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Abstract

Some classes of stochastic fractional integro-partial differential equations are in-
vestigated. Mild solutions of the nonlocal Cauchy problem for the considered
classes are studied. The Leray–Schauder principle is used to establish the exis-
tence of stochastic solutions. The uniqueness of the solution of the considered
problem is also studied under suitable conditions.
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1. Introduction

Many physical models are represented by semi-linear stochastic fractional integro-partial
differential systems of the form

∂αu(x, t)

∂tα
= L(x,D)u(x, t) + f(u(x, t)) +

∫ t

0

g(u(x, s))dW (s), (1.1)

with the nonlocal condition

u(x, 0) = ϕ(x) +

p∑
i=1

ciu(x, ti), (1.2)

where0 < α ≤ 1, 0 ≤ t1 < t2 < · · · < tp, x is an element of then-dimensional

Euclidean spaceRn, D = (D1, . . . , Dn), Di =
∂

∂xi

, i = 1, . . . , n, W (t) is a standard
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Brownian motion defined over the filtered probability space(Ω, F, Ft, P ), u ∈ Rk and
{Ft : 0 ≤ t ≤ T} is a right-continuous, increasing family of subσ-algebras ofF .

Let H be the space of allk-dimensional vectors of functions defined onRn such that

∫

Rn

k∑
i=1

u2
i (x)dx < ∞, u = (u1, . . . , uk).

A scalar product(u, v) in H is defined by

(u, v)H =
k∑

i=1

∫

Rn

ui(x)vi(x)dx.

If S = {V (x, t, ω) : Ω → H|0 ≤ t ≤ T} is a stochastic process, then we shall write for
simplicity V (x, t) andVt : [0, T ] → H in place ofS.

The collection of all strongly measurableH-valued random variables denoted by
L2(Ω, H) is a Banach space equipped with the norm

‖Vt‖L2(Ω,H) = [E ‖Vt(ω)‖2
H ]

1
2 , E(g) =

∫

Ω

g(ω)dP,

whereE(g) is the expectation ofg. It is assumed that

L(x,D) = L0(x,D) + L1(x,D),

where
L0(x,D) =

∑

|q|=2m

Aq(x)Dq, L1(x,D) =
∑

|q|<2m

Aq(x)Dq,

Dq = Dq1

1 · · ·Dqn
n , q = (q1, . . . , qn) is a multi index,|q| = q1 + · · · + qn, and{Aq(x) :

|q| ≤ 2m} is a family of deterministic square matrices of orderk. Following Petrovsky
it is assumed that

det{(−1)mL0(x, σ)− λI} = 0

has roots which satisfy the inequalityReλ < −δ, δ > 0 for all x ∈ Rn, t ≥ 0 and for
any real vectorσ, σ2

1 + · · · + σ2
n = 1, [2]. If B is a matrix of orderm × n, then we

introduce|B| by

|B| =
∑
i,j

|bij|.

It is assumed that the coefficients ofL(x,D) are bounded onRn and satisfy the Ḧolder
condition (with exponentγ ∈ (0, 1]). It is well known that there exists a fundamental
matrix solutionZ(x, y, t), which satisfies the system

∂Z(x, y, t)

∂t
= L(x,D)Z(x, y, t), t > 0, x, y ∈ Rn.
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This fundamental matrix satisfies the inequality

|DqZ(x, y, t)| ≤ K1t
−ρ1 exp(−K2ρ2), (1.3)

|q| ≤ 2m, ρ1 = −n + |q|
2m

, ρ2 =
n∑

i=1

|xi − yi|λt−
1

2m−1 ,

λ =
2m

2m− 1
, (K1 > 0 andK2 > 0 are constants).

The set{vt ∈ C([0, T ]; L2(Ω, H)) : vt is Ft adapted} is denoted byC([0, T ]; H), where
C([0, T ]; H) denotes the space ofk-dimensional vectors of continuous functions from
[0, T ] into H equipped with norm

‖v‖C = sup
t∈[0,T ]

[E ‖vt‖2
H ]

1
2 .

The purpose of this paper is to study the mild solutions of the nonlocal Cauchy problem
(1.1), (1.2), assuming thatϕ is anF0-measurableH-valued stochastic process. The
results in this note may be regarded as a generalization of some recent results developed
in [3–11,14,16,17].

In Section 2, we shall find the mild solutions of the nonlocal Cauchy problem (1.1),
(1.2).

The nonlocal Cauchy problem (1.1), (1.2) has applications in many fields such as
viscoelasticity and electromagnetic theory, [1,12,13,15,18].

2. Stochastic Integral Equation

A slightly modified version of the nonlocal Cauchy problem (1.1), (1.2) is considered.
Using the definitions of the fractional derivatives and integrals, it is suitable to rewrite
the considered problem in the form

u(x, t) = u(x, 0) +
1

Γ(α)

∫ t

0

(t− θ)α−1L(x,D)u(x, θ)dθ

+
1

Γ(α)

∫ t

0

(t− θ)α−1f(u(x, θ))dθ

+
1

Γ(α)

∫ t

0

∫ θ

0

(t− θ)α−1g(u(x, s))dW (s)dθ. (2.1)

Let Z(t) be the operator defined onH, for everyt > 0, by

Z(t)ϕ =

∫

Rn

Z(x, y, t)ϕ(y)dy.

According to condition (1.3), there is a positive constantM such that

‖Z(t)‖H ≤ M. (2.2)
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Let us consider the integrals of the operator-valued functions

ψ(t) =

∫ ∞

0

ξα(θ)Z(tαθ)dθ,

ψ∗(t) = α

∫ ∞

0

θtα−1ξα(θ)Z(tαθ)dθ,

whereξα(θ) is a probability density function defined on[0,∞] (see [3]). It is supposed
that

cM < 1, wherec =

p∑
i=1

|ci|. (2.3)

Theorem 2.1. If u ∈ C([0, T ]; H) is an Ft-adapted stochastic process that satisfies
equation (2.1) a.s. [p], thenu satisfies the equation (a.s. [p])

u(x, t) = (ψ(t)Λ−1ϕ)(x)

+ ψ(t)Λ−1

p∑
i=1

ci

∫ ti

0

(ψ∗(ti − η)f(u))(x, η)dη

+ ψ(t)Λ−1

p∑
i=1

ci

∫ ti

0

∫ η

0

(ψ∗(ti − η)g(u))(x, s)dW (s)dη

+

∫ t

0

(ψ∗(t− η)f(u))(x, η)dη

+

∫ t

0

∫ η

0

(ψ∗(t− η)g(u))(x, s)dW (s)dη, (2.4)

whereΛ = I −
p∑

i=1

ciψ(ti), I is the identity operator.

Proof. Using (2.2) and (2.3), we find that the inverse operatorΛ−1 exists. Using the
results in [3], the solution of equation (2.1) can be written in the form (a.s. [p])

u(x, t) =

∫ ∞

0

∫

Rn

Z(x, y, tαθ)ξα(θ)u(y, 0)dydθ

+ α

∫ t

0

∫ ∞

0

∫

Rn

θ(t− η)α−1ξα(θ)Z(x, y, (t− η)αθ)f(u(y, η))dydθdη

+ α

∫ t

0

∫ ∞

0

∫

Rn

θ(t− η)α−1ξα(θ)Z(x, y, (t− η)αθ)

×
∫ η

0

g(u(y, s))dW (s)dydθdη.



On Some Stochastic Fractional Integro-Differential Equations 53

It is easy to see that (a.s. [p])
p∑

i=1

ciu(x, ti) =

(
Λ−1

p∑
i=1

ciψ(ti)ϕ

)
(x)

+ Λ−1

p∑
i=1

(
ci

∫ ti

0

ψ∗(ti − η)f(u)

)
(x, y)dη

+ Λ−1

p∑
i=1

(
ci

∫ ti

0

∫ η

0

ψ∗(ti − η)g(u)

)
(x, s)dW (s)dη. (2.5)

Using (1.2) and (2.5), one gets (a.s. [p])

(ψ(t)ϕ)(x) +

(
ψ(t)

p∑
i=1

ciu

)
(xi, ti) = (ψ(t)Λ−1ϕ)(x)

+ ψ(t)Λ−1

p∑
i=1

ci

∫ ti

0

(ψ∗(ti − η)f(u))(x, η)dη

+ ψ(t)Λ−1

p∑
i=1

ci

∫ ti

0

∫ η

0

(ψ∗(ti − η)g(u))(x, s)dW (s)dη.

Hence the required result follows. ¥

Now we define a mild solution of equation (2.1) to be anFt- adapted stochastic
processu ∈ ([0, T ]; H) which satisfies equation (2.4), a.s. [p].

Theorem 2.2. If ‖f‖C + ‖g‖C ≤ K for all u ∈ Sγ = {u ∈ C([0, T ]; H) ‖u‖C ≤ γ}
and if

ME(
∥∥Λ−1ϕ

∥∥
H

) + KM2T α
∥∥Λ−1

∥∥
H

+ KMT α + MKT 1+α + KM2T 1+α ≤ γ,

(2.6)

whereK andγ are positive constants, then there exists a mild solution of equation (2.1),
a.s. [p].

Proof. Let Q be a map defined onSγ by

(Qu)(x, t) = (ψ(t)Λ−1ϕ)(x)

+ ψ(t)Λ−1

p∑
i−1

ci

∫ ti

0

(ψ∗(ti − η)f(u)(x, η)dη

+ ψ(t)Λ−1

p∑
i−1

ci

∫ ti

0

∫ η

0

(ψ∗(ti − η)g(u)(x, s)dW (s)dη

+

∫ t

0

(ψ∗(t− η)f(u))(x, η)dη +

∫ t

0

∫ η

0

(ψ∗(t− η)g(u)(x, s)dW (s)dη.
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Using (2.6) and noting that
∫ ∞

0

θξα(θ)dθ = 1, one gets,

E(‖Qut‖H) ≤ γ,

where

‖vt‖2
H =

∫

Rn

k∑
i=1

v2
i (x, t)dx.

ThusQ mapsC([0, T ]; H) into itself. For0 ≤ t1 < t2 ≤ T , we have

E ‖Qut1 −Qut2‖H

≤ [E(
∥∥Λ−1ϕ

∥∥
H

) + 2cKTα
∥∥Λ−1

∥∥
H

] ‖ψ(t1)− ψ(t2)‖H

+ 2K

∫ t2

t1

‖ψ∗(t− η)‖H dη + 2M

∫ t1

0

‖ψ∗(t1 − η)− ψ∗(t2 − η)‖H dη. (2.7)

It can be proved that

‖[ψ(t2)− ψ(t1)]w‖H ≤ αM [log t2 − log t1] ‖w‖H . (2.8)

Consequently‖ψ(t2)− ψ(t1)‖H tends to zero ass tends tot. Similarly

lim
t1→t2

∫ t1

0

‖ψ∗(t2 − η)− ψ∗(t1 − η)‖H dη = 0, (2.9)

lim
t1→t2

∫ t2

t1

‖ψ∗(t− η)‖H dη = 0, (see [7]). (2.10)

The right-hand side of inequality (2.7) is independent ofu and by using (2.8), (2.9) and
(2.10), one gets that[‖Qut1 −Qut2‖H ] tends to zero ast1 → t2. Now it is clear that
by Arzela–Ascoli’s theorem,{(Qu)(x, t) : u ∈ C([0, T ]; H)} is precompact. Hence
by Leray–Schauder’s fixed point theorem,Q has a fixed point inC([0, T ]; H) and any
fixed point ofQ represents a mild solution of equation (2.1), a.s. [p]. This completes
the proof of the theorem. ¥

Theorem 2.3. Suppose the Lipschitz condition

E[‖f(u)− f(v)‖H ] + E[‖g(u)− g(v)‖H ] ≤ K1E(‖u− v‖H)

is satisfied, whereK1 > 0 is a constant. If Equation (2.1) has a mild solutionu ∈
C([0, T ]; H), then that mild solution is unique on[0, T ].
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Proof. Foru, v,∈ C([0, T ]; H) we infer from (2.4) that

E ‖ut − vt‖2
H ≤ K2T

α

α

∫ t

0

(t− η)α−1E ‖uη − vη‖2
H dη

+
K3T

α

α

p∑
i=1

|ci|
∫ ti

0

(ti − η)α−1E ‖uη − vη‖2
H dη

+ K2

∫ t

0

(t− s)αE ‖us − vs‖2
H ds

+ K3

p∑
i=1

|ci|
∫ ti

0

(ti − s)αE ‖us − vs‖2
H ds. (2.11)

Let ρ(u, v) = sup
t∈[0,T ]

(e−λtE ‖ut − vt‖2
H), whereλ > 1. It is easy to see that

∫ ti

0

(ti − η)α−1E ‖uη − vη‖2
H dη

≤
[
λ1−α

∫ ti− 1
λ

0

dη

]
ρ(u, v)

≤ eλti

(
1 +

1

α

)(
1

λ

)α

ρ(u, v). (2.12)

Let us consider the following two cases. The first one ist ≥ tp and the second ist ≤ tp.
For the first caset ≥ tp, we deduce from (2.11) and (2.12) that

e−λtE ‖ut − vt‖2
H ≤ K4

[(
1 +

1

λ

)α

+
1

λ

]
ρ(u, v).

Thusρ(u, v) = 0, for sufficiently largeλ, (K4 > 0 is a constant). For the second case
t ≤ tp, one gets

E ‖ut − vt‖2
H ≤ K5t

α
p sup

t∈[0,T ]

E ‖ut − vt‖2
H , (K5 > 0 is a constant).

Now if tp is sufficiently small such thatK5t
α
p < 1, we get

sup E ‖ut − vt‖2
H = 0.

This completes the proof of the theorem. ¥

Acknowledgement

The author is very grateful to the anonymous referees and to Professor Martin Bohner
for their careful reading of the paper and their valuable comments.



56 Mahmoud M. El-Borai

References

[1] Ronald L. Bagley and Peter J. Torvik. Fractional calculus in the transient analysis
of viscoelastically damped structures.AIAA J., 23:918–925, 1985.
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