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Abstract

Some classes of stochastic fractional integro-partial differential equations are in-
vestigated. Mild solutions of the nonlocal Cauchy problem for the considered
classes are studied. The Leray—Schauder principle is used to establish the exis-
tence of stochastic solutions. The uniqueness of the solution of the considered
problem is also studied under suitable conditions.
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1. Introduction

Many physical models are represented by semi-linear stochastic fractional integro-partial
differential systems of the form

0%u(zx,t)
ot

with the nonlocal condition

= L(z, D)u(z,t) + f(u(z,t)) + /0 g(u(z, s))dW(s), (1.1)

where0 < a < 1,0 < t; <ty < --- < t,, x is an element of the-dimensional

Euclidean spac®”, D = (Dy,...,D,), D; = ai i=1,...,n, W(t) is a standard
Z;
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Brownian motion defined over the filtered probability sp&QeF, F, P), « € R" and
{F; : 0 <t < T} is aright-continuous, increasing family of sukalgebras of-".
Let H be the space of all-dimensional vectors of functions defined&h such that

k
/ Zuf(m)dw <00, U= (Upy...,U).
R

" i=1

A scalar productu, v) in H is defined by

(u,0)g = zf; / ui(a)ui(a)de.

If S={V(x,t,w): Q2 — H|0<t<T}isastochastic process, then we shall write for
simplicity V(z,t) andV; : [0,7] — H in place ofS.

The collection of all strongly measurablé-valued random variables denoted by
L*(Q, H) is a Banach space equipped with the norm

Will oo = [E Vi3], E(g) = / g(w)dP,

whereE(g) is the expectation of. It is assumed that
L(.CE, D) = LO('rv D) + Ll(x7 D)a

where

Lo(x,D)= Y Ay x)D?,  Li(z,D)= Y Ay (x)D’,

lg|=2m lg|<2m

D?*=D{"---DI" q=(q,...,q,) isamultiindex,q| = ¢1 + - + ¢,, and{A,(z) :
lq| < 2m} is a family of deterministic square matrices of ordelFollowing Petrovsky
it is assumed that

det{(—=1)"Lo(z,0) = A} =0
has roots which satisfy the inequaliRe < —d, 6 > 0 forall x € R", ¢ > 0 and for

any real vectow, o} + --- + o> = 1, [2]. If B is a matrix of orderm x n, then we
introduce| B| by
1Bl = |byl.
irj

It is assumed that the coefficientsbofz, D) are bounded o™ and satisfy the Elder
condition (with exponent € (0, 1]). It is well known that there exists a fundamental
matrix solutionZ (z, y, t), which satisfies the system

07 (x,y,t)

o = L(x,D)Z(z,y,t), t>0,z,y€R"
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This fundamental matrix satisfies the inequality

|D1Z(z,y,t)| < Kit™" exp(—Kaps), (1.3)

n

n+ |q| N1
|q| §2m7p1 = - ) 102:Z|xl_y’t| 13 2m-1,
2m —

. 2m
C2m -1
The set{v, € C([0,T); L*(Q, H)) : v, is F, adapted is denoted by’ ([0, T]; H), where

C([0,T]; H) denotes the space éfdimensional vectors of continuous functions from
[0, T] into H equipped with norm

(K; > 0andK, > 0 are constanis

2,1
[vlle = sup [E|v[}]>.
te[0,7

The purpose of this paper is to study the mild solutions of the nonlocal Cauchy problem
(1.1), (1.2), assuming that is an F,-measurable{-valued stochastic process. The
results in this note may be regarded as a generalization of some recent results developed
in[3-11,14,16,17].

In Section 2, we shall find the mild solutions of the nonlocal Cauchy problem (1.1),
(1.2).

The nonlocal Cauchy problem (1.1), (1.2) has applications in many fields such as
viscoelasticity and electromagnetic theory, [1,12,13, 15, 18].

2. Stochastic Integral Equation

A slightly modified version of the nonlocal Cauchy problem (1.1), (1.2) is considered.
Using the definitions of the fractional derivatives and integrals, it is suitable to rewrite
the considered problem in the form

I ol
u(z,t) = u(z,0) + m/o (t—0)""L(z, D)u(z,0)dd

1 -
+m/(t—6’) f(u(zx,0))do

) Jo
1 t 0 )
+—// t—0)" " "g(u(x,s))dW (s)db. (2.2)
o) J, “ )4 g(u(z, s))dW (s)
Let Z(t) be the operator defined di, for everyt > 0, by
2ty = [ 2. 060)dy

According to condition (1.3), there is a positive const&hsuch that

1ZO 7 < M. (2.2)
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Let us consider the integrals of the operator-valued functions

0= [ ez
V() =« /0 0t~ (0) Z(t0)db,

where¢,,(0) is a probability density function defined ¢ oo| (see [3]). It is supposed
that

p
cM <1, wherec=>|c. (2.3)

Theorem 2.1.If w € C([0,7T]; H) is an F;-adapted stochastic process that satisfies
equation (2.1) a.syp], thenu satisfies the equation (a.g])

u(z,t) = (YA p)(x)

+[fA?wwv—mmwxasmW%@mk 2.4)

whereA =T — Z ¥ (t;), I is the identity operator.

=1
Proof. Using (2.2) and (2.3), we find that the inverse operatot exists. Using the
results in [3], the solution of equation (2.1) can be written in the form (a]¥. [

u(z,t) / /n x,y,t%0)E.(0)u(y, 0)dydo
v [ [T o= 2w, (= ) sty

vao [ [ o—nr 62y 0o

xAg<<>mwuwwm.
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Itis easy to see that (a.31]]

iiciu(%ti) = (A_l icﬂﬁ(tz‘)@) (z)
+A” Z(Cz/¢t— )( ,y)dn
+A1; ¢ / [Mvtt o) wawm. @)

Using (1.2) and (2.5), one gets (a.g])[

Hence the required result follows. [ |

Now we define a mild solution of equation (2.1) to be &n adapted stochastic
process: € ([0, T]; H) which satisfies equation (2.4), a.g].[

Theorem 2.2.If ||f|l + |lgll < K forallu € S, = {u € C(0,T); H) |Jull. < 7}
and if

E(|[A™||,,) + KMPT ||A7Y|,, + KMT* + MKT" + KM*T'** < 4,

(2.6)

whereK and~ are positive constants, then there exists a mild solution of equation (2.1),

a.s. p.
Proof. Let Q be a map defined ofi, by

(Qu)(z,t) = (YA o) (2)
+ (t)A~ ZCZ/ w)(z,n)dn

+ (A~ Zc// w)(z, s)dW (s)dn

+/0<¢( mndn+// w)(z, 8)dW (s)dn.

'l
H
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Using (2.6) and noting thaj  0¢,(0)df = 1, one gets,
0

E(|Quell ) <,

where
k
fully = [ > e3at)de,
"=l
Thus@ mapsC([0,T]; H) into itself. For0 < ¢, < t, < T, we have

E HQutl - QutzHH
< [E(|A7 0| ) +2eKT* [ATY] ] 19 (t) — 9 (t)l

to t1
2K [ mldn 2 [0 ) = = )l dn @)
t1 0
It can be proved that

19 (t2) — ¢ (t)wll g < aMlogty —logt] [[w]|g - (2.8)

Consequentlyj¢(t2) — ¢ (t1)]| 5 tends to zero astends tof. Similarly

t

Jim i [ (ta — 1) — ¥ (t1 — )|l dn = 0, (2.9)
tim [ ([0t =)l dn =0, (see [7). (2.10)

t1—to t

The right-hand side of inequality (2.7) is independent @ind by using (2.8), (2.9) and
(2.10), one gets thdflQu;, — Quy,|| ;] tends to zero ag, — t,. Now it is clear that

by Arzela—Ascoli’s theorem{ (Qu)(z,t) : v € C([0,T]; H)} is precompact. Hence
by Leray—Schauder’s fixed point theore has a fixed point irC'([0,7]; H) and any

fixed point of Q represents a mild solution of equation (2.1), a;g. [This completes

the proof of the theorem. |

Theorem 2.3. Suppose the Lipschitz condition

Elllf(w) = F)llg] + Elllg(w) = 9(0)]| 5] < KLE(lu =]l )

is satisfied, wherd{; > 0 is a constant. If Equation (2.1) has a mild solutione
C([0,T]; H), then that mild solution is unique df, 7.
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Proof. Foru,v, € C([0,T]; H) we infer from (2.4) that

K,T*
E lue — v} < =

t
/0 (t = 0)* " [y — vy, dn

KT & i o
+ S el [ = B =y
i=1

o

t
+ KQ/ (t = $)°F |[uy — v, ds
0

P t;
+ng|ci|/ (ti — 8)°F [[ug — v,]]%, ds. (2.11)
i=1 0

Let p(u,v) = sup (e ME [Ju; — ve]|3,), whereX > 1. Itis easy to see that
te[0,T

t;
/0 (e — 1) B [y — v dn

< M@ /ti_
- 0

< M (1 + é) (%)ap(u,v). (2.12)

Let us consider the following two cases. The first one3st, and the second is< ¢,,.
For the first case > ¢, we deduce from (2.11) and (2.12) that

>l=

dn] p(u,v)

1\“ 1
e ME ||y — thiI < K, {(1 + X) + X] p(u,v).

Thusp(u,v) = 0, for sufficiently large), (K, > 0 is a constant). For the second case
t <t,, onegets

E|luy — vel[3; < K5t sup Elu, — w3, (K5 > 0 is a constant
te[0,T]

Now if ¢, is sufficiently small such thak’s¢;) < 1, we get
sup E ||uy — vy||3, = 0.

This completes the proof of the theorem. [ |
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