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Abstract

The renowned Jensen inequality is established on time scales as follows:

f

(∫ b
a |h(s)|g(s)∆s∫ b

a |h(s)|∆s

)
≤

∫ b
a |h(s)|f(g(s))∆s∫ b

a |h(s)|∆s
,

if f , g andh satisfy some suitable conditions.
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1. Introduction

The Jensen inequality [9] is of great interest in differential and difference equations, and
other areas of mathematics. The original Jensen inequality is as follows:

If g ∈ C([a, b], (c, d)) andf ∈ C((c, d),R) are convex, then

f

(∫ b

a
g(s)ds

b− a

)
≤

∫ b

a
f(g(s))ds

b− a
.

Many authors have dealt with this renowned inequality, see, for example, Agarwal et
al. [1] and the references therein. The Jensen inequality has been extended to time
scales by Agarwal, Bohner, and Peterson as follows (see [1,3]):

Theorem 1.1. If g ∈ Crd([a, b], (c, d)) andf ∈ C((c, d),R) are convex, then

f

(∫ b

a
g(s)∆s

b− a

)
≤

∫ b

a
f(g(s))∆s

b− a
.

The purpose of this paper is to generalize Theorem 1.1 to a more general case. For
related results, we refer to [4,8,9].

Now, we briefly introduce the time scales calculus and refer to Aulbach and Hilger
[2] and Hilger [6] and the books [3,7] for further details.

By a time scaleT we mean any closed subset ofR with order and topological struc-
ture present in a canonical way. Since a time scaleT may or may not be connected, we
need the concept of jump operators.

Definition 1.2. Let t ∈ T, whereT is a time scale. The two mappings

σ, ρ : T→ R

satisfying
σ(t) = inf{s ∈ T|s > t}, ρ(t) = sup{s ∈ T|s < t}

are called the jump operators. Ifσ(t) > t, t is right-scattered. Ifρ(t) < t, t is left-
scattered. Ifσ(t) = t, t is right-dense. Ifρ(t) = t, t is left-dense.

Definition 1.3. A mappingf : T → R is said to be rd-continuous if it satisfies the
following two conditions:

(A) f is continuous at each right-dense point or maximal element ofT,

(B) the left-sided limit lim
s→t−

f(s) = f(t−) exists at each left-dense pointt of T.

Throughout this paper, we suppose that

(a) R = (−∞, +∞);
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(b) T is a time scale;

(c) an interval means the intersection of a real interval with the given time scale;

(d)
Crd(T,R) := {f | f : T→ R is an rd-continuous function};

(e)

Tκ :=

{
T− {m}, if T has a left-scattered maximal pointm,
T, otherwise.

Definition 1.4. If f : T→ R, thenfσ : T→ R is defined by

fσ(t) = f(σ(t))

for all t ∈ T.

Definition 1.5. Assumex : T → R and fix t ∈ Tκ. We definex∆(t) as the number
(provided it exists) with the property that given anyε > 0, there is a neighborhoodU of
t such that

|[x(σ(t))− x(s)]− x∆(t)[σ(t)− s]| < ε|σ(t)− s|,
for all s ∈ U . Herex∆(t) is said to be thedelta derivative of x at t.

It can be shown that ifx : T → R is continuous att ∈ T andt is right-scattered,
then

x∆(t) =
x(σ(t))− x(t)

σ(t)− t
.

Definition 1.6. A function F : T → R is an antiderivative off : T → R if F∆(t) =
f(t) for all t ∈ Tκ. In this case, we define the integral off by

∫ t

s

f(τ) ∆τ = F (t)− F (s)

for s, t ∈ T.

2. Main Result

To establish our main result, we need the following lemma which is [5, Exercise 3.42C].

Lemma 2.1. Let f ∈ C((c, d),R) be convex. Then, for eacht ∈ (c, d), there exists
at ∈ R such that

f(x)− f(t) ≥ at(x− t) for all x ∈ (c, d).

If f is strictly convex, then the inequality sign “≥” in the above inequality should be
replaced by “>”.

We are in a position to state and prove our main result.



116 Fu-Hsiang Wong, Cheh-Chih Yeh and Wei-Cheng Lian

Theorem 2.2. (Jensen’s inequality on time scales)Let g ∈ Crd([a, b], (c, d)) and
h ∈ Crd([a, b],R) with ∫ b

a

|h(s)|∆s > 0,

wherea, b ∈ T andc, d ∈ R. If f ∈ C((c, d),R) is convex, then

f

(∫ b

a
|h(s)|g(s)∆s∫ b

a
|h(s)|∆s

)
≤

∫ b

a
|h(s)|f(g(s))∆s∫ b

a
|h(s)|∆s

.

If f is strictly convex, then the inequality sign “≤” in the above inequality should be
replaced by “<”.

Proof. Sincef is convex, it follows from Lemma 2.1 that for eacht ∈ (c, d), there
existsat ∈ R such that

f(x)− f(t) ≥ at(x− t)

for all x ∈ (c, d). Let

t =

∫ b

a
|h(s)|g(s)∆s∫ b

a
|h(s)|∆s

.

Thus,

∫ b

a

|h(s)|f(g(s))∆s−
(∫ b

a

|h(s)|∆s

)
f

(∫ b

a
|h(s)|g(s)∆s∫ b

a
|h(s)|∆s

)

=

∫ b

a

|h(s)|f(g(s))∆s−
(∫ b

a

|h(s)|∆s

)
f(t)

=

∫ b

a

|h(s)|{f(g(s))− f(t)}∆s

≥ at

∫ b

a

|h(s)|{g(s)− t}∆s

= at

{∫ b

a

|h(s)|g(s)∆s− t

∫ b

a

|h(s)|∆s

}

= at

{∫ b

a

|h(s)|g(s)∆s−
∫ b

a

|h(s)|g(s)∆s

}

= 0,

which completes our proof. ¥

Letting T = R or T = Z in Theorem 2.2, we have the following two corollaries
which improve [8, Theorems 2 and 3 on p. 109], respectively.
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Corollary 2.3. (T = R) Let g, h : [a, b] → R be integrable with
∫ b

a

|h(x)|dx > 0. If

f ∈ C((c, d),R) is convex, then

f

(∫ b

a
|h(x)|g(x)dx∫ b

a
|h(x)|dx

)
≤

∫ b

a
|h(x)|f(g(x))dx∫ b

a
|h(x)|dx

,

whereg([a, b]) ⊆ (c, d).

Corollary 2.4. (T = Z) Let f be a convex function. Then for anyx1, x2, . . . , xn and

c1, c2, . . . , cn ∈ Z with
n∑

k=1

ck > 0,

f




n∑
k=1

ckxk

n∑
k=1

ck


 ≤

n∑
k=1

ckf(xk)

n∑
k=1

ck

.

Remark 2.5. If the condition “f is convex” is changed into “f is concave”, then the
inequality signs of the conclusions in the above theorems and corollaries should be
replaced by “≥”.

Remark 2.6. Let g(t) ≥ 0 on [a, b] andf(t) = tα on [0, +∞) in Theorem 2.2. It is
clear thatf is convex on[0, +∞) for α < 0 or α > 1, andf is concave on[0, +∞) for
α ∈ (0, 1). Therefore,

(∫ b

a
|h(s)|g(s)∆s∫ b

a
|h(s)|∆s

)α

≤
∫ b

a
|h(s)|gα(s)∆s∫ b

a
|h(s)|∆s

, if α < 0 or α > 1;

(∫ b

a
|h(s)|g(s)∆s∫ b

a
|h(s)|∆s

)α

≥
∫ b

a
|h(s)|gα(s)∆s∫ b

a
|h(s)|∆s

, if α ∈ (0, 1).

Remark 2.7. Let g(t) > 0 on [a, b] andf(t) = ln(t) on (0, +∞) in Theorem 2.2. It is
clear thatf is concave on(0, +∞). Therefore,

ln

(∫ b

a
|h(s)|g(s)∆s∫ b

a
|h(s)|∆s

)
≥

∫ b

a
|h(s)| ln(g(s))∆s∫ b

a
|h(s)|∆s

.
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3. Applications

Applying Jensen’s inequality (Theorem 2.2), we have the following three theorems.

Theorem 3.1. Let p, h ∈ Crd([a, b], [0,∞)) with
∫ b

a

p(s)h(s)∆s > 0 and
∫ b

a

p(s)

h(s)
∆s > 0. Then

∫ b

a
p(s)
h(s)

ln(h(s))∆s
∫ b

a
p(s)
h(s)

∆s
<

∫ b

a
p(s)h(s) ln(h(s))∆s∫ b

a
p(s)h(s)∆s

.

Proof. Sincef(x) = − ln(x) is strictly convex, it follows from the Jensen inequality
(Theorem 2.2) that

f

(∫ b

a
p(s) 1

h(s)
∆s

∫ b

a
p(s)∆s

)
<

∫ b

a
p(s)f( 1

h(s)
)∆s

∫ b

a
p(s)∆s

.

That is,

− ln

( ∫ b

a
p(s)
h(s)

∆s
∫ b

a
p(s)∆s

)
<
− ∫ b

a
p(s) ln( 1

h(s)
)∆s

∫ b

a
p(s)∆s

,

which implies

ln

(∫ b

a
p(s)∆s∫ b

a
p(s)
h(s)

∆s

)
<

∫ b

a
p(s) ln (h(s))∆s∫ b

a
p(s)∆s

.

Thus, ∫ b

a
p(s)∆s∫ b

a
p(s)
h(s)

∆s
< exp

(∫ b

a
p(s) ln (h(s))∆s∫ b

a
p(s)∆s

)
.

Similarly,
∫ b

a
p(s)h(s)∆s∫ b

a
p(s)∆s

=

∫ b

a
p(s)h(s)∆s∫ b

a
p(s)h(s)

h(s)
∆s

< exp

(∫ b

a
p(s)h(s) ln (h(s))∆s∫ b

a
p(s)h(s)∆s

)
.

It follows from this and Jensen’s inequality with respect to the strictly convex function
exp that

exp

(∫ b

a
p(s)
h(s)

ln (h(s))∆s
∫ b

a
p(s)
h(s)

∆s

)
<

∫ b

a
p(s)
h(s)

exp (ln (h(s)))∆s
∫ b

a
p(s)
h(s)

∆s

=

∫ b

a
p(s)
h(s)

h(s)∆s
∫ b

a
p(s)
h(s)

∆s
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=

∫ b

a
p(s)∆t∫ b

a
p(s)
h(s)

∆s
< exp

(∫ b

a
p(s) ln (h(s))∆s∫ b

a
p(s)∆s

)
<

∫ b

a
p(s) exp (ln (h(s)))∆s∫ b

a
p(s)∆s

=

∫ b

a
p(s)h(s)∆s∫ b

a
p(s)∆s

< exp

(∫ b

a
p(s)h(s) ln (h(s))∆s∫ b

a
p(s)h(s)∆s

)
,

which completes the proof. ¥

Theorem 3.2. (Ḧolder’s inequality) Let h, f, g ∈ Crd([a, b], [0,∞)) with
∫ b

a

h(x)gq(x)∆x > 0.

If
1

p
+

1

q
= 1 with p > 1, then

∫ b

a

h(x)f(x)g(x)∆x ≤
(∫ b

a

h(x)f p(x)∆x

) 1
p
(∫ b

a

h(x)gq(x)∆x

) 1
q

.

Proof. Taking f(x) = xp and letting g, |h(x)| be replaced byfg−
q
p , hgq in

Theorem 2.2, respectively, we obtain




∫ b

a

h(x)gq(x)f(x)g−
q
p (x)∆x

∫ b

a

h(x)gq(x)∆x




p

≤

∫ b

a

h(x)gq(x)
(
f(x)g−

q
p (x)

)p
∆x

∫ b

a

h(x)gq(x)∆x

.

This and
1

p
+

1

q
= 1 imply

∫ b

a

h(x)f(x)g(x)∆x ≤
(∫ b

a

h(x)f p(x)∆x

) 1
p
(∫ b

a

h(x)gq(x)∆x

) 1
q

.

Theorem 3.3. Let h, f, g ∈ Crd

(
[a, b], [0,∞)). Then

(a) [(∫ b

a

hf∆x

)r

+

(∫ b

a

hg∆x

)r
] 1

r

≤
∫ b

a

h(f r + gr)
1
r ∆x, if r > 1 ;

(b)

[(∫ b

a

hf∆x

)r

+

(∫ b

a

hg∆x

)r
] 1

r

≥
∫ b

a

h(f r + gr)
1
r ∆x, if 0 < r < 1 .
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Proof. (a) Clearly,ϕ(x) = (1 + xr)
1
r is convex on(0,∞). Hence, by Theorem 2.2,

[
1 +

(∫ b

a

h(x)f(x)∆x

)r
] 1

r

≤
∫ b

a

h(x)(1 + f r(x))
1
r ∆x .

Letting h andf be replaced by
hf∫ b

a
hf∆x

and
g

f
in the above inequality, respectively,

we get our desired result.
Similarly, we can prove case (b). ¥
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