavelet¥ ;; are now piecewise functions that locally look like

AP + B,

. e 1 . :
whereP is the antiderivative of-;. The operator wavelets are neither dilates nor trans-

p
lates of one function, since their behavior locally depends [d®]. The coefficients in
the fast wavelet transform are now different everywhere and they depend in a very sim-

1 . . .
ple way on the Haar wavelet transform-af. Then, the entries of the diagonal stiffness
p

. 1 )
matrix can be calculated from the wavelets transform—zof We refer for more details
. . p

to [19] and the references cited therein.

3. Differential and Integral Equations

Differential equations can be transformed into integral equations by using the continu-
ous wavelet transform. An abstract proof of the following lemma can be found in [24]
but here we present our proof.

Lemma 3.1. Lety € L*(R), with

a2
0<C’w:/’¢|(;)‘ d¢ < o0.
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Then for anyf € L*(R) we have

e}

(;w/ /fwab g db

Yap(x) = 1|| (I_b), a,b e R, a#0.
a

Now, consider the following class of differential equations

where

n

ar(z)y™ = b(x),

k=0
where {a(z); k = 0,1,...,n} ¢ L®(R), {y*; k =0,1,...,n} c L*R), and
b(z) € L*(R). Let {®; k=0,1,...,n} C L*(R) with supv)) C [-L, L].

Using the result of Lemma 3.1, we have

1 [da [ k(K
:@/§/<ya¢a,b>a ¥ () db

(fork =0,1,...,n). Then the equation becomes

(o.¢] e¢]

(ip/ /fwabzaak ()9 () db = b().

Then the differential equation is equivalent to an integral equation.

Example 3.2. Consider the differential equation

n

> an(z)y® = b(x),

k=0
{b(z), ar(z); kK =0,1,...,n} C C[ ), {y®; k= 0,1,...,n} c L*R). If
x & [—m, 7], letb(x) = ax(x ) = ylk Ofor k =0,1,...,n. Then{b(x), ar(z); k =
0,1,.. n} C L™(R) and{b(x), ar(z), y*; k =0,1,--- ,n} C L*(R). Definey
b
[ cosz, xe€[-m, ],
¥(z) { 0, z¢|-mn]

Thusv is a wavelet because

sin(w + 1)m N sin(w — 1)m

1
w(w):\/ﬁ[ w+1 w—1 7
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and
0<Cy < oo.

Then the continuous wavelet transformyoivith respect to the wavelet is

<ﬂMme:<[my@m@4@dz

1 la|m+b -
= / y(z) cos <Z > dz.
\/ |CL‘ —la|m+b a

Now, by using Lemma 3.1 we have

00 la|m+x
1 da 1 lalm+b z—0b
b(x) = — / — / —_/ y(z) cos < ) dz
Od) —00 a2 —lalm+x |a‘ ~lalm+b ¢

1 [ da [ 1, (x —b 7T>
= — — ar(x)——=a"" cos + k=) db].
@/ﬁ<§k”wﬂ a 2 )

Then in order to solve the differential equation we only need to solve the integral equa-
tion [24].

4. Using Difference Equations

Suppose) is a scaling function for a multiresolution analysis; } ., ,

Vi = {Z ax@jk(®) : {ountrez € lz(Z)}

keZ

where
djx(x) = 22021 — k).
The orthogonal projection operatfy from L*(R) ontoV; is defined by

Pi(f)(x) =Y (f din)din(x),

kEZ

also we have

lim Py(f) = /.

J—00
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The projectionP;(f) can be considered as an approximationfoét the scale2™.
Therefore, the successive approximations of a given fungtiane defined as the or-
thogonal projection$’;( ) onto the spacé&);. We can choosg € Z such thatP;(f) is
a good approximation of. For very largej we can approximatg¢(z) by P;(f), thatis,

flo) = Pi(f)(@) =D ajrdjul@)

kEZ

where
r=(f,0;r), and ¢,i(x)= 2j/2¢(2j£€ — k).
From the definition of the derivative we have
1) _
f'(x) = lim flot 2]1) @)

J—00 5%

Again for largej we can approximatg¢’(x) by

ray w21 (o) - 1)

Substituting the above values we get

2o z) o)
{Za k23/2¢ 27 (x+21> )—Z@j,ij/2¢(2jx_k)}
-

keZ keZ

> ap2Pe@r+1—k) = ;292 — k:)}

keZ kEZ

= {Z(a3k+l Oéjk)¢]k( )}

kEZ

LetV; = {f € L*(R) : f = constanton,,,Vk € Z} be the space of all functions in
L*(R) which are constants on intervals of the folm. = [277k,277(k + 1)], k € Z.
Then {V},j € Z} is an MRA. The scaling function is given byy = xj01. Now,
consider a simple differential equation

f'@)+bf(x) =0, [f(0)=f,

whereb is a constant real number. The exact solution of the differential equation is

f([E) = foe_bx'
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Now, substituting these results yields

2 1Y (s — ) by | DY ajudin(z)
kez kez
= Z (2jozj,k+1 + (b— 2j)04j,k) P =0,
keZ

taking the inner product with, ,, we get

: . b
2JOéj7n+1 + (b — QJ)OéjJL = 0jnt1 = (1 — 5) O p-

Solving the difference equation we get

b n
Oéj,n = (1 — 2-]) Oéj’()’,

amzw%mzftmwm@wzl ()22 (2 di

where

2—J

= 27/2£(0) ¢(27x) dv = 272 £(0) /TJ Lde =279/2f(0) = 279/2f,.
0 0

Since f(z) is continuous and the integration is taken over a small intééval ], we
can approximatg (x) by f(0) for very large;j. Similarly for «; , we have

k= (f, djx) = /_OO f(x)pjr(x) dx
277 (k+1)
= / f(2)272p(2 2 — k) de = 2792 f(279k).
2-ik

Then, we get

f@ﬂmzmﬁ—gya

ﬂmzﬂﬁ—gf%

for very largej. Taking the limit agi — oo we get

Letk — 27x, then

2 x
foy=tim £, (1-5) = he

which coincides with the exact solution.
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5. Application to Derivatives

In this subsection we will prove that for certain functions the derivative can be written

as
Flx) =Y taf(z—n),

ne”z

wheret,, € R for all n € Z.

Let P, be the space of polynomials which have degree less than or equal teen
t,, can be found by solving a system of linear equations. For exampl¢, 1P, one
can prove that

fa) = g fa+1) = 5 1)

For f € P, we have
fa)= T e+ 2)+ S f )
2 1

Lemma5.1. Let f € L*(R), andf does not vanish ifi-r, 7] almost everywhere, then
f' can be written in the following form:

fl@) =) tuf(z—n),

where .
tn:{ ﬂ, n#0, né¢cZ,
0, n =0.
Proof. Taking the Fourier transform we get

(iw) f(w) = Y tac™™" f(w).

nel

Sincef(w) # 0 a.e. forw € (—, 7), then by cancellingf(w) from both sides we get

(iw) = Ztne’m”.

nel
Taking inner product witle =™, m # 0, we get
/ (iw)e™™ dw = / Z tpe” e dy.
- T nez

Then

21 (cosmm) m — 2sinmm T A
( ) 5 = E tn e et duw.
m .
neZ
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Since{e """} are orthogonal iffi—, 7) andm is an integer, we have

2w (—1)™
(1" _ ont,, and t, =
m m

If m =0, thenty = 0. [ |

Example 5.2. Let f(z) = e Using the definition introduced,
T

(—1)"sin(x — n)
t —_n) =
S tuflo—m) =3 LB
nez n#0
_coszw sin x

= = /'(x).

T 2

Similar results can be found with higher derivatives. For example, for the second

derivative we have
f(@)=> ruf(z—n),

nez
where
2(—1)"+1
B 2 n+#0,n€Z,
Tn = 7T2
-, =0.
3 n

For the third derivative,

(@) =3 raf(z —n),

nez
where
.6 7
Ty = (_]'> <TL_3_E>7 n#()?neZ?
0, n = 0.

For the fourth derivative we get

f(4)(x) = Zrnf(x —n),

nez
where
2 6
A(—1)" (12 _ —4) . n#0,ncz,
_ n n
Ty = 4
T 0
— n = 0.
5 h)

Higher derivatives can also be obtained in a similar procedure.
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There are four main properties of wavelets; namely:
1. They are local in both space and frequency.

2. They satisfy biorthogonality conditions.

3. They provide a multiresolution structure.

4. They provide fast transform algorithms.

Because of these properties wavelets have proven to be useful in the solution of
ordinary differential equations. As proposed by several researchers, wavelets can be
used as basis functions in Galerkin method.

This has proven to work and results in a linear system that is sparse because of the
compact support of wavelets, and that, after preconditioning, has a condition number
independent of problem size because of the multiresolution structure. By using two
pairs of biorthogonal compactly supported wavelets, derivative operator can be diago-
nalized [13]. Like the Fourier transform, wavelets can diagonalize constant coefficient
operators.

The resulting algorithm is slightly faster [19]. Even non constant coefficient op-
erators can be diagonalized with the right choice of basis which yields a much faster
algorithm than classical iterative methods.

6. Wavelet Networks

The idea of combining wavelets and neural networks has resulted in the formulation
of wavelet networks — a feed-forward neural network with one hidden layer of nodes,
whose basis functions are drawn from a family of orthonormal wavelets.

The similarities between the discrete inverse wavelet transform (WT) and a one-
hidden-layer neural network, universal approximation properties of neural network, and
a rich theoretical basis of wavelet and neural networks have resulted in heightened ac-
tivity in wavelet research and applications.

The field of wavelet networks is new, although some sporadic and isolated attempts
have taken place in the recent years to build a theoretical basis and application to vari-
ous fields. There is tremendous potential for its application to new and existing areas.
The use of wavelet network can be traced to application of Gabor wavelets for image
classification. Recent popularity of applications of wavelet networks in speech segmen-
tation, speaker recognition, face tracking, real environment characterization for haptic
displays, forecasting, and prediction of chaotic signals. Zhang [30] used the wavelet
networks to control a robot arm and used a mother wavelet of the form

U(z) = (z"2 — dim(x))e_l/QxTw.

In Szu’s work with regard to the classification of problems and speaker recognition, a
mother wavelet is of the form ,
cos(1.75t)e 1/
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In the literature; combination of sigmoid function has been generalized to polynominal
approximation of sigmoid functions. Wavelet networks are inspired by both the feed-
forward neural networks and the theory of underlying wavelet decompositions. The
basis idea of wavelet decomposition is to expand a generic sfgnalkc L*(R") into a
series of functions by dilating and translating a single mother wavelet. These functions
are then provided to a perception type neural network.

Most work done in wavelet network uses simple wavelets and takes advantage of
only a reduced part of wavelet theory. Zhang and Benveniste [30] have found a link
between the wavelet decomposition theory and neural networks and present a basic
back-propagation wavelet network learning algorithm. Their wavelet network preserves
the universal approximation properties of traditional feed-forward neural networks and
presents an explicit link between the network coefficients and some appropriate trans-
form. It has been shown that a three-layer neural network can approximate any arbitrary
continuous function on a compact set within a predetermined precision 0. In partic-
ular, any arbitrary functionf : R — R, with p continuous derivatives of0, 1) and
|fP(x)| < T, such that the function is equal to zero in some neighborhood of the end-
points, can be approximated by

WE

f@) =) &T(wpr + by),

k=1

whereN is the number of neurons in the hidden layer, is the weight between the input
and hidden layer, and is the weight between the hidden and output layer. The function is
the nonlinearity, for example, sigmoid or Gaussian. The most popular wavelet networks
are based on perception structure, so we can safely say that wavelet networks are a
subset of perception architecture. Wavelet decomposition for approximation is very
similar to a layer neural network. Wavelet networks learning is generally performed
by means of standard learning algorithms; therefore, their study is similar to the study
of any other multilayer neural networks layer. Most wavelet network properties, when
used with standard learning algorithms, are due to the wavelet localization property.

In addition to forming an orthogonal basis, wavelets have the capacity to explicitly
represents the behavior of a function at different resolution of input variables. There-
fore a wavelet network can first be trained to learn the mapping at the coarsest resolution
level and trained to include elements of higher resolutions. The process may be repeated
for finer granularity. This hierarchical, multiresolution training can result in more mean-
ingful interpretation of the resulting mapping and adaptation of network that are more
efficient compared to conventional methods. In addition, the wavelet theory provides
useful guidelines for the construction and initialization of networks and, consequently,
the training times are significantly reduced.

There are two main approaches to form wavelet networks. In the first approach, the
wavelet component is decoupled from the learning component of the perception archi-
tecture. In essence, a signal is decomposed on some wavelet and wavelet coefficients
are fed to the neural network. In the second approach, the wavelet theory and neural
networks are combined into a single method. In wavelet networks, both the position
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and dilation of the wavelet as well as the weights are optimized. Originally, wavelets
referred to neural networks using dyadic wavelets; in wavenets, the position and dilation
of wavelet are fixed and the weights are optimized through a learning process.

The basic neuron of a wavelet network is a multidimensional wavelet in which the
dilation and the translation coefficients are considered as neuron parameters. The output
of a wavelet is therefore a linear combination of several multidimensional wavelets. The
expression

H(m) = H ha,t, (xl)
is a multidimensional wavelet and
hat(x) = h(d* (x — 1))

represents a derived wavelet, whéris the main wavelet. Note that the wavelet neuron
is equivalent to a multidimensional wavelet., x», . . ., z; are assets of input values,
represent a mother wavelet, and each ofithevalues is a derived wavelet.

Here eachH; is a wavelet neuron, the output is given by

N
0 + ZWjHj(.iL’l,QZQ, Ce ,SL’k).

Jj=1

The inputs are labeled,, -, . .., z; and the weights are labeled, w-,...,w,. The
hidden layer consist off;, H,, . . ., H,, wavelet neurons. The output of three layer per-
ception is given by

y(x) = Zwif(aix +b;).

Here f is as activation functions, and, b;, w; are the network weight parameters that
are optimized during learning. A wavelet network has the same structure except that the
function f is replaced by a wavelet representediby

A wavenet in its simplest form corresponds to a feed-forward neural network using
wavelets an activation function

y(z) = Zdi,jfi,j(x) +,

wherey is the average of, d,; are the coefficients of the neural network, ahd a
wavelet. For orthogonal wavelets, a simple gradient descent rule will lead to a global
minimum under the following conditions, if the weights; are optimized. Select an
input data point(o, p) such thaty(py) = oy to the network, then the errdr (k) is
given by
B(k) = (§(a) = Y fiy(@)” = Y _((diy — dig) fiy (@)
d;,j

1]
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Due to orthogonality, the diagonal term vanishes. Differentiafili§) with respect to
d; ;, we get
OE(k)
ad; ;

£
6.1. Theory of Wavelet Networks

A neural network is a parallel dynamic system whose state response to input carries out
processing. Neural networks can be viewed as approximation tools for fitting models
(linear or nonlinear) based on input and output data. They are tool for general approxi-
mation and have been used in black box identification of nonlinear systems.

One of the important concepts in neural network is the interaction between small
scale or large scale phenomena. For example, in neural networks for recognizing a
pattern in digital image, the global (large scale) properties are patterns and the local
(small scale) properties are the values of individual pixel in the image. The situation
is similar for some theorems in calculus which show relationship between infinitesi-
mal properties, local properties, and global properties. For example, the well-known
theorem in calculus: “If the derivative of a functighis positive at every point on an
interval (a,b), then f is monotone increasing on the interval” or “If a differentiable
functions f on the intervala, b) has a local maximum or local minimum atthen its
derivative f’'(c) is zero.” The former statement relates the infinitesimal propertfy atf
every point of the interval (derivative being positive) to the global property of pattern
of f (being monotone increasing). The second statement relates the local propgérty of
(having a local maximum at thatis,f(c) > f(z) for all z in neighborhood of) to the
infinitesimal property off at one point {'(¢) = 0).

Wavelet decomposition of functions is similar to Fourier decomposition of func-
tions but wavelet theory provides a new theory for hierarchical decomposition of func-
tions and multiscale approximation of functions. The basis functiéH$® of Fourier
decomposition have many desirable properties, such as being orthogonal,

<€27rikac7 627rimac> — /627rik‘ac€—27rima:dx — 0, for k 7§ m,

and being eigenvectors of the differential operatofz, that is,

d 2mik i

— (e2mikz) — 9 ikeZﬂka.

() =2r

However, they are not local in space (or timerifis the time variable). The basis
functions used in wavelet decompositions do not behave so niceff4% under the
differential operator//dx (some wavelet functions are not differentiable and the Haar
wavelet is not even continuous), but they are localized in both space (or time) and fre-

. L 1
qguency. The wavelet decomposition of a function is S|mlla<10+ §>-Iayer neural
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network, which is a network of the form
N
g(x) = Zwia(ai X+ b;),
=1

wherew; andb; are real numbers; = (a1, i, .. ., a;,) andx = (21, 2o, ..., x,) are
n
vectors inR", a; - x is the usual Euclidean inner produE a;rrr ando is a certain
continuous monotone increasing function (usually a siéﬁloid function), with
lim o(t) =0, limo(t)=1.
t——o0 t—o0

A sigmoid function can be viewed as a smoothed version of the sign function which
returns—1 for negative input and for nonnegative input.
Some examples for sigmoid functions are

et —e T

fi(x) = tanh(z) =

filw) = T = tanh(s/2),
filz) = %arctan <g:v> ,

2
i) = T—son(e),

where sgi) is a signum function and all the above nonlinear functions are bounded,
monotonic and nondecreasing functions.
Any bounded continuous sigmoid function is discriminatory, which means,

/ o(ax + b)du(x) =0, VaeR" and Vb € R,
[0,1]™

impliesp = 0. If ¢ is continuous and discriminatory, then the finite sums of the form

N
Z wio(a; - x + b;)
i=1

can approximate any continuous function defined onrthdimensional cubgo, 1]".
That means given > 0 and a continuous functiofi defined on0, 1]", there is a finite

sum
N

g(x) = Zwia(ai -x+b;)
i=1
such that
lf(x) —g(x)| <e Vxel0,1]".
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N
In such a case, the set of all finite sums of the fosmw;o(a; - x + b;) is said to be

i=1
dense inC'(]0, 1]*), the space of all continuous functions [on1]".
6.2. Wavelet Network Structure

Wavelet network is a network combining the idea of the feed-forward neural networks
and the wavelet decompositions. Zhang and Benveniste [30] provide an alternative to
the feed-forward neural networks for approximating functions. Wavelet networks use
simple wavelets, and wavelet network learning is performed by the standard back prop-
agation type algorithm as the traditional neural network. The localization property of
wavelet decomposition is reflected in the important properties of wavelet networks.

Wavelet networks can approximate any continuous functiofd olj" and have cer-
tain advantage such as the use of wavelet coefficient as the initial value for back prop-
agation training and possible reduction of the network size while achieving the same
level of approximation. In a feed-forward network, neurons take their inputs from the
previous layer only and send the output to the next layer only. Since the signal goes in
one direction only, the network can compute a result vary quickly.

Basic neurons of a wavelet network are multidimensional wavelets and the neurons
parameters are the dilation and translation coefficient. The output of a wavelet network
is the linear combination of the values of several multidimensional wavelets.

Suppose there is a functiandefined onR™ such that there is a countable debf
the form

U= {Y(Di(x—t;))}

D; is ann x n diagonal matrix with the diagonal vectdy € R", andx, t;, € R", is a
frame which means there exist constaatand B such that

AIFIP <Y e NI < BISIP

acV

for any f € L*(R"). It follows from the frame property that the s6tof all linear
combinations of the elements i is dense inL?(R"). Obviously, the set of all linear
combinations of the form

Zwiw(Di(X —t;)),

where D; andt; are not restricted to those # is a subset of5 and is also dense in
L*(R™). For example, we can usegiven by

¢(X) - 77/)(:L’1, S 7xn) - 1/)5($1>¢5(ZE2) T ¢S($n),

wherey, : R — R is given by
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the first derivative of the Gaussian functien*/2. Note the derivative ob,,

d

“w 2?20 2
dt%(a:)— e (1 —2a).

The wavelet network structure will be of the form

N

hw,z) = Zai¢(Di(X —t:))+9,

i=1

wherea; € R, 1 is a given wavelet functionD; ann x n diagonal matrix,x and
t; € R", andg is the average value gf z), w represents all the parameters

a17a/27'"7an7D17D27"‘7Dnat17t27'°‘atn7 andg

The matrixD; andt; are set by the wavelet decomposition and the weightsre ini-

tially set to be zero. It should be noted that the wavelet decomposition uses the given
D; andt; and finds the weight coefficienis, while the wavelet network tries to adjust

D;, t;, and the weight coefficients; altogether to fit the data. Wavelet networks can be
used for concept learning for a conceptC [0, 1]” by usingf = xs, the characteristic

function of S, that is,
o) = 1 forxe S,
T 0 forx ¢ S.

Givene > 0, there exist

N

9(z) = hw,x) = Zai¢(Di(X —t) +g (6.1)

=1

and D C [0,1]" with measure> 1 — ¢ such thatjg(z) — f(x)| < ¢, Vx € D.

The learning algorithm of a wavelet network modifies the dilation and the translation
coefficient of every wavelet neuron and the coefficient (weight) of a linear combination
of the neurons so that the network closely fits the data. We assume the data is contained
with noise, so the learning algorithm should not seek to interpolate the data points. The
network gg, wheref represents all the parametebs, t; and w;, will be adjusted by

the learning algorithm to minimize a suitable objective function, so that it becomes an
optimization problem. A simple objective function we consider is

C(0) = E(lgo(x) — y[*),

wherex;, andy, are data pairs, that ig,(xx) = yx + m, wheren, is a random noise.
Though a standard gradient descent algorithm can be used, a heavy computation require-
ment makes it not practical in some situations. In practice some other more efficient
algorithms, such as stochastic gradient method, are used. The function computed by the
basic wavelet network model is differentiable with respect to all parameters (dilation
and translation parameter and the weights).
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6.3. Wavelet Network Algorithm

The following algorithm follows the paper of Zhang and Benveniste [30]: Description
of the algorithm to approximate a real valued functjdn) defined on a closed interval
[a, b] by a neural network of the form

N T —t;
E wiw ( 7’) +g
i=1 Si

The algorithm is based on samples of input and output pairg, = f(xx)+ vk, Where
v, IS the random measurement noise gnslthe function the network is to approximate.
Let 6 be the set of all parametegst;, s;, D; be the network defined by

ge(z) = Zwiw(Di(ac —t))+g.

The function
C(0) = E(lgo(2) — yI*)
is the objective function to be minimized. The minimization can be done by various

optimization methods. One method is a stochastic gradient algorithm which recursively
minimizesC'(0) by modifying in the opposite direction of the gradient of

c(0, i, yp) = %(ge(ﬂsz) - yk)2

after each samplery, y). The factorl/2 is put to simplify the formulas in taking the
gradient. The gradient efis the vector

Jc  Oc
VC— (8—91,8—927...>7

more explicitly,

The objective function may have a number of local extrema and we have the usual
difficulty of avoiding being trapped at a local minimum. This problem is addressed in
general optimization literature.

The initialization of the network parametéy;, t;, s;, g) comes from the wavelet
decomposition of the function using input and output measurentenfgz)). The in-
tegral in the formulas for wavelet decomposition are roughly estimated from the discrete
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data. For example; is set to the average value ffx) computed from the measure-
ment. Select a point € [a, b] as follows. Let

a

ool BIELC) olz)

B fab o(x) da’

which is estimated from the measuremeéntf(x)). The pointp is taken by

o(z) =

Y

p= / ’ wp(z) dz.

Thep can be considered as probability density functjothe mean value which is well

, . d . . .
defined except the trivial case wh?fr = 0, that is, whenf is a constant function. In
T

. b— . - .
practice, taken the valugs = p, s; = Ta’ the pointt; divides the intervala, b]

into two parts. We initialize the rest of ands; recursively in each subinterval until all
the parameters are initialized. This requifégo be a power of 2. IV is not a power
of 2 in practice, we apply the recursion as far as possible, then initialize the restof
random for the finest scale.
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