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Abstract

We prove that a general system of variational difference equations is uniformly
exponentially stable if and only if certain associated sets are of the second cate-
gory. We also deduce necessary and sufficient conditions for uniform exponential
stability of systems with uniformly bounded coefficients. We apply our results for
the study of exponential stability of linear skew-product flows, generalizing some
stability theorems recently obtained in [A. L. Sasu, Math. Ineq. Appl. 7 (2004),
535-541].
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1. Introduction

In recent years, important attempts have been made to study asymptotic properties of
evolution equations in infinite-dimensional spaces. Significant progress has been made in
this direction pointing out that an impressive list of the classical problems can be treated
in the unified setting of linear skew-product flows (see [3, 7, 11–13, 15, 17, 18]. Among
the techniques used in the study of qualitative properties, the theory of function spaces
became a valuable tool, providing new applicability areas (see [1,2,4–7,9,10,12–16,18]).
The idea of characterizing the exponential stability of semigroups in terms of Banach
function spaces goes back to the paper of Neerven (see [9]). The main result in [9] states
that a C0-semigroup {T (t)}t≥0 is uniformly exponentially stable if and only if there is a
Banach function space B with lim

t→∞ FB(t) = ∞ such that for every x ∈ X, the mapping

t �→ ||T (t)x|| lies in B. Later, the author generalized his theorem using category type
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arguments in [10]. Neerven’s results in [9] were generalized at the non-autonomous case
(see [2, 6]) and also at the variational case (see [7]). A new approach was given in [18],
considering a general class of Banach sequence spaces (B, | · |B) with the properties

inf
n∈N

|χ{n}|B > 0 and sup
n∈N

|χ{0,...,n}|B = ∞. (1.1)

The main result in [18] states that a system of variational difference equations is uniformly
exponentially stable if and only if there exists a Banach sequence space B with the
properties (1.1) such that the set of all vectors with the corresponding orbits uniformly
contained in B, is of the second category.

In what follows we will continue the study begun in [18]. We associate with a system
(A) of variational difference equations on a Banach space X general sets of vectors in
X with certain properties. We prove that (A) is uniformly exponentially stable if and
only if the associated sets are of the second category. After that, we consider the case of
systems of variational difference equations with uniformly bounded coefficients and we
give necessary and sufficient conditions for their uniform exponential stability. Finally,
we apply our main results in order to deduce characterizations for uniform exponential
stability of linear skew-product flows, generalizing the main results in [7, 12, 13].

2. Preliminaries

In this section we recall some basic properties of Banach sequence spaces. Let S be the
linear space of all sequences s : N → R. For every set A ⊂ N we denote by χA the
characteristic function of A. We recall that a linear subspace B of S is a normed linear
space if there is a mapping | · |B : B → R+ such that

(i) |s|B = 0 if and only if s = 0;

(ii) if |s| ≤ |u|, then |s|B ≤ |u|B ;

(iii) |αs|B = |α| |s|B , for all (α, s) ∈ R × B;

(iv) |s + u|B ≤ |s|B + |u|B , for all s, u ∈ B.

Moreover if (B, | · |B) is complete, then B is called a Banach sequence space.

Example 2.1. [Orlicz sequence spaces] Let ϕ : R+ → [0, ∞] be a non-decreasing,
left continuous function which is not identically 0 or ∞ on (0, ∞). The function

Yϕ(t) =
∫ t

0
ϕ(s) ds

is called the Young function associated with ϕ. For every s ∈ S we consider

Mϕ(s) :=
∞∑

n=0

Yϕ(|s(n)|).
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The set Oϕ of all sequences with the property that there exists k > 0 such that Mϕ(ks) <

∞ is easily checked to be a linear space. With respect to the norm |s|ϕ := inf{k > 0 :
Mϕ(s/k) ≤ 1}, Oϕ is a Banach sequence space, called Orlicz sequence space.

Remark 2.2. If p ∈ [1, ∞) and ϕp : R+ → R+, ϕp(t) = ptp−1, then Oϕp
= �p(N, R).

Remark 2.3. If

ψ : R+ → [0, ∞], ψ(t) =
{

0 , t ∈ [0, 1]
∞ , t > 1

then Oψ = �∞(N, R).

Remark 2.4. If ϕ(0) = 0 and ϕ(t) ∈ (0, ∞), for all t > 0, then Oϕ has the properties

inf
n∈N

|χ{n}|ϕ > 0 and sup
n∈N

|χ{0,...,n}|ϕ = ∞.

For proof details we refer to [6, Proposition 2.1].

3. Exponential Stability for Variational Difference Equations

Let X be a real or complex Banach space. The norm on X and on L(X), the Banach
algebra of all bounded linear operators on X, will be denoted by || · ||. Let (�, d) be a
metric space and let J ∈ {N, Z}.

We recall that a discrete flow on � is a mapping σ : � × J → � with σ(θ, 0) = θ

and σ(θ, m + n) = σ(σ(θ, m), n), for all (θ, m, n) ∈ � × J 2.
Let {A(θ)}θ∈� ⊂ L(X). We consider the linear system of variational difference

equations

(A) x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ � × N.

The discrete cocycle associated with the system (A) is

	 : � × N → L(X), 	(θ, n) =
{

A(σ(θ, n − 1)) . . . A(θ) , n ∈ N
∗

I , n = 0

where I denotes the identity operator on X.

Remark 3.1. We observe that 	(θ, m+n) = 	(σ(θ, n), m)	(θ, n), for all (θ, m, n) ∈
� × N

2.

Definition 3.2. We say that the system (A) is uniformly exponentially stable if the
discrete cocycle associated with (A) is uniformly exponentially stable, i.e., there are two
constants K, ν > 0 such that ||	(θ, n)|| ≤ Ke−νn, for all (θ, n) ∈ � × N.

Let F be the set of all continuous non-decreasing functions f : R+ → R+ with
f (0) = 0 and f (t) > 0, for all t > 0.
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Theorem 3.3. Let f ∈ F and let p ∈ N
∗. If 	 is the discrete cocycle associated with

(A), then the set

F =

x ∈ X : sup

θ∈�

∞∑
j=0

f (||	(θ, j)x||) ≤ p




is closed.

Proof. For every (θ, h) ∈ � × N, let

Fθ,h =

x ∈ X :

h∑
j=0

f (||	(θ, j)x||) ≤ p


 .

We prove that Fθ,h is closed, for all (θ, h) ∈ � × N.
Let (θ, h) ∈ � × N and x ∈ Fθ,h. Then there exists a sequence (xn) ⊂ Fθ,h such

that xn → x. Let a := sup
n∈N

||xn|| and b := max{||	(θ, j)|| : j ∈ {0, . . . , h}}. Since f

is continuous on [0, ab], it is uniformly continuous on [0, ab].
Let ε > 0. There is δ > 0 such that for every s, s′ ∈ [0, ab] with |s − s′| < δ we

have

|f (s) − f (s′)| <
ε

h + 1
. (3.1)

Let l ∈ N be such that ||xl − x|| < δ/b. Then for every j ∈ {0, . . . , h},
||	(θ, j)xl||, ||	(θ, j)x|| ∈ [0, ab] and | ||	(θ, j)xl|| − ||	(θ, j)x|| | < δ. Using
(3.1) it follows that

h∑
j=0

f (||	(θ, j)x||) ≤
h∑

j=0

f (||	(θ, j)xl||) + ε. (3.2)

Since xl ∈ Fθ,h from (3.2) we obtain that

h∑
j=0

f (||	(θ, j)x||) ≤ p + ε.

Since ε was arbitrary, we deduce that x ∈ Fθ,h, so Fθ,h is closed. Taking into account
that

F =
⋂
θ∈�

⋂
h∈N

Fθ,h,

the proof is complete. �
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The first main result of this section is:

Theorem 3.4. The system (A) is uniformly exponentially stable if and only if there is
f ∈ F with lim

t→∞ f (t) = ∞ such that the set

L =

x ∈ X : sup

θ∈�

∞∑
j=0

f (||	(θ, j)x||) < ∞



is of the second category.

Proof. Necessity. Consider f (t) = t , for all t ≥ 0 and an easy computation shows that
L = X.

Sufficiency. For every p ∈ N
∗, let

Fp =

x ∈ X : sup

θ∈�

∞∑
j=0

f (||	(θ, j)x||) ≤ p


 .

Then, we have that L =
∞⋃

p=1

Fp. Moreover, from Theorem 3.3 we obtain that Fp is

closed, for every p ∈ N
∗. Since L is a set of the second category, it follows that there is

q ∈ N
∗ such that the interior of the set Fq is not empty. This yields that there are x0 ∈ X

and r > 0 such that D(x0, r) = {x ∈ X : ||x − x0|| ≤ r} ⊂ Fq . It follows that

sup
θ∈�

∞∑
j=0

f (||	(θ, j)x||) ≤ q, ∀x ∈ D(x0, r). (3.3)

Since lim
t→∞ f (t) = ∞, there is γ > 0 such that f (t) > q, for all t ≥ γ . Then, from

(3.3) we deduce that

||	(θ, j)x|| ≤ γ, ∀x ∈ D(x0, r), ∀(θ, j) ∈ � × N.

Let x ∈ X \ {0} and (θ, j) ∈ � × N. Using the above relation we have that∥∥∥∥	(θ, j)
r

||x|| x|| ≤ ||	(θ, j)

(
x0 + r

||x|| x

)∥∥∥∥ + ||	(θ, j)x0)|| ≤ 2γ

which shows that

||	(θ, j)x|| ≤ 2γ

r
||x||, ∀(x, θ) ∈ X × �, ∀j ∈ N.

Let Of be the Orlicz space associated with f and let Yf be the associatedYoung function.
For every (x, θ) ∈ X × �, let

sx,θ : N → R+, sx,θ (n) = ||	(θ, n)x||.
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Let λ = max{1, (2γ q/r) · (||x0|| + r)}. If x ∈ D(x0, r) and θ ∈ �, then

Yf

(
1

λ
sx,θ (n)

)
≤ 1

λ
||	(θ, n)x|| f

(
1

λ
sx,θ (n)

)

≤ 1

q
f (||	(θ, n)x||), ∀n ∈ N. (3.4)

Thus from (3.3) and (3.4) we deduce that Mf (sx,θ/λ) ≤ 1, which shows that sx,θ ∈ Of

and |sx,θ |f ≤ λ, for all (x, θ) ∈ D(x0, r) × �. Now, we consider the set

S :=
{
x ∈ X : sup

θ∈�

|sx,θ |f < ∞
}

and we have that D(x0, r) ⊂ S. So S is a set of the second category. By applying
[Theorem 2.1] [18] for B = Of and using Remark 2.4, we obtain that the system (A) is
uniformly exponentially stable. �

Theorem 3.5. Let ϕ : N×R+ → R+ be a function with ϕ(n, ·) ∈ F and lim
t→∞ ϕ(n, t) =

∞, for all n ∈ N. If the set

Q =

x ∈ X : ∃α(x) ∈ N such that sup

θ∈�

∞∑
j=0

ϕ(α(x), ||	(θ, j)x||) < ∞



is of the second category, then the system (A) is uniformly exponentially stable.

Proof. For every n ∈ N, let ϕn = ϕ(n, ·) and let

Qn :=

x ∈ X : sup

θ∈�

∞∑
j=0

ϕn(||	(θ, j)x||) < ∞

 .

Then Q =
⋃
n∈N

Qn. According to our hypothesis, we deduce that there is h ∈ N such

that Qh is a set of the second category. By applying Theorem 3.4 for f = ϕh we obtain
the conclusion. �

In the second part of this section, we will focus on systems (A) with uniformly
bounded coefficients, i.e.,

sup
θ∈�

||A(θ)|| < ∞.

Theorem 3.6. A system (A) with uniformly bounded coefficients is uniformly exponen-
tially stable if and only if there is a function g ∈ F and an unbounded sequence (kn)

with sup
n∈N

|kn+1 − kn| < ∞ such that the set

B :=

x ∈ X : sup

θ∈�

∞∑
j=0

g(||	(θ, kj )x||) < ∞



is of the second category.
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Proof. Necessity. We consider g(t) = t , for all t ≥ 0 and kn = n, for all n ∈ N. Then
B = X.

Sufficiency. Without loss of generality we may assume that (kn) is increasing. Using
similar arguments as in the proof of Theorem 3.3, we obtain that for every n ∈ N

∗, the
set

Bn =

x ∈ X : sup

θ∈�

∞∑
j=0

g(||	(θ, kj )x||) ≤ n




is closed. Since B =
⋃

n∈N∗
Bn, it follows that there is m ∈ N

∗ such that the interior of Bm

is not empty. Thus, there is x0 ∈ X and r > 0 such that

sup
θ∈�

∞∑
j=0

g(||	(θ, kj )x||) ≤ m, ∀x ∈ D(x0, r). (3.5)

Let L = max{1, sup
θ∈�

||A(θ)||}. Let h ∈ N
∗ be such that m < hg(1). If p = sup

n∈N

(kn+1 −
kn), we set γ = Lph.

Let (y, θ) ∈ D

(
0,

r

γ

)
× �. If n ≥ h, from

∥∥∥∥	(θ, kn)

(
x0

γ
+ y

)∥∥∥∥ ≤ ||	(θ, kj )(x0 + γy)||, ∀j ∈ {n − h + 1, . . . , n}

using (3.5) it follows that

h g

(∥∥∥∥	(θ, kn)

(
x0

γ
+ y

)∥∥∥∥
)

≤
n∑

j=n−h+1

g(||	(θ, kj )(x0 + γy)||) ≤ m.

Since g is non-decreasing and m < h g(1), we deduce that∥∥∥∥	(θ, kn)

(
x0

γ
+ y

)∥∥∥∥ ≤ 1, ∀y ∈ D

(
0,

r

γ

)
, ∀n ≥ h. (3.6)

Let x ∈ X \ {0}. Then, using (3.6) we obtain that∥∥∥∥	(θ, kn)
rx

γ ||x||
∥∥∥∥ ≤

∥∥∥∥	(θ, kn)

(
x0

γ
+ rx

γ ||x||
)∥∥∥∥ +

∥∥∥∥	(θ, kn)
x0

γ

∥∥∥∥ ≤ 2.

Setting M1 = 2γ /r it follows that

||	(θ, kn)x|| ≤ M1 ||x||, ∀(x, θ) ∈ X × �, ∀n ≥ h. (3.7)

For n ∈ {0, . . . , h − 1} we have that ||	(θ, kn)|| ≤ Lk0+p(h−1). Setting M =
max{M1, L

k0+p(h−1)}, using (3.7) we deduce that

||	(θ, kn)|| ≤ M, ∀(θ, n) ∈ � × N. (3.8)
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For every (x, θ) ∈ X × � let

ux,θ : N → R+, ux,θ (n) = ||	(θ, kn)x||.
Let Og be the Orlicz space associated with g. Using relations (3.5) and (3.8) and
employing similar arguments to those in the proof of Theorem 3.4 we obtain that for
every (x, θ) ∈ D(x0, r) × �, ux,θ ∈ Og and sup

θ∈�

|ux,θ |g < ∞, for all x ∈ D(x0, r). By

applying [18, Corollary 2.1] for B = Og, we deduce that the system (A) is uniformly
exponentially stable. �

Theorem 3.7. Let (A) be a system with uniformly bounded coefficients. Let � : N ×
R+ → R+ be a function with ψ(n, ·) ∈ F , for all n ∈ N. For every p ∈ N let (k

p

j )j∈N

be an unbounded sequence with sup
j∈N

|kp

j+1 − k
p

j | < ∞. If

H =
{
x ∈ X : ∃α(x), p(x) ∈ N such that

sup
θ∈�

∞∑
j=0

ψ(α(x), ||	(θ, k
p(x)

j )x||) < ∞
}

is a set of the second category, then (A) is uniformly exponentially stable.

Proof. For every m, n ∈ N, let

Hn,m =

x ∈ X : sup

θ∈�

∞∑
j=0

�(n, ||	(θ, km
j )x||) < ∞


 .

Then H =
⋃
n,m

Hn,m. Since H is of the second category, there are n0, m0 such that Hn0,m0

is of the second category. By applying Theorem 3.6 for g = �(n0, ·) and kj = k
m0
j , for

all j ∈ N, we deduce that the system (A) is uniformly exponentially stable. �

4. Applications for Uniform Exponential Stability of
Linear Skew-Product Flows

Let X be a real or complex Banach space and let (�, d) be a metric space.
Let J ∈ {R+, R}. A flow on � is a mapping σ : � × J → � with σ(θ, 0) = θ , for

all θ ∈ � and σ(θ, t + s) = σ(σ(θ, t), s), for all (θ, t, s) ∈ � × J 2.
Let σ be a flow on �. A pair π = (	, σ) is called a linear skew-product flow on

E = X × � if the mapping 	 : � × R+ → L(X) has the properties: 	(θ, 0) = I ,
	(θ, t + s) = 	(σ(θ, t), s)	(θ, t), for all (θ, t, s) ∈ � × R

2+, and there are M, ω > 0
such that ||	(θ, t)|| ≤ Meωt , for all (θ, t) ∈ � × R+. Moreover, if σ is continuous
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and for every x ∈ X, the mapping t �→ 	(θ, t)x is continuous, then we say that π is
strongly continuous.

Definition 4.1. A linear skew-product flow π = (	, σ) is uniformly exponentially stable
if there are K, ν > 0 such that ||	(θ, t)|| ≤ Ke−νt , for all (θ, t) ∈ � × R+.

Remark 4.2. Let π = (	, σ) be a linear skew-product flow on X×�. For every θ ∈ �

let A(θ) = 	(θ, 1). Then, considering the system of variational difference equations

(Aπ) x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ � × N

we have that the discrete cocycle associated with the system (Aπ) is 	Aπ
(θ, n) =

	(θ, n), for all (θ, n) ∈ � × N. So π is uniformly exponentially stable if and only
if the system (Aπ) is uniformly exponentially stable.

Theorem 4.3. Let π = (	, σ) be a linear skew-product flow on X × �. Then π is
uniformly exponentially stable if and only if there is a function g ∈ F and an unbounded
sequence (tn) ⊂ (0, ∞) with sup

n∈N

|tn+1 − tn| < ∞ such that the set

R =

x ∈ X : sup

θ∈�

∞∑
j=0

g(||	(θ, tj )x||) < ∞



is of the second category.

Proof. Necessity is immediate.
Sufficiency. Let kn = [tn] + 1, for all n ∈ N. By applying Theorem 3.6 and Remark

4.2, we obtain the conclusion. �

Remark 4.4. A different proof of Theorem 4.3 was given in [12, Theorem 3.1].

Theorem 4.5. Let π = (	, σ) be a linear skew-product flow on X × �. Then π is
uniformly exponentially stable if and only if there is a function F : N × R+ → R+ with
F(n, ·) ∈ F , for all n ∈ N such that the set

W =
{
x ∈ X : ∃α(x) ∈ N such that

sup
θ∈�

∫ ∞

0
F(α(x), ||	(θ, t)x||) dt < ∞

}

is a set of the second category.

Proof. Necessity is immediate, taking F(n, t) = t , for all (n, t) ∈ N × R+.
Sufficiency. Let M, ω > 0 be given. We define

� : N × R+ → R+, �(n, t) = F

(
n,

t

Meω

)
.
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We observe that

∞∑
k=0

�(n, ||	(θ, k + 1)x||) ≤
∫ ∞

0
F(n, ||	(θ, t)x||) dt, ∀(n, θ) ∈ N × �.

According to our hypothesis, we deduce that the set

S =
{
x ∈ X : ∃α(x) ∈ N such that

sup
θ∈�

∞∑
j=0

�(α(x), ||	(θ, j + 1)x||) < ∞
}

is a set of the second category. By applying Theorem 3.7 and Remark 4.2, we obtain
that π is uniformly exponentially stable. �

Remark 4.6. The above theorem generalizes a stability result proved in [13,
Theorem 3.2].
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