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Valéry Covachev
Department of Mathematics & Statistics,

College of Science, Sultan Qaboos University,
Sultanate of Oman

E-mail: vcovachev@hotmail.com

Abstract

We study historical development of wavelets and introduce basic definitions and
formulations. Wavelets are mathematical tools that cut up data or functions or op-
erators into different frequency components, and then study each component with a
resolution matching to its scale. We discuss different approaches of using wavelets
in the solution of boundary value problems for ordinary differential equations. We
also introduce convenient wavelet representations for the derivatives for certain
functions. A wavelet network is a network combining the idea of the feed-forward
neural networks and the wavelet decomposition. Recent developments and wavelet
network algorithm are discussed.

AMS subject classification:42C40, 34B05, 65T60.
Keywords: Wavelet, networks, multiresolution analysis, orthonormal basis, Fourier
analysis, boundary value problems.

Received November 11, 2006; Accepted December 13, 2006



130 Haydar Akca, Mohammed H. Al-Lail and Valéry Covachev

1. Introduction

Wavelet theory involves representing general functions in terms of simpler building
blocks at different scales and positions. The fundamental idea behind wavelets is to
analyze according to scale. Wavelets are mathematical tools that cut up data or func-
tions or operators into different frequency components, and then study each component
with a resolution matching to its scale. In the history of mathematics, wavelet analy-
sis shows many different origins. Much of the work was performed in the 1930s [18].
Before 1930, the main branch of mathematics leading to wavelets began with Joseph
Fourier with his theory of frequency analysis. In 1909, Haar discovered the simplest
solution and at the same time opened a route leading to wavelets.

The rest of this paper is organized as follows. In Section 1, basic definitions of
multiresolution analysis and construction of wavelets is introduced. The relations be-
tween wavelets and differential equations (ODE) and Wavelet–Galerkin methods for
differential equations is introduced in Section 2. Differential and integral equations are
discussed in Section 3. Section 4 is devoted to difference equations. In Section 5, for
certain functions derivative applications are introduced. The theory of wavelet networks
and the idea of combining wavelets and neural networks are discussed in Section 6.

1.1. Multiresolution Analysis and Construction of Wavelets

The objective of this section is to construct a wavelet system, which is a complete or-
thonormal set inL2(R). The idea of multiresolution analysis is to represent a function
(or signal)f as a limit of successive approximations, each of which is a finer version
of the functionf . The basic principle of the multiresolution analysis (MRA) deals with
the decomposition of the whole function space into individual subspacesVn ⊂ Vn+1.

Definition 1.1. (Multiresolution analysis). A multiresolution analysis (MRA) ofL2(R)
is defined as a sequence of closed subspacesVj of L2(R), j ∈ Z, that satisfy the follow-
ing properties:

1. Monotonicity Vj ⊂ Vj+1, for all j ∈ Z.

2. Dilation property f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1 for all j ∈ Z.

3. Intersection property
⋂

j∈Z
Vj = {0}.

4. Density property
⋃

j∈Z
Vj is dense inL2(R).

5. Existence of a scaling function. There exists a functionφ ∈ V0 such that{φ(x −
n) : n ∈ Z} is an orthonormal basis forV0,

V0 =

{∑

k∈Z
αkφ(x− k) : {αk}k∈Z ∈ l2(Z)

}
.
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Density property means that for anyf ∈ L2(R), there exists a sequence{fn}∞n=1

such that eachfn ∈
⋃

j∈Z
Vj and{fn}∞n=1 converges tof in L2(R), that is,‖fn − f‖ → 0

asn →∞.
The functionφ is called thescaling functionor father waveletof the given MRA.

Sometimes condition 5 is relaxed by assuming that{φ(x− n) : n ∈ Z} is a Riesz basis
for V0. In this case, we have a multiresolution analysis with a Riesz basis. Dilation
condition 2 implies thatf (x) ∈ Vj ⇐⇒ f(2mx) ∈ Vj+m for all j, m ∈ Z. In particular,
f(x) ∈ V0 ⇐⇒ f(2jx) ∈ Vj. Let

φj,k(x) = 2j/2φ(2jx− k).

The orthonormality of the set{φ(x − n) : n ∈ Z} implies that for eachj ∈ Z,
{φj,k(x), k ∈ Z} is an orthonormal set, because changing variables shows that for
j, k,m ∈ Z,

〈φj,k, φj,m〉 = 〈φ0,k, φ0,m〉.
Then{φj,k(x), k ∈ Z} is an orthonormal basis forVj. It follows that for eachj ∈ Z,

Vj =

{∑

k∈Z
αkφj,k(x) : {αk}k∈Z ∈ l2(Z)

}
.

Define the orthogonal projection operatorPj from L2(R) ontoVj by

Pj(f)(x) =
∑

k∈Z
〈f, φj,k〉φj,k(x).

Then we have
lim
j→∞

Pj(f) = f and lim
j→−∞

Pj(f) = 0.

The projectionPj(f) can be considered as an approximation off at the scale2−j.
Therefore, the successive approximations of a given functionf are defined as the or-
thogonal projectionsPj(f) onto the spaceVj. We can choosej ∈ Z such thatPj(f) is
a good approximation off [8,12,26].

The real importance of a multiresolution analysis lies in the simple fact that it en-
ables us to construct an orthonormal basis forL2(R) [8,12,14,17].

In order to prove this statement, we first assume that{Vm} is a multiresolution analy-
sis. SinceV0 ⊂ V1, we defineW0 as the orthogonal complement ofV0 in V1; that is,
V1 = V0

⊕
W0. SinceVm ⊂ Vm+1, we defineWm as the orthogonal complement of

Vm in Vm+1 for everym ∈ Z so that we have

Vm+1 = Vm

⊕
Wm for eachm ∈ Z.

Since Vm → {0} asm → −∞, we see that

Vm+1 = Vm

⊕
Wm =

m⊕

l=−∞
Wl for all m ∈ Z.
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Since
⋃

j∈Z
Vj is dense inL2(R), we may take the limit asm →∞ to obtain

L2(R) =
∞⊕

l=−∞
Wl.

To find an orthonormal wavelet, therefore, all we need to do is to find a functionψ ∈ W0

such that{ψ(x− k) : k ∈ Z} is an orthonormal basis forW0. In fact, if this is the case,
then

{
ψj,k(x) = 2j/2ψ(2jx− k) : k ∈ Z}

is an orthonormal basis forWj for all j ∈ Z
due to the condition in the definition of multiresolution analysis and definition ofWj.
Hence {

ψj,k(x) = 2j/2ψ(2jx− k) : k, j ∈ Z}

is an orthonormal basis forL2(R), which shows thatψ is an orthonormal wavelet onR.
Daubechies has constructed, for an arbitrary integerN , an orthonormal basis for

L2(R) of the form
ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z,

that satisfies the following properties:

1. The support ofψ is contained in [−N +1, N ]. To emphasize this point,ψ is often
denoted byψN .

2. ψN hasγN continuous derivatives, whereγ =

(
1− 1

2
log

2
3

)
= 0.20752, for

largeN [17]. Hence, aCN compactly supported wavelet has a support whose
measure is, roughly,5N .

3. ψN hasN vanishing moments

∫ ∞

−∞
xkψ(x) dx = 0 for k = 0, 1, . . . , N.

Or, equivalently, [
dkψ̂(ξ)

dξk

]

ξ=0

= 0 for k = 0, 1, . . . , N.

The multiresolution analysis (MRA) is well adapted to image analysis. The spaces
Vj that appeared in the definition of an MRA can be interpreted as spaces where an
approximation to the image at thejth level is obtained. In addition, the detail in the
approximation occurring inVj, that is not inVj−1, is stored in the spacesWj−1 which

satisfyVj = Vj−1

⊕
Wj−1. This leads to efficient decomposition and reconstruction

algorithms [5,8,14,26]. Choose an MRA with scalingφ and waveletψ.
The orthogonality property puts a strong limitation on the construction of wavelets.

It is known that the Haar wavelet is the only real valued wavelet that is compactly
supported, symmetric and orthogonal [11].
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Definition 1.2. (Biorthogonal wavelets).Two functionsψ, ψ̃ ∈ L2(R) are called

biorthogonal waveletsif each one of the set{ψj,k : j, k ∈ Z} and
{

ψ̃j,k : j, k ∈ Z
}

is a

Riesz basis ofL2(R) and they are biorthogonal,
〈
ψj,k, ψ̃l,m

〉
= δj,lδk,m for all j, l, k, m ∈ Z.

Now let us replace condition 5 in Definition 1.1 by the following

5′. Existence of a scaling function. There exists a functionφ ∈ V0, such that the set
of functions

{
φj,l(x) = 2j/2φ(2jx− l) : l ∈ Z}

is a Riesz basis ofVj.

As a result, there is a sequence{hk : k ∈ Z} such that the scaling function satisfies
a refinement equation

φ(x) = 2
∑

n∈Z
hnφ(2x− n).

DefineWj as a complementary space ofVj in Vj+1, such thatVj+1 = Vj

⊕
Wj, and

consequently,

L2(R) =
∞⊕

l=−∞
Wl.

A function ψ is a wavelet if the set of function{ψ(x− l) : l ∈ Z} is a Riesz basis of
W0. Then the set of wavelet functions

{
ψj,k(x) = 2j/2ψ(2jx− k) : j, k ∈ Z}

is a Riesz
basis ofL2(R). Since the wavelet is an element ofV1, it satisfies the relation

ψ(x) = 2
∑

n∈Z
gnφ(2x− n).

There are dual functions̃φj,l andψ̃j,l so that the projection operatorsPj andQj ontoVj

andWj, respectively, are given by

Pj(f)(x) =
∑

k∈Z
〈f, φ̃j,k〉φj,k(x),

and
Qj(f)(x) =

∑

k∈Z
〈f, ψ̃j,k〉ψj,k(x).

Then we have
f =

∑

j,k∈Z
〈f, ψ̃j,k〉ψj,k.

Here the definitions of̃φj,k andψ̃j,k are similar to those forφj,k andψj,k. Then, the basis
functions and dual functions are biorthogonal [19],

〈φj,l, φ̃j,k〉 = δl,k and 〈ψj,l, ψ̃m,k〉 = δj,mδl,k.

Note that if the basis functions are orthogonal, they coincide with the dual function and
the projections are orthogonal.



134 Haydar Akca, Mohammed H. Al-Lail and Valéry Covachev

2. Wavelets and Differential Equations

Many applications of mathematics require the numerical approximation of solutions
of differential equations. In this section we will present different approaches of using
wavelets in the solution of boundary value problems for ordinary differential equations.
We consider the class of ordinary differential equation of the form

Lu(x) = f(x) for x ∈ [0, 1],

whereL =
m∑

j=0

aj(x)Dj, and with appropriate boundary conditions onu(x) for x =

0, 1.
There are two major solution techniques. First, if the coefficientsaj(x) of the oper-

ator are constants, then the Fourier transform is well suited for solving these equations
because the complex exponentials are eigenfunctions of a constant coefficient operator
and they form an orthogonal system. As a result, the operator becomes diagonal in the
Fourier basis and can be inverted trivially. If the coefficients are not constant, finite
element or finite difference methods can be used [15].

2.1. Wavelet–Galerkin Methods for Differential Equations

The classical Galerkin methods have the disadvantage that the stiffness matrix becomes
ill conditioned as the problem size grows. To overcome this disadvantage, we use
wavelets as basis functions in a Galerkin method. Then, the result is a linear system that
is sparse because of the compact support of the wavelets, and that, after precondition-
ing, has a condition number independent of problem size because of the multiresolution
structure [1,6,13,15,19,29].

The methods for numerically solving a linear ordinary differential equation come
down to solving a linear system of equations, or equivalently, a matrix equationAx = y.
The system has a unique solutionx for everyy if and only if A is an invertible matrix.
However, in applications there are further issues that are of crucial importance. One of
these has to do with the condition number of a matrixA which measures the stability of
the linear systemAx = y. Let us see an example [15].

Definition 2.1. Let A be ann× n matrix. Define‖A‖ called the operator norm, or just
the norm, ofA by

‖A‖ = sup
‖Az‖
‖z‖ ,

where the supremum is taken over all nonzero vector inCn.
Equivalently,

‖A‖ = sup {‖Az‖ : ‖z‖ = 1, z ∈ Cn} .

Definition 2.2. (Condition number of a matrix). Let A be ann × n matrix. Define
C#(A), the condition number of the matrixA, by

C#(A) = ‖A‖
∥∥A−1

∥∥ .
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If A is not invertible, setC#(A) = ∞.
Note that the condition numberC#(A) is scale invariant [7], that is, forc 6= 0,

C#(cA) = C#(A).

Lemma 2.3. Suppose thatA is ann× n normal invertible matrix. Let

|λ|max = max {|λ| : λ is an eigenvalue ofA}
and

|λ|min = min {|λ| : λ is an eigenvalue ofA} .

Then

C#(A) =
|λ|max

|λ|min

.

The condition number ofA measures how unstable the linear systemAx = y is
under perturbation of the datay. In applications, a small condition number (i.e., near
1) is desirable [15]. If the condition number ofA is high, we would like to replace the
linear systemAx = y by an equivalent systemMz = v whose matrixM has a low
condition number.

We consider the class of ordinary differential equations (known as Sturm–Liouville
equations) of the form

Lu(t) = −a(t)u′′(t)− a′(t)u′(t) + b(t)u(t)

= − d

dt

(
a(t)

du

dt

)
+ b(t)u(t) = f(t)

for 0 ≤ t ≤ 1 with Dirichlet boundary conditions

u(0) = u(1) = 0.

Herea, b, andf are given real-valued functions and we wish to solve foru. We assumef
andb are continuous anda has a continuous derivative on[0, 1] (this always means a one-
sided derivative at the endpoints). Note thatL may be a variable coefficient differential
operator becausea(t) andb(t) are not necessarily constant. We assume that the operator
is uniformly elliptic which means that there exist finite constantsC1, C2, andC3 such
that

0 < C1 ≤ a(t) ≤ C2 and0 ≤ b(t) ≤ C3 (2.1)

for all t ∈ [0, 1]. By a result in the theory of ordinary differential equations, there
is a unique functionu satisfying the differential equation and the boundary conditions
u(0) = u(1) = 0.

For the Galerkin method, we suppose that{vj}j is a complete orthonormal system
for L2[0, 1], and that everyvj is C2 on [0, 1] and it satisfies

vj(0) = vj(1) = 0.



136 Haydar Akca, Mohammed H. Al-Lail and Valéry Covachev

We select some finite setΛ of indicesj and consider the subspace

S = span {vj; j ∈ Λ} .

We look for an approximate solutionu of the form

us =
∑

k∈Λ

xkvk ∈ S,

where eachxk is a scalar. These coefficients should be determined such thatus behaves
like the true solutionu on the subspaceS, that is,

〈Lus, vj〉 = 〈f, vj〉 for all j ∈ Λ.

By linearity, it follows that

〈Lus, g〉 = 〈f, g〉 for all g ∈ S.

Note that the approximate solutionus obviously satisfies the boundary conditionsus(0) =
us(1) = 0.

Using these results we get
〈

L

(∑

k∈Λ

xkvk

)
, vj

〉
= 〈f, vj〉 for all j ∈ Λ,

or ∑

k∈Λ

〈Lvk, vj 〉xk = 〈f, vj〉 for all j ∈ Λ.

Let x denote the vector(xk)k∈Λ, andy be the vector(yk)k∈Λ, whereyk = 〈f, vj〉. Let A
be the matrix with rows and columns indexed byΛ, that is,A = [aj,k]j,k∈Λ, where

aj,k = 〈Lvk, vj〉 .

Thus, we get a linear system of equations

∑

k∈Λ

aj,kxk = yj for all j ∈ Λ, or Ax = y.

In the Galerkin method, for each subsetΛ we obtain an approximationus ∈ S, by solv-
ing the linear system forx and using these components to determineus. We expect that
as we increase our setΛ in some systematic way, our approximationus will converge to
the exact solutionu.

The nature of the linear system results from choosing a wavelet basis for the Galerkin
method. There are two properties that the matrixA in the linear system should have.
First, A should have a small condition number to obtain stability of the solution under
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small perturbations in the data. Second,A should be sparse for quick calculations [15,
16].

There is a way of modifying the wavelet system forL2(R) so as to obtain a complete
orthonormal system {ψj,k}(j,k)∈Γ for L2[0, 1]. See for more details [2, 13, 16] and
references given therein. The setΓ is a certain subset ofZ×Z. For each(j, k) ∈ Λ, ψj,k

∈ C2 and satisfies the boundary conditionsψj,k(0) = ψj,k(1) = 0. The wavelet system
{ψj,k}(j,k)∈Γ also satisfies the following estimate:

There exist constantsC4, C5 > 0 such that for all functionsg of the form

g =
∑

j,k

cj,kψj,k,

where the sum is finite, we have

C4

∑

j,k

22j |cj,k|2 ≤
1∫

0

|g′(t)|2 dt ≤ C5

∑

j,k

22j |cj,k|2 . (2.2)

An estimate of this form is called a norm equivalence. It states that up to the two

constants, the quantities
∑

j,k

22j |cj,k|2 and

1∫

0

|g′(t)|2 dt are equivalent.

For wavelets we write an equation as

us =
∑

(j,k)∈Λ

xj,kψj,k,

and ∑

(j,k)∈Λ

〈Lψj,k, ψl,m〉xj,k = 〈f, ψl,m〉 for all (l,m) ∈ Λ

for some finite set of indicesΛ. We can write the system as a matrix equation of the
form Ax = y, where the vectorsx = (xj,k)(j,k)∈Λ andy = (yj,k)(j,k)∈Λ are indexed by
the pairs(j, k) ∈ Λ, and the matrix

A = [al,m;j,k](l,m),(j,k)∈Λ

defined by
al,m;j,k = 〈Lψj,k, ψl,m〉

has its rows indexed by the pairs(l,m) ∈ Λ and its columns indexed by the pairs
(j, k) ∈ Λ.

As suggested, we would likeA to be sparse and have a low condition number.A
itself does not have a low condition number, however, we can replace the systemAx = y
by an equivalent systemMz = v, for which the new matrixM has low condition
number. To get this, first define the diagonal matrix

D = [dl,m;j,k](l,m),(j,k)∈Λ
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by

dl,m;j,k =

{
2j if (l, m) = (j, k),
0 if (l, m) 6= (j, k).

DefineM = [ml,m;j,k](l,m),(j,k)∈Λ by

M = D−1AD−1.

By writing this out, we get

ml,m;j,k = 2−j−lal,m;j,k = 2−j−l 〈Lψj,k, ψl,m 〉 .

Then, the systemAx = y is equivalent toD−1AD−1Dx = D−1y. If we let z = Dx and
v = D−1y, we getMz = v.

Lemma 2.4. Let L be a uniformly elliptic Sturm–Liouville operator. Supposeg is C2

on [0, 1] and satisfiesg(0) = g(1) = 0. Then

C1

1∫

0

|g′(t)|2 dt ≤ 〈Lg, g〉 ≤ (C2 + C3)

1∫

0

|g′(t)|2 dt,

whereC1, C2, andC3 are the constants in relation (2.1).

Theorem 2.5. ([15, 17])Let L be a uniformly elliptic Sturm–Liouville operator. Let
{ψj,k}(j,k)∈Γ be a complete orthonormal system forL2[0, 1] such that eachψj,k is C2,
satisfiesψj,k(0) = ψj,k(1) = 0, and such that the norm equivalence holds. LetΛ be a
finite subset ofΓ. LetM be the matrix defined in the above equation. Then the condition
number ofM satisfies

C#(M) ≤ (C2 + C3) C5

C1C4

for any finite setΛ, whereC1, C2, andC3 are the constants in relation (2.1), andC4, C5

are the constants in relation (2.2).

Note that the matrices obtained by using finite differences are sparse, but they have
large condition numbers [15]. Using the Galerkin method with the Fourier system, we
can obtain a bounded condition number but the matrix is not sparse. Using the Galerkin
method with a wavelet system, we obtain both advantages [4,6,13,15].

The derivative operator is not diagonal in a wavelet basis [3, 13, 27]. However,
we can make the differential operator diagonal by using two pairs of biorthogonal or
dual bases of compactly supported wavelets [13]. In this case, we have two related
multiresolution spaces{Vj} and{Ṽj} such that

Vj+1 ⊂ Vj, and Ṽj+1 ⊂ Ṽj, for all j ∈ Z,
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corresponding to two scaling functionsφ, φ̃ and two waveletsψ, ψ̃. They are defined by
two trigonometric polynomialsm0 andm̃0, satisfying

m0(w)m̃0(w) + m0(w + π)m̃0(w + π) = 1.

Then we have

φ̂(w) =
1√
2π

∞∏
j=1

m0(2
−jw),

̂̃φ(w) =
1√
2π

∞∏
j=1

m̃0(2
−jw),

also, we have

ψ̂(w) = e−
iw
2 m̃0

(w

2
+ π

)
φ̂

(w

2

)

and
̂̃ψ(w) = e−

iw
2 m0

(w

2
+ π

)̂̃φ
(w

2

)

with 〈ψj,k, ψ̃m,n〉 = δj,mδk,n, where

ψj,k(x) = 2−j/2ψ(2−jx− k), ψ̃j,k(x) = 2−j/2ψ̃(2−jx− k).

It follows that if we construct two pairs of biorthogonal wavelet bases, one usingψ, ψ̃,
and the other usingψ∗, ψ̃∗, then we have

ψ′ = 4ψ∗, or (ψj,k)
′ = 2−j4ψ∗j,k,

and hence 〈
d

dx
ψj,k, ψ̃

∗
m,n

〉
= 2−j4δj,mδk,n.

This means that we have diagonalized the derivative operator. Note that this is not a
“true” diagonalization because we use two different bases. However, this means that we
can find the wavelet coefficients off ′, i.e.,

〈
d

dx
f, ψj,k

〉
= 2−j4

〈
f, ψ∗j,k

〉
.

For more details see [13] and the references therein.
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Another approach of diagonalizing the differential operator, using wavelets, is by
constructing biorthogonal wavelets with respect to the inner product defined by the op-
erator [18,19].

We consider the class of ordinary differential equation of the form

Lu(x) = f(x) for x ∈ [0, 1],

whereL =
m∑

j=0

aj(x)Dj, and with appropriate boundary conditions onu(x) for x =

0, 1. Define the operator inner product associated with an operatorL by

〈〈u, v〉〉 = 〈Lu, v〉 .
An approximate solutionu can be found with a Petrov–Galerkin method, i.e., consider
two spacesS andS∗ and look for a solutionu ∈ S such that

〈〈u, v〉〉 = 〈f, v〉
for all v in S∗. If S andS∗ are finite dimensional spaces with the same dimension, this
leads to a linear system of equations. The matrix of this system, also referred to as the
stiffness matrix, has as elements the operator inner products of the basis functions ofS
andS∗.

We assume thatL is self-adjoint and positive definite and, in particular, we can write

L = V ∗V,

whereV ∗ is the adjoint ofV . We callV the square root operator ofL. Suppose that
{Ψj,l} and

{
Ψ∗

j,l

}
are bases forS andS∗ respectively. The entries of the stiffness matrix

are then given by
〈〈

Ψj,l, Ψ
∗
m,n

〉〉
=

〈
LΨj,l, Ψ

∗
m,n

〉
=

〈
V Ψj,l, V Ψ∗

m,n

〉
.

Now, the idea is to let

Ψj,l = V −1ψj,l and Ψ∗
j,l = V −1ψ̃j,l,

whereψ and ψ̃ are the wavelets of a classical multiresolution analysis. We will call
the Ψ andΨ∗ functions the operator wavelets. Then the operator wavelets are biorthog-
onal with respect to the operator inner product. We want the operator wavelets to be
compactly supported and to be able to construct compactly supported operator scaling
functionsΦj,l. The analysis is relatively straightforward for simple constant coefficient
operators such as the Laplace and polyharmonic operator [19].

Example 2.6. (Laplace operator).Consider the one dimensional Laplace operator

L = −D2.
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Then the square root operatorV is V = D. The associated operator inner product is

〈〈u, v〉〉 = 〈Lu, v〉 = 〈V u, V v〉 = 〈u′, v′〉 .

Since the action ofV −1 is taking the antiderivative, we define the operator wavelets as

Ψ(x) =

∫ x

−∞
ψ(t) dt, and Ψ∗(x) =

∫ x

−∞
ψ̃(t) dt.

Note that the operator waveletsΨ(x) andΨ∗(x) are compactly supported because the
integral of the original wavelets has to vanish. Also translation and dilation invariance
is preserved, so we define

Ψj,l(x) = Ψ(2jx− l) and Ψ∗
j,l(x) = Ψ∗(2jx− l).

Now,
〈〈

Ψ∗
j,l(x), Ψm,n(x)

〉〉
=

〈
V Ψ∗

j,l(x), V Ψm,n(x)
〉

= 2jδj,mδl,n for j, l, m, n ∈ Z.

This means that the stiffness matrix is diagonal with powers of2 on its diagonal. We
now need to find an operator scaling functionΦ. The antiderivative of the original
scaling function is not compactly supported and hence not suited. To find an operator
scaling functionΦ convolute of the original scaling function with the indicator function
χ[0,1], Φ = φ∗χ[0,1], and defineΦj,l(x) = Φ(2jx− l). Similarly for the dual functions
Φ∗ = φ̃ ∗ χ[0,1]. Now, define

Vj = clos span{Φj,k : k ∈ Z} and Wj = clos span{Ψj,k : k ∈ Z} .

We want to show thatVj ⊂ Vj+1 andWj complementsVj in Vj+1. By taking the Fourier
transform we get

Φ̂(w) =
1− e−iw

iw
φ̂(w) and Ψ̂(w) =

1

iw
ψ̂(w).

A simple calculation shows that the operator scaling function satisfies the following
equation

Φ̂(w) = H
(w

2

)
Φ̂

(w

2

)
, with H(w) =

1 + e−iw

2
h(w).

Consequently,Vj ⊂ Vj+1. Also

Ψ̂(w) = G
(w

2

)
Φ̂

(w

2

)
, with G(w) =

1

2(1− e−iw)
g(w),

whereh(w) andg(w) are defined by the previous equations respectively.
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This implies thatWj ⊂ Vj+1. To prove thatWj complementsVj in Vj+1, we have to
prove that

∆(w) = det

[
H(w) H(w + π)
G(w) G(w + π)

]

does not vanish. In fact,

∆(w) = H(w)G(w + π)−H(w + π)G(w)

=
1 + e−iw

2
h(w)

1

2(1− e−i(w+π))
g(w + π)

− 1 + e−i(w+π)

2
h(w + π)

1

2(1− e−iw)
g(w)

=
1

4
h(w)g(w + π)− 1

4
h(w + π)g(w) =

1

4
δ(w),

whereδ(w) = h(w)g(w + π) − h(w + π)g(w), and this cannot vanish sinceφ andψ
generate a multiresolution analysis. ThenWj complementsVj in Vj+1. The construction
of the dual functionsΦ∗ andΨ∗ from φ̃ andψ̃ is completely similar. The coefficients of
the trigonometric functionsH, H∗, G andG∗ now define a fast wavelet transform.

Now, we will describe the algorithm in the case of periodic boundary conditions.
This implies that the basis functions on the interval[0, 1] are just the periodization of
the basis functions on the real line.

Let S = Vn and consider the basis{Φn,l : 0 ≤ l ≤ 2n}. Define vectorsb andx such
that

bl =
〈
f, Φ∗

n,l

〉
, and u =

2n−1∑

l=0

xlΦn,l.

The Galerkin method with this basis then yields a system

Ax = b with Ak,l = 〈〈Φn,l, Φn,k〉〉 .
The matrixA is not diagonal and the condition number grows asO(22n) [19]. Now,
consider the decomposition

Vn = V0 ⊕W0 ⊕ · · · ⊕Wn−1,

and the corresponding wavelet basis. The spaceV0 has dimension one and contains
constant functions. We now switch to a one-index notation such that the sets

{
1, Ψj,l : 0 ≤ j < n, 0 ≤ l < 2j

}
and {Ψk : 0 ≤ k < 2n}

coincide. Now, define the vectorsb̃ andx̃ such that

b̃ = 〈f, Ψ∗
l 〉 and u =

2n−1∑

l=0

x̃lΨl.

There exist matricesT andT ∗ [19] such that̃b = T ∗b andx = T x̃.
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The matrixT ∗ corresponds to the fast wavelet transform decomposition with filters
H∗ andG∗, andT corresponds to reconstruction with filtersH andG. In the wavelet
basis the system becomes

Ãx̃ = b̃ with Ã = T ∗AT and Ãk,l = 〈〈Ψn,l, Ψn,k〉〉 .

SinceÃ is diagonal, it can be trivially inverted and the solution is then given by

x = TÃ−1T ∗b.

Example 2.7. (Helmholtz operator). The one-dimensional Helmholtz operator is de-
fined by

L = −D2 + k2.

Without loss of generality assume thatk = 1 which can always be obtained by a trans-
formation. The square root operator is

V = D + 1 = e−xDex and V −1 = e−xD−1ex.

Note thatV −1ψ will not necessarily give a compactly supported function becauseexψj,l

in general does not have a vanishing integral. Therefore we let

Ψj,l = V −1e−xψj,l = e−xD−1ψj,l.

If ψj,l has a vanishing integral, thenΨj,l is compactly supported.
In order to diagonalize the stiffness matrix, the original wavelets now need to be

orthogonal with respect to a weighted inner product with weight functione−2x:

〈〈
Ψj,l, Ψ

∗
m,n

〉〉
=

〈
V Ψj,l, V Ψ∗

m,n

〉

=
〈
e−xψj,l, e

−xψm,n

〉

=

∫ ∞

−∞
e−2xψj,l(x)ψ̃m,n(x) dx.

To find the wavelet let suppψj,l = [2−jl, 2−j(l + 1)].
Then the orthogonality of the wavelets on each level immediately follows from their

disjoint support. To get orthogonality between two different levels, we need thatVj is
orthogonal toWm for m ≥ j or

∫ ∞

−∞
e−2xφj,l(x)ψ̃m,n(x) dx = 0 for m ≥ j.

Now, let the scaling function coincide withe2x on the support of the finer scale wavelets,

φj,l(x) = e2xχ[j,l],
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whereχ[j,l] is the indicator function on the interval[2−jl, 2−j(l + 1)], normalized so
that the integral of the scaling functions is constant. As in the Haar case we choose the
wavelets as

ψj,l = φj+1,2l − φj+1,2l+1

so that they have vanishing integral. The orthogonality between levels now follows
from the fact that the scaling functions coincide withe2x on the support of the finer
scale wavelets, and from the vanishing integral of the wavelets

∫ ∞

−∞
e−2xφj,l(x)ψ̃m,n(x) dx =

∫ ∞

−∞
χ[j,l]ψ̃m,n(x) dx

=

∫ ∞

−∞
ψ̃m,n(x) dx = 0.

One can see that the operator wavelets are now piecewise combinations ofex ande−x.
The operator scaling functions are chosen as

Φj,l = e−xD−1(φj,l − φj,l+1) so that Ψj,l = Φj+1,2l.

The operator scaling functions on one level are translates of each other but the ones on
different levels are no longer dilates of each other. They are supported on the same sets.
The operator scaling functions satisfy a relation

Φj,l =
2∑

k=0

Hj
kΦj+1,2l+k,

where

Hj
0 = Hj

2 =
sinh(2−j−1)

sinh(2−j)
and Hj

1 = 1.

The Helmholtz operator in this bases of hyperbolic wavelets is diagonal. So we can con-
clude that a wavelet transform can diagonalize constant coefficient operators similar to
the Fourier transform. The resulting algorithm is faster (O(N) instead ofO(N log N))
[19].

Now, how should we use wavelets for variable coefficient operators? Consider the
following operator

L = −Dp2(x)D,

wherep is sufficiently smooth and positive. The square root operator now is

V = pD and V −1 = D−1 1

p
.

The analysis is similar to the case of the Helmholtz operator. ApplyingV −1 directly
to a wavelet does not yield a compactly supported function. Therefore we take
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Ψj,l = V −1pψj,l = D−1ψj,l. Then,

〈〈
Ψj,l, Ψ

∗
m,n

〉〉
=

〈
V Ψj,l, V Ψ∗

m,n

〉
= 〈pψj,l, pψm,n〉

=

∫ ∞

−∞
p2ψj,l(x)ψ̃m,n(x) dx,

which implies that the wavelets need to be biorthogonal with respect to a weighted inner
product withp2 as weight function. We use the same trick as for the Helmholtz operator.

Let the scaling functionφj,l coincide with
1

p2
on the interval[2−jl, 2−j(l + 1)],

φj,l =
1

p2
χ[j,l],

and normalize them so that they have a constant integral. We then take the wavelets

ψj,l = φj+1,2l − φj+1,2l+1,

so they have vanishing integral and the operator wavelets are compactly supported. The
operator waveletsΨj,l are now piecewise functions that locally look like

AP + B,

whereP is the antiderivative of
1

p2
. The operator wavelets are neither dilates nor trans-

lates of one function, since their behavior locally depends onp [19]. The coefficients in
the fast wavelet transform are now different everywhere and they depend in a very sim-

ple way on the Haar wavelet transform of
1

p2
. Then, the entries of the diagonal stiffness

matrix can be calculated from the wavelets transform of
1

p2
. We refer for more details

to [19] and the references cited therein.

3. Differential and Integral Equations

Differential equations can be transformed into integral equations by using the continu-
ous wavelet transform. An abstract proof of the following lemma can be found in [24]
but here we present our proof.

Lemma 3.1. Let ψ ∈ L2(R), with

0 < Cψ =

∞∫

−∞

∣∣∣ψ̂(ξ)
∣∣∣
2

|ξ| dξ < ∞.
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Then for anyf ∈ L2(R) we have

f (k)(x) =
1

Cψ

∞∫

−∞

da

a2

∞∫

−∞

〈f, ψa,b〉 a−kψ(k)
a,b

(x) db,

where

ψa,b(x) =
1√
|a|ψ

(
x− b

a

)
, a, b ∈ R, a 6= 0.

Now, consider the following class of differential equations

n∑

k=0

ak(x)y(k) = b(x),

where {ak(x); k = 0, 1, . . . , n} ⊂ L∞(R), {y(k); k = 0, 1, . . . , n} ⊂ L2(R), and
b(x) ∈ L2(R). Let {ψ(k); k = 0, 1, . . . , n} ⊂ L2(R) with supp(ψ) ⊂ [−L,L].

Using the result of Lemma 3.1, we have

y(k)(x) =
1

Cψ

∞∫

−∞

da

a2

∞∫

−∞

〈y, ψa,b〉 a−kψ(k)
a,b

(x) db

(for k = 0, 1, . . . , n). Then the equation becomes

1

Cψ

∞∫

−∞

da

a2

∞∫

−∞

〈f, ψa,b〉
n∑

k=0

a−kak(x)ψ(k)
a,b

(x) db = b(x).

Then the differential equation is equivalent to an integral equation.

Example 3.2. Consider the differential equation

n∑

k=0

ak(x)y(k) = b(x),

{b(x), ak(x); k = 0, 1, . . . , n} ⊂ C[−π, π], {y(k); k = 0, 1, . . . , n} ⊂ L2(R). If
x /∈ [−π, π], let b(x) = ak(x) = y(k) = 0 for k = 0, 1, . . . , n. Then{b(x), ak(x); k =
0, 1, . . . , n} ⊂ L∞(R) and{b(x), ak(x), y(k); k = 0, 1, · · · , n} ⊂ L2(R). Defineψ
by

ψ(x) =

{
cos x, x ∈ [−π, π],

0, x /∈ [−π, π].

Thusψ is a wavelet because

ψ̂(w) =
1√
2π

[
sin(w + 1)π

w + 1
+

sin(w − 1)π

w − 1

]
,
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and
0 < Cψ < ∞.

Then the continuous wavelet transform ofy with respect to the waveletψ is

(Tψy)(a, b) =

∫ ∞

−∞
y(z)ψa,b(z) dz

=
1√
|a|

∫ ∞

−∞
y(z)ψ

(
z − b

a

)
dz

=
1√
|a|

∫ |a|π+b

−|a|π+b

y(z) cos

(
z − b

a

)
dz.

Now, by using Lemma 3.1 we have

b(x) =
1

Cψ

∞∫

−∞

da

a2




|a|π+x∫

−|a|π+x

[
1√
|a|

∫ |a|π+b

−|a|π+b

y(z) cos

(
z − b

a

)
dz

]


=
1

Cψ

∞∫

−∞

da

a2

(
n∑

k=0

ak(x)
1√
|a|a

−k cos

(
x− b

a
+ k

π

2

)
db

)
.

Then in order to solve the differential equation we only need to solve the integral equa-
tion [24].

4. Using Difference Equations

Supposeφ is a scaling function for a multiresolution analysis{Vj}j∈Z ,

Vj =

{∑

k∈Z
αkφj,k(x) : {αk}k∈Z ∈ l2(Z)

}

where
φj,k(x) = 2j/2φ(2jx− k).

The orthogonal projection operatorPj from L2(R) ontoVj is defined by

Pj(f)(x) =
∑

k∈Z
〈f, φj,k〉φj,k(x),

also we have
lim
j→∞

Pj(f) = f.
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The projectionPj(f) can be considered as an approximation off at the scale2−j.
Therefore, the successive approximations of a given functionf are defined as the or-
thogonal projectionsPj(f) onto the spaceVj. We can choosej ∈ Z such thatPj(f) is
a good approximation off . For very largej we can approximatef(x) by Pj(f), that is,

f(x) ≈ Pj(f)(x) =
∑

k∈Z
αj,kφj,k(x),

where
αj,k = 〈f, φj,k〉, and φj,k(x) = 2j/2φ(2jx− k).

From the definition of the derivative we have

f ′(x) = lim
j→∞

f
(
x + 1

2j

)− f(x)
1
2j

.

Again for largej we can approximatef ′(x) by

f ′(x) ≈ 2j

[
f

(
x +

1

2j

)
− f(x)

]
.

Substituting the above values we get

f ′(x) ≈ 2j

{
f

(
x +

1

2j

)
− f(x)

}

= 2j

{∑

k∈Z
αj,k2

j/2φ

(
2j

(
x +

1

2j

)
− k

)
−

∑

k∈Z
αj,k2

j/2φ(2jx− k)

}

= 2j

{∑

k∈Z
αj,k2

j/2φ(2jx + 1− k)−
∑

k∈Z
αj,k2

j/2φ(2jx− k)

}

= 2j

{∑

k∈Z
(αj,k+1 − αj,k) φj,k(x)

}
.

Let Vj = {f ∈ L2(R) : f = constant onIj,k,∀k ∈ Z} be the space of all functions in
L2(R) which are constants on intervals of the formIj,k = [2−jk, 2−j(k + 1)], k ∈ Z.
Then {Vj, j ∈ Z} is an MRA. The scaling function is given byφ = χ[0,1]. Now,
consider a simple differential equation

f ′(x) + bf(x) = 0, f(0) = f0 ,

whereb is a constant real number. The exact solution of the differential equation is

f(x) = f0e
−bx.
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Now, substituting these results yields

2j

[∑

k∈Z
(αj,k+1 − αj,k) φj,k

]
+ b

∑

k∈Z
αj,kφj,k(x)

=
∑

k∈Z

(
2jαj,k+1 + (b− 2j)αj,k

)
φj,k = 0,

taking the inner product withφj,n we get

2jαj,n+1 + (b− 2j)αj,n = αj,n+1 =

(
1− b

2j

)
αj,n.

Solving the difference equation we get

αj,n =

(
1− b

2j

)n

αj,0,,

where

αj,0 = 〈f, φj,0〉 =

∫ ∞

−∞
f(x)φj,0(x) dx =

∫ 2−j

0

f(x)2j/2φ(2jx) dx

= 2j/2f(0)

∫ 2−j

0

φ(2jx) dx = 2j/2f(0)

∫ 2−j

0

1 dx = 2−j/2f(0) = 2−j/2f0 .

Sincef(x) is continuous and the integration is taken over a small interval[0, 2−j], we
can approximatef(x) by f(0) for very largej. Similarly for αj,k we have

αj,k = 〈f, φj,k〉 =

∫ ∞

−∞
f(x)φj,k(x) dx

=

∫ 2−j(k+1)

2−jk

f(x)2j/2φ(2jx− k) dx = 2−j/2f(2−jk).

Then, we get

f(2−jk) = f0

(
1− b

2j

)k

.

Let k → 2jx, then

f(x) = f0

(
1− b

2j

)2jx

for very largej. Taking the limit asj →∞ we get

f(x) = lim
j→∞

f0

(
1− b

2j

)2jx

= f0e
−bx

which coincides with the exact solution.
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5. Application to Derivatives

In this subsection we will prove that for certain functions the derivative can be written
as

f ′(x) =
∑

n∈Z
tnf(x− n),

wheretn ∈ R for all n ∈ Z.
Let Pk be the space of polynomials which have degree less than or equal tok. Then

tn can be found by solving a system of linear equations. For example, forf ∈ P2 one
can prove that

f ′(x) =
1

2
f(x + 1)− 1

2
f(x− 1).

Forf ∈ P4 we have

f ′(x) =
−1

12
f(x + 2) +

2

3
f(x + 1)

− 2

3
f(x− 1) +

1

12
f(x− 2).

Lemma 5.1. Let f ∈ L2(R), andf̂ does not vanish in[−π, π] almost everywhere, then
f ′ can be written in the following form:

f ′(x) =
∑

n∈Z
tnf(x− n),

where

tn =

{
(−1)n

n
, n 6= 0, n ∈ Z,

0, n = 0.

Proof. Taking the Fourier transform we get

(iw)f̂(w) =
∑

n∈Z
tne−iwnf̂(w).

Sincef̂(w) 6= 0 a.e. forw ∈ (−π, π), then by cancellinĝf(w) from both sides we get

(iw) =
∑

n∈Z
tne−iwn.

Taking inner product withe−iwm, m 6= 0, we get
∫ π

−π

(iw)eiwm dw =

∫ π

−π

∑

n∈Z
tne

−iwneiwm dw.

Then
2π (cos πm) m− 2 sin πm

m2
=

∑

n∈Z
tn

∫ π

−π

e−iwneiwm dw.
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Since{e−iwn} are orthogonal in(−π, π) andm is an integer, we have

2π(−1)m

m
= 2πtm and tm =

(−1)m

m
.

If m = 0, thent0 = 0. ¥

Example 5.2. Let f(x) =
sin x

x
. Using the definition introduced,

∑

n∈Z
tnf(x− n) =

∑

n 6=0

(−1)n

n

sin(x− n)

x− n

=
cos x

x
− sin x

x2
= f ′(x).

Similar results can be found with higher derivatives. For example, for the second
derivative we have

f ′′(x) =
∑

n∈Z
rnf(x− n),

where

rn =





2(−1)n+1

n2
, n 6= 0, n ∈ Z,

−π2

3
, n = 0.

For the third derivative,

f ′′′(x) =
∑

n∈Z
rnf(x− n),

where

rn =





(−1)n

(
6

n3
− π2

n

)
, n 6= 0, n ∈ Z,

0, n = 0.

For the fourth derivative we get

f (4)(x) =
∑

n∈Z
rnf(x− n),

where

rn =





4(−1)n

(
π2

n2
− 6

n4

)
, n 6= 0, n ∈ Z,

π4

5
, n = 0.

Higher derivatives can also be obtained in a similar procedure.
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There are four main properties of wavelets; namely:

1. They are local in both space and frequency.

2. They satisfy biorthogonality conditions.

3. They provide a multiresolution structure.

4. They provide fast transform algorithms.

Because of these properties wavelets have proven to be useful in the solution of
ordinary differential equations. As proposed by several researchers, wavelets can be
used as basis functions in Galerkin method.

This has proven to work and results in a linear system that is sparse because of the
compact support of wavelets, and that, after preconditioning, has a condition number
independent of problem size because of the multiresolution structure. By using two
pairs of biorthogonal compactly supported wavelets, derivative operator can be diago-
nalized [13]. Like the Fourier transform, wavelets can diagonalize constant coefficient
operators.

The resulting algorithm is slightly faster [19]. Even non constant coefficient op-
erators can be diagonalized with the right choice of basis which yields a much faster
algorithm than classical iterative methods.

6. Wavelet Networks

The idea of combining wavelets and neural networks has resulted in the formulation
of wavelet networks — a feed-forward neural network with one hidden layer of nodes,
whose basis functions are drawn from a family of orthonormal wavelets.

The similarities between the discrete inverse wavelet transform (WT) and a one-
hidden-layer neural network, universal approximation properties of neural network, and
a rich theoretical basis of wavelet and neural networks have resulted in heightened ac-
tivity in wavelet research and applications.

The field of wavelet networks is new, although some sporadic and isolated attempts
have taken place in the recent years to build a theoretical basis and application to vari-
ous fields. There is tremendous potential for its application to new and existing areas.
The use of wavelet network can be traced to application of Gabor wavelets for image
classification. Recent popularity of applications of wavelet networks in speech segmen-
tation, speaker recognition, face tracking, real environment characterization for haptic
displays, forecasting, and prediction of chaotic signals. Zhang [30] used the wavelet
networks to control a robot arm and used a mother wavelet of the form

Ψ(x) =
(
xT x− dim(x)

)
e−1/2xT x.

In Szu’s work with regard to the classification of problems and speaker recognition, a
mother wavelet is of the form

cos(1.75t)e−1/2t2 .
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In the literature; combination of sigmoid function has been generalized to polynominal
approximation of sigmoid functions. Wavelet networks are inspired by both the feed-
forward neural networks and the theory of underlying wavelet decompositions. The
basis idea of wavelet decomposition is to expand a generic signalf(x) ∈ L2(Rn) into a
series of functions by dilating and translating a single mother wavelet. These functions
are then provided to a perception type neural network.

Most work done in wavelet network uses simple wavelets and takes advantage of
only a reduced part of wavelet theory. Zhang and Benveniste [30] have found a link
between the wavelet decomposition theory and neural networks and present a basic
back-propagation wavelet network learning algorithm. Their wavelet network preserves
the universal approximation properties of traditional feed-forward neural networks and
presents an explicit link between the network coefficients and some appropriate trans-
form. It has been shown that a three-layer neural network can approximate any arbitrary
continuous function on a compact set within a predetermined precision 0. In partic-
ular, any arbitrary function,f : R → R, with p continuous derivatives on(0, 1) and
|fp(x)| ≤ Γ, such that the function is equal to zero in some neighborhood of the end-
points, can be approximated by

f(x) =
N∑

k=1

ξkT (ωkx + bk),

whereN is the number of neurons in the hidden layer, is the weight between the input
and hidden layer, and is the weight between the hidden and output layer. The function is
the nonlinearity, for example, sigmoid or Gaussian. The most popular wavelet networks
are based on perception structure, so we can safely say that wavelet networks are a
subset of perception architecture. Wavelet decomposition for approximation is very
similar to a layer neural network. Wavelet networks learning is generally performed
by means of standard learning algorithms; therefore, their study is similar to the study
of any other multilayer neural networks layer. Most wavelet network properties, when
used with standard learning algorithms, are due to the wavelet localization property.

In addition to forming an orthogonal basis, wavelets have the capacity to explicitly
represents the behavior of a function at different resolution of input variables. There-
fore a wavelet network can first be trained to learn the mapping at the coarsest resolution
level and trained to include elements of higher resolutions. The process may be repeated
for finer granularity. This hierarchical, multiresolution training can result in more mean-
ingful interpretation of the resulting mapping and adaptation of network that are more
efficient compared to conventional methods. In addition, the wavelet theory provides
useful guidelines for the construction and initialization of networks and, consequently,
the training times are significantly reduced.

There are two main approaches to form wavelet networks. In the first approach, the
wavelet component is decoupled from the learning component of the perception archi-
tecture. In essence, a signal is decomposed on some wavelet and wavelet coefficients
are fed to the neural network. In the second approach, the wavelet theory and neural
networks are combined into a single method. In wavelet networks, both the position
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and dilation of the wavelet as well as the weights are optimized. Originally, wavelets
referred to neural networks using dyadic wavelets; in wavenets, the position and dilation
of wavelet are fixed and the weights are optimized through a learning process.

The basic neuron of a wavelet network is a multidimensional wavelet in which the
dilation and the translation coefficients are considered as neuron parameters. The output
of a wavelet is therefore a linear combination of several multidimensional wavelets. The
expression

H(x) =
∏

i

hditi(xi)

is a multidimensional wavelet and

hd,t(x) = h(d ∗ (x− t))

represents a derived wavelet, whereh is the main wavelet. Note that the wavelet neuron
is equivalent to a multidimensional wavelet.x1, x2, . . . , xk are assets of input values,H
represent a mother wavelet, and each of thehd,t values is a derived wavelet.

Here eachHi is a wavelet neuron, the output is given by

θ +
N∑

j=1

ωjHj(x1, x2, . . . , xk).

The inputs are labeledx1, x2, . . . , xk and the weights are labeledω1, ω2, . . . , ωn. The
hidden layer consist ofH1, H2, . . . , Hn wavelet neurons. The output of three layer per-
ception is given by

y(x) =
N∑

i=1

ωif(aix + bi).

Heref is as activation functions, andai, bi, ωi are the network weight parameters that
are optimized during learning. A wavelet network has the same structure except that the
functionf is replaced by a wavelet represented byH.

A wavenet in its simplest form corresponds to a feed-forward neural network using
wavelets an activation function

y(x) =
∑
i,j

di,jfi,j(x) + ȳ,

whereȳ is the average ofy, di,j are the coefficients of the neural network, andf is a
wavelet. For orthogonal wavelets, a simple gradient descent rule will lead to a global
minimum under the following conditions, if the weightsdi,j are optimized. Select an
input data point(ok, pk) such thaty(pk) = ok to the network, then the errorE(k) is
given by

E(k) =
(
ŷ(x)−

∑

di,j

fi,j(x)
)2

=
∑
i,j

((d̂i,j − di,j)fi,j(x))2.
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Due to orthogonality, the diagonal term vanishes. DifferentiatingE(k) with respect to
d̂i,j, we get

∂E(k)

∂di,j

∣∣∣∣
xk

= 2d̂i,j(ŷ(xk)− y(xk)).

6.1. Theory of Wavelet Networks

A neural network is a parallel dynamic system whose state response to input carries out
processing. Neural networks can be viewed as approximation tools for fitting models
(linear or nonlinear) based on input and output data. They are tool for general approxi-
mation and have been used in black box identification of nonlinear systems.

One of the important concepts in neural network is the interaction between small
scale or large scale phenomena. For example, in neural networks for recognizing a
pattern in digital image, the global (large scale) properties are patterns and the local
(small scale) properties are the values of individual pixel in the image. The situation
is similar for some theorems in calculus which show relationship between infinitesi-
mal properties, local properties, and global properties. For example, the well-known
theorem in calculus: “If the derivative of a functionf is positive at every point on an
interval (a, b), then f is monotone increasing on the interval” or “If a differentiable
functionsf on the interval(a, b) has a local maximum or local minimum atc, then its
derivativef ′(c) is zero.” The former statement relates the infinitesimal property off at
every point of the interval (derivative being positive) to the global property of pattern
of f (being monotone increasing). The second statement relates the local property off
(having a local maximum atc, that is,f(c) ≥ f(x) for all x in neighborhood ofc) to the
infinitesimal property off at one point (f ′(c) = 0).

Wavelet decomposition of functions is similar to Fourier decomposition of func-
tions but wavelet theory provides a new theory for hierarchical decomposition of func-
tions and multiscale approximation of functions. The basis functionse2πikx of Fourier
decomposition have many desirable properties, such as being orthogonal,

〈e2πikx, e2πimx〉 =

∫
e2πikxe−2πimxdx = 0, for k 6= m,

and being eigenvectors of the differential operatord/dx, that is,

d

dx

(
e2πikx

)
= 2πike2πikx.

However, they are not local in space (or time ifx is the time variable). The basis
functions used in wavelet decompositions do not behave so nicely ase2πikx under the
differential operatord/dx (some wavelet functions are not differentiable and the Haar
wavelet is not even continuous), but they are localized in both space (or time) and fre-

quency. The wavelet decomposition of a function is similar to

(
1 +

1

2

)
-layer neural
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network, which is a network of the form

g(x) =
N∑

i=1

ωiσ(ai · x + bi),

whereωi andbi are real numbers,ai = (ai1, ai2, . . . , ain) andx = (x1, x2, . . . , xn) are

vectors inRn, ai · x is the usual Euclidean inner product
n∑

k=1

aikxk andσ is a certain

continuous monotone increasing function (usually a sigmoid function), with

lim
t→−∞

σ(t) = 0, lim
t→∞

σ(t) = 1.

A sigmoid function can be viewed as a smoothed version of the sign function which
returns−1 for negative input and1 for nonnegative input.

Some examples for sigmoid functions are

fi(x) = tanh(x) =
ex − e−x

ex + e−x
,

fi(x) =
1− e−x

1 + e−x
= tanh(x/2),

fi(x) =
2

π
arctan

(π

2
x
)

,

fi(x) =
x2

1 + x2
sgn(x),

where sgn(·) is a signum function and all the above nonlinear functions are bounded,
monotonic and nondecreasing functions.

Any bounded continuous sigmoid function is discriminatory, which means,
∫

[0,1]n
σ(ax + b)dµ(x) = 0, ∀a ∈ Rn and ∀b ∈ R,

impliesµ = 0. If σ is continuous and discriminatory, then the finite sums of the form

N∑
i=1

ωiσ(ai · x + bi)

can approximate any continuous function defined on then-dimensional cube[0, 1]n.
That means givenε > 0 and a continuous functionf defined on[0, 1]n, there is a finite
sum

g(x) =
N∑

i=1

ωiσ(ai · x + bi)

such that
|f(x)− g(x)| < ε ∀x ∈ [0, 1]n.
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In such a case, the set of all finite sums of the form
N∑

i=1

ωiσ(ai · x + bi) is said to be

dense inC([0, 1]n), the space of all continuous functions on[0, 1]n.

6.2. Wavelet Network Structure

Wavelet network is a network combining the idea of the feed-forward neural networks
and the wavelet decompositions. Zhang and Benveniste [30] provide an alternative to
the feed-forward neural networks for approximating functions. Wavelet networks use
simple wavelets, and wavelet network learning is performed by the standard back prop-
agation type algorithm as the traditional neural network. The localization property of
wavelet decomposition is reflected in the important properties of wavelet networks.

Wavelet networks can approximate any continuous function on[0, 1]n and have cer-
tain advantage such as the use of wavelet coefficient as the initial value for back prop-
agation training and possible reduction of the network size while achieving the same
level of approximation. In a feed-forward network, neurons take their inputs from the
previous layer only and send the output to the next layer only. Since the signal goes in
one direction only, the network can compute a result vary quickly.

Basic neurons of a wavelet network are multidimensional wavelets and the neurons
parameters are the dilation and translation coefficient. The output of a wavelet network
is the linear combination of the values of several multidimensional wavelets.

Suppose there is a functionψ defined onRn such that there is a countable setΨ of
the form

Ψ = {ψ(Di(x− ti))},
Di is ann × n diagonal matrix with the diagonal vectordi ∈ Rn, andx, ti ∈ Rn, is a
frame which means there exist constantsA andB such that

A‖f‖2 ≤
∑
α∈Ψ

|〈α, f〉|2 ≤ B‖f‖2

for any f ∈ L2(Rn). It follows from the frame property that the setS of all linear
combinations of the elements inΨ is dense inL2(Rn). Obviously, the set of all linear
combinations of the form

N∑
i=1

ωiψ(Di(x− ti)),

whereDi and ti are not restricted to those inΨ is a subset ofS and is also dense in
L2(Rn). For example, we can useψ given by

ψ(x) = ψ(x1, . . . , xn) = ψs(x1)ψs(x2) · · ·ψs(xn),

whereψs : R→ R is given by

ψs(x) = −xe−x2/2,
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the first derivative of the Gaussian functione−x2/2. Note the derivative ofψs,

d

dt
ψs(x) = −e−x2/2(1− x2).

The wavelet network structure will be of the form

h(ω, x) =
N∑

i=1

aiψ(Di(x− ti)) + ḡ,

whereai ∈ R, ψ is a given wavelet function,Di an n × n diagonal matrix,x and
ti ∈ Rn, andḡ is the average value ofg(x), ω represents all the parameters

a1, a2, . . . , an, D1, D2, . . . , Dn, t1, t2, . . . , tn, andḡ.

The matrixDi andti are set by the wavelet decomposition and the weightsωi are ini-
tially set to be zero. It should be noted that the wavelet decomposition uses the given
Di andti and finds the weight coefficientsωi, while the wavelet network tries to adjust
Di, ti, and the weight coefficientsωi altogether to fit the data. Wavelet networks can be
used for concept learning for a conceptS ⊂ [0, 1]n by usingf = χS, the characteristic
function ofS, that is,

f(x) =

{
1 for x ∈ S,
0 for x /∈ S.

Givenε > 0, there exist

g(x) = h(ω,x) =
N∑

i=1

aiψ(Di(x− ti)) + ḡ (6.1)

and D ⊂ [0, 1]n with measure≥ 1 − ε such that|g(x) − f(x)| < ε, ∀x ∈ D.
The learning algorithm of a wavelet network modifies the dilation and the translation
coefficient of every wavelet neuron and the coefficient (weight) of a linear combination
of the neurons so that the network closely fits the data. We assume the data is contained
with noise, so the learning algorithm should not seek to interpolate the data points. The
network gθ, whereθ represents all the parametersDi, ti andωi, will be adjusted by
the learning algorithm to minimize a suitable objective function, so that it becomes an
optimization problem. A simple objective function we consider is

C(θ) = E(|gθ(x)− y|2),
wherexk andyk are data pairs, that is,f(xk) = yk + ηk, whereηk is a random noise.
Though a standard gradient descent algorithm can be used, a heavy computation require-
ment makes it not practical in some situations. In practice some other more efficient
algorithms, such as stochastic gradient method, are used. The function computed by the
basic wavelet network model is differentiable with respect to all parameters (dilation
and translation parameter and the weights).
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6.3. Wavelet Network Algorithm

The following algorithm follows the paper of Zhang and Benveniste [30]: Description
of the algorithm to approximate a real valued functionf(x) defined on a closed interval
[a, b] by a neural network of the form

N∑
i=1

ωiψ

(
x− ti

si

)
+ ḡ.

The algorithm is based on samples of input and output pairsxk, yk = f(xk)+vk, where
vk is the random measurement noise andf is the function the network is to approximate.
Let θ be the set of all parametersḡ, ti, si, Di be the network defined by

gθ(x) =
N∑

i=1

ωiψ(Di(x− ti)) + ḡ.

The function
C(θ) = E(|gθ(x)− y|2)

is the objective function to be minimized. The minimization can be done by various
optimization methods. One method is a stochastic gradient algorithm which recursively
minimizesC(θ) by modifying in the opposite direction of the gradient of

c(θ, xk, yk) =
1

2
(gθ(xk)− yk)

2

after each sample(xk, yk). The factor1/2 is put to simplify the formulas in taking the
gradient. The gradient ofc is the vector

∇c =

(
∂c

∂θ1

,
∂c

∂θ2

, . . .

)
,

more explicitly,

∂c

∂ḡ
= gθ(xk)− yk,

∂c

∂ωi

= (gθ(xk)− yk)ψ(Di(x− ti)),

...

The objective function may have a number of local extrema and we have the usual
difficulty of avoiding being trapped at a local minimum. This problem is addressed in
general optimization literature.

The initialization of the network parameter(ωi, ti, si, ḡ) comes from the wavelet
decomposition of the function using input and output measurements(x, f(x)). The in-
tegral in the formulas for wavelet decomposition are roughly estimated from the discrete
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data. For example,̄g is set to the average value off(x) computed from the measure-
ment. Select a pointp ∈ [a, b] as follows. Let

%(x) =

∣∣∣∣
df

dx

∣∣∣∣ , ρ(x) =
%(x)∫ b

a
%(x) dx

,

which is estimated from the measurement(x, f(x)). The pointp is taken by

p =

∫ b

a

xρ(x) dx.

Theρ can be considered as probability density function,p the mean value which is well

defined except the trivial case when
df

dx
≡ 0, that is, whenf is a constant function. In

practice, taken the valuest1 = p, s1 =
b− a

2
, the pointt1 divides the interval[a, b]

into two parts. We initialize the rest ofti andsi recursively in each subinterval until all
the parameters are initialized. This requiresN to be a power of 2. IfN is not a power
of 2 in practice, we apply the recursion as far as possible, then initialize the rest ofti at
random for the finest scale.
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