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Abstract

We study the existence of positive solutions for a scalar linear difference equation
with several delays:

x(n + 1)− x(n) = −
m∑

l=1

al(n)x(hl(n)), hl(n) ≤ n, n > n0.

Nonoscillation criteria, comparison theorems and some explicit nonoscillation re-
sults are presented. Some known nonoscillation tests for equations with constant
delays and with one variable delay are obtained as special cases.
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Keywords: Linear difference equations, oscillation and nonoscillation, compari-
son theorems.

1. Introduction

Recently many publications on oscillation of linear difference equations appeared (see,
for example, [7, 12]), including monograph [1]. Nonoscillation of difference equations
is less studied compared to sufficient oscillation conditions.
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Let us discuss some results on the existence of a positive solution for linear nonau-
tonomous difference equations with several delays. First recall some known results. For
the equation

x(n + 1)− x(n) = −p(n)x(n− k) (1.1)

Erbe and Zhang [3] proved: if

0 ≤ p(n) ≤ kk

(k + 1)k+1
,

then Eq. (1.1) has a nonoscillatory solution.
Ladas in 1990 conjectured [5] that the condition

p(n) ≥ 0,
1

k

n−1∑

i=n−k

p(i) ≤ kk

(k + 1)k+1

implies nonoscillation of Eq. (1.1). However this conjecture is not true and a counterex-
ample was given by Yu, Zhang, Wang [10].

Tang and Yu [8] proved: if

p(n) ≥ 0,
n∑

i=n−k

p(i) ≤ 1

e
,

then Eq. (1.1) has a nonoscillatory solution. As a corollary Tang and Yu obtained the
following “corrected Ladas conjecture”: if

p(n) ≥ 0,
1

k

n∑

i=n−k

p(i) ≤ kk

(k + 1)k+1
,

then Eq. (1.1) has a nonoscillatory solution.
Zhang and Tian [11] studied the equation with one variable delay

x(n + 1)− x(n) = −p(n)x(h(n)), h(n) ≤ n, lim
n→∞

h(n) = ∞. (1.2)

They proved that if
n−1∑

i=h(n)

p+(i) ≤ 1

4
,

then Eq. (1.2) has a nonoscillatory solution. The constant
1

4
is the best possible one

since for the equation

x(n + 1)− x(n) = −px(n− 1), p > 0
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the conditionp ≤ 1

4
is necessary and sufficient for nonoscillation. One of the purposes

of the present paper is to extend the result of Zhang and Tian to difference equations
with several variable delays.

Interesting results on nonoscillation were obtained by Philos, Purnaras [6].
In the present paper we consider a scalar linear difference equation with several

delays. After some preliminaries (Section 2) we present nonoscillation criteria (Sec-
tion 3), comparison theorems (Section 4) and explicit nonoscillation and oscillation
results (Section 5). Section 6 contains some numerical examples. For difference equa-
tions with variable delays we extend several results, which are well known for delay
differential equations. The main tool in this investigation is the solution representation
formula and properties of the fundamental function.

2. Preliminaries

Consider a scalar linear difference equation with several delays:

x(n + 1)− x(n) = −
m∑

l=1

al(n)x(hl(n)) + f(n), n ≥ n0, (2.1)

x(n) = ϕ(n), n ≤ n0, (2.2)

wherehl(n) are integers satisfyinghl(n) ≤ n, lim
n→∞

hl(n) = ∞, l = 1, 2, . . . , m.

Further we will extensively apply the solution representation formula and properties
of the fundamental function. We start with the definition of this function.

Definition 2.1. The solutionX(n, k) of the problem

x(n + 1)− x(n) = −
m∑

l=1

al(n)x(hl(n)), n ≥ k, x(n) = 0, n < k, x(k) = 1

is calledthe fundamental function of Eq. (2.1).

The following lemma is a corollary of the Elaydi [2] solution representation formula.

Lemma 2.2. For the solutionx(n) of problem (2.1), (2.2) we have the following repre-
sentation:

x(n) = X(n, n0)x(n0) +
n−1∑

k=n0

X(n, k + 1)f(k)

−
n−1∑

k=n0

X(n, k + 1)
m∑

l=1

al(k)ϕ(hl(k)), (2.3)

whereϕ(hl(k)) = 0, hl(k) ≥ n0.
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As an application of Lemma 2.2, let us present the following example.

Example 2.3. Consider the linear difference equation

x(n + 1)− x(n) + u(n)x(n) = 0,

its fundamental function can be easily computed as

X(n, k) =
n−1∏

j=k

[1− u(j)].

Thus the general solution of the nonhomogeneous equation

x(n + 1)− x(n) + u(n)x(n) = z(n), n ≥ n0, x(n0) = x0

can be presented as

x(n) = x0

n−1∏
j=n0

[1− u(j)] +
n−1∑

k=n0

z(k)
n−1∏

j=k+1

[1− u(j)]. (2.4)

Here and in future we assume any product which does not involve any factors is equal
to one and any sum which does not include any terms is equal to zero.

3. Existence of Positive Solutions

Consider now the homogeneous equation and corresponding inequalities:

x(n + 1)− x(n) = −
m∑

l=1

al(n)x(hl(n)), n ≥ 0, (3.1)

y(n + 1)− y(n) ≤ −
m∑

l=1

al(n)y(hl(n)), n ≥ 0, (3.2)

z(n + 1)− z(n) ≥ −
m∑

l=1

al(n)z(hl(n)), n ≥ 0. (3.3)

The following result contains nonoscillation criteria.

Theorem 3.1. Supposeal(n) ≥ 0, l = 1, 2, . . . , m. Then the following conditions are
equivalent:

1) Eq. (3.1) has an eventually positive solution.

2) Inequality (3.2) has an eventually positive solution or (3.3) has an eventually neg-
ative solution.



Positive Solutions for Linear Difference Equations with Several Delays 33

3) There exists a sequence{u(n)}, n ≥ 0, and a numbern0 ≥ 0, such that0 ≤
u(n) < 1 and

u(n) ≥
m∑

l=1

al(n)
n−1∏

k=hl(n)

[1− u(k)]−1, n ≥ n0. (3.4)

4) The fundamental functionX(n, k) is eventually positive: there existsn0 ≥ 0 such
thatX(n, k) > 0, n ≥ k ≥ n0.

If (3.4) holds forn ≥ n0, thenX(n, k) > 0, n ≥ k ≥ n0.

Proof. Let us prove the implications1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 1).
1) ⇒ 2) is obvious since any solution of (3.1) is also a solution of inequality (3.2).
2) ⇒ 3). Suppose{x(n)} is a solution of (3.2) which is positive beginning with

somen1. Then the sequence is nonincreasing

x(n + 1) ≤ x(n)−
m∑

l=1

al(n)x(hl(n)) < x(n),

beginning with suchn0 thathl(n) > n1, n > n0, for anyl. Thus for

u(n) =
x(n)− x(n + 1)

x(n)

we have0 ≤ u(n) < 1.
Consider an auxiliary equation

x(n + 1)− x(n) + u(n)x(n) = 0, or x(n + 1) = [1− u(n)]x(n), n ≥ n0.

Thusx(n) = x(n0)
n−1∏
j=n0

(1− u(j)). Substituting this into (3.2) we have

x(n0)
n∏

j=n0

(1− u(j))− x(n0)
n−1∏
j=n0

(1− u(j))

+
m∑

l=1

al(n)x(n0)

hl(n)−1∏
j=n0

(1− u(j)) ≤ 0.

After dividing by a positive factor ofx(n0)
n−1∏
j=n0

(1− u(j)) we have forn ≥ n0

1− u(n)− 1 +
m∑

l=1

al(n)
n−1∏

k=hl(n)

[1− u(k)]−1 ≤ 0,
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which is equivalent to (3.4). Here, if (3.4) holds for some positiveu(k), then (3.4) is also
satisfied with the initial conditionsu(k) = 0, k < n0. This is equivalent to the existence
of a positive solution of (3.2), with the initial conditionsx(k) = x(n0), k < n0.

3) ⇒ 4). Consider the initial value problem (2.1), (2.2) with the zero initial condi-
tions:x(n) = 0, n ≤ n0. We will apply an auxiliary equation

x(n + 1)− x(n) + u(n)x(n) = z(n), (3.5)

which has a solution (see (2.4))x(n) =
n−1∑

k=n0

z(k)
n−1∏

j=k+1

[1− u(j)], whereu(n) are as in

(3.4). Substituting this into (2.1) and applyingx(n + 1)− x(n) = z(n)− u(n)x(n) we
obtain

z(n)−
n−1∑

k=n0

u(n)z(k)
n−1∏

j=k+1

[1− u(j)]

+
m∑

l=1

al(n)

hl(n)−1∑

k=n0

z(k)

hl(n)−1∏

j=k+1

[1− u(j)] = f(n).

Hence

z(n) =
n−1∑

k=n0

u(n)z(k)
n−1∏

j=k+1

[1− u(j)]

−
m∑

l=1

al(n)

hl(n)−1∑

k=n0

z(k)

hl(n)−1∏

j=k+1

[1− u(j)] + f(n)

=
n−1∑

k=n0

u(n)z(k)
n−1∏

j=k+1

[1− u(j)]−
n−1∑

k=n0

z(k)
m∑

l=1

al(n)

hl(n)−1∏

j=k+1

[1− u(j)]

+
m∑

l=1

al(n)
n−1∑

k=hl(n)

z(k)

hl(n)−1∏

j=k+1

[1− u(j)] + f(n)

=
n−1∑

k=n0

z(k)



u(n)

n−1∏

j=k+1

[1− u(j)]−
m∑

l=1

al(n)

hl(n)−1∏

j=k+1

[1− u(j)]



 + g(n)

=
n−1∑

k=n0

z(k)
n−1∏

j=k+1

[1− u(j)]



u(n)−

m∑

l=1

al(n)
n−1∏

hl(n)

(1− u(j))−1



 + g(n),
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whereg(n) =
m∑

l=1

al(n)
n−1∑

k=hl(n)

z(k)

hl(n)−1∏

j=k+1

[1− u(j)] + f(n). Here by (3.4) the expres-

sion in the braces is nonnegative. Iff(n) is nonnegative for anyn, theng(n) is nonneg-
ative and by inductionz(n) is also nonnegative.

On one hand, sincex(n) has the representation (2.3) and0 ≤ u(j) < 1, then
{x(n)} ≥ 0 as far as{f(n)} ≥ 0 andx(n0) ≥ 0. On the other hand, by (2.3) the
solution of (2.1), (2.2), with the zero initial conditions, can be written as

x(n) =
n−1∑

k=n0

X(n, k + 1)f(k).

We can assumef(k) = 1, f(i) = 0, i 6= k for anyk, which impliesX(n, k + 1) ≥ 0.
Further, representation (2.3) yields that ifz(k) ≥ 0 for any k and z(n) > 0, then
x(l) > 0, l ≥ n+1. Thusf(k) > 0 impliesz(k) > 0, which yields thatX(n, k+1) > 0,
n ≥ k + 1, consequently, the fundamental functionX(n, k) is positive forn ≥ k ≥ n0.

4) ⇒ 1). A sequenceX(n, n0) is a positive solution of (3.1). ¥

Assuming constantu(n) = 1 − µ we obtain as a corollary the following sufficient
condition for the existence of an eventually positive solutions which is a part of [4,
Theorem 7.8.1] and partially extends this theorem to the case of variable delays.

Corollary 3.2. Suppose there existsµ ∈ (0, 1] such that for somen0 ≥ 0 andn ≥ n0

the following inequality holds

1− µ ≥
m∑

l=1

al(n)µhl(n)−n.

Then (3.1) has an eventually positive solution and for fundamental function of this equa-
tion we haveX(n, k) > 0, n ≥ k ≥ n0.

The following is a corollary of the proof of the implication2) ⇒ 3) and the remark
in the end of the proof.

Corollary 3.3. If u(n) is a solution of (3.4), then

x(n) = x(n0)
n−1∏

k=n0

[1− u(k)], n > n0, x(n) = x(n0), n ≤ n0,

is a solution of inequality (3.2).

Inequalities similar to (3.4) appear in most papers on nonoscillation as implicit suffi-
cient conditions for the existence of a positive solution. A discussion on these conditions
can be found in the paper by Zhang and Tian [11] for equations with one delay. Differ-
ence equations with several variable delays were studied by Zhou [12]. As a necessary
and sufficient condition for the positiveness of the fundamental function, condition 3)
of Theorem 3.1 probably appears for the first time.
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4. Comparison Theorems

As the first application of the nonoscillation criteria given in Theorem 3.1 we will obtain
several comparison results. To this end consider together with Eq. (3.1) the following
one

x(n + 1)− x(n) = −
m∑

l=1

bl(n)x(gl(n)), n ≥ 0, (4.1)

wheregl(n) ≤ n. Denote byY (n, k) the fundamental function of Eq. (4.1).

Theorem 4.1. Supposeal(n) ≥ bl(n) ≥ 0, gl(n) ≥ hl(n) for sufficiently largen.
If Eq. (3.1) has an eventually positive solution, then Eq. (4.1) has an eventually

positive solution and its fundamental functionY (n, k) is eventually positive.
If all solutions of Eq. (4.1) are oscillatory, then all solutions of Eq. (3.1) are oscilla-

tory.

Proof. By Theorem 3.1 there exists a positive solutionu(n) of inequality (3.4) for some
n0 ≥ 0 andn ≥ n0. Since[1−u(k)]−1 > 1, gl(n) ≥ hl(n) andal(n) ≥ bl(n) ≥ 0, then

u(n) ≥
m∑

l=1

al(n)
n−1∏

k=hl(n)

[1− u(k)]−1 ≥
m∑

l=1

bl(n)
n−1∏

k=gl(n)

[1− u(k)]−1.

Applying Theorem 3.1 once again, we deduce that the fundamental functionY (n, k) of
(4.1) is eventually positive; moreover, it is positive forn ≥ k ≥ n0.

The second part of the theorem is a corollary of the first one. ¥

Comparison results are very popular in literature. Our result probably is given in
the most general form: several variable delays are included and both coefficients and
delays are compared. Similar results were published by Yan and Qian [9], but this paper
involves some wrong statements.

In Theorem 4.1 we assumedbl(n) ≥ 0. For some further statements, let us avoid
this assumption. To this end consider together with Eq. (3.1) the following one

x(n + 1)− x(n) = −
m∑

l=1

bl(n)x(hl(n)), n ≥ 0. (4.2)

Denote as before byX(n, k), Y (n, k) the fundamental functions of (3.1) and (4.2), re-
spectively.

Theorem 4.2. Supposeal(n) ≥ 0, al(n) ≥ bl(n), X(n, k) > 0, n ≥ k ≥ n0 ≥ 0.
ThenY (n, k) ≥ X(n, k) > 0, n ≥ k ≥ n0 ≥ 0.

Proof. Without loss of generality, assumen0 = 0. Denotex(n) = X(n, 0), y(n) =
Y (n, 0). We have

y(n + 1)− y(n) = −
m∑

l=1

al(n)y(hl(n)) +
m∑

l=1

[al(n)− bl(n)]y(hl(n)).
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Thus by solution representation formula (2.3)

y(n) = x(n) +
n−1∑

k=0

X(n, k + 1)
m∑

l=1

[al(k)− bl(k)]y(hl(k)).

We havey(n) = 0, n < 0, y(0) = 1, x(n) > 0, n ≥ 0, X(n, k + 1) > 0, n ≥ 0,
al(k) − bl(k) ≥ 0. Hence by inductiony(n) > 0, n > 0. Theny(n) = Y (n, 0) ≥
x(n) = X(n, 0). Similarly Y (n, k) ≥ X(n, k) > 0, n ≥ k ≥ 0. ¥

Corollary 4.3. Suppose the inequality

y(n + 1)− y(n) ≤ −
m∑

l=1

a+
l (n)y(hl(n)), n ≥ 0,

has an eventually positive solution, wherea+ = max{0, a}. Then Eq. (3.1) has an
eventually positive solution.

Proof. By Theorem 3.1 the fundamental function of the equation

x(n + 1)− x(n) = −
m∑

l=1

a+
l (n)x(hl(n))

is eventually positive. By Theorem 4.2 the fundamental function of (3.1) is also eventu-
ally positive. ¥

Compare now solutions of two difference equations. To this end consider together
with Eq. (2.1) the following comparison equation with the same initial conditions:

x(n + 1)− x(n) = −
m∑

l=1

bl(n)x(hl(n)) + r(n), n ≥ n0, (4.3)

x(n) = ϕ(n), n ≤ n0. (4.4)

Theorem 4.4. Supposeal(n) ≥ bl(n), n ≥ n0, r(n) ≥ f(n), X(n, k) > 0, n ≥ k ≥
n0. If x(n) > 0, theny(t) ≥ x(n), wherex(n) andy(n) are solutions of (2.1), (2.2) and
(4.3), (4.4), respectively.

Proof. By Theorem 4.2 we haveY (n, k) ≥ X(n, k) > 0, n ≥ k ≥ n0. Let us rewrite
(2.1) in the form

x(n + 1)− x(n) = −
m∑

l=1

bl(n)x(hl(n))−
m∑

l=1

[al(n)− bl(n)]x(hl(n)) + f(n).
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Applying representation (2.3), positiveness ofx and inequalities assumed, we obtain

x(n) = Y (n, k)x(n0) +
n−1∑

k=n0

Y (n, k + 1)f(k)−
n−1∑

k=n0

Y (n, k + 1)
m∑

l=1

bl(k)ϕ(hl(k))

−
n−1∑

k=n0

Y (n, k + 1)
m∑

l=1

[al(k)− bl(k)]x(hl(k))

≤ Y (n, k)y(n0) +
n−1∑

k=n0

Y (n, k + 1)r(k)

−
n−1∑

k=n0

Y (n, k + 1)
m∑

l=1

bl(k)ϕ(hl(k)) = y(n),

which completes the proof. ¥

Corollary 4.5. Supposeal(n) ≥ 0, X(n, k) > 0, n ≥ k ≥ n0. If y(n) > 0, n > n0,
andy(n) = z(n) = x(n), n ≤ n0, theny(n) ≤ x(n) ≤ z(n), n > n0, wherey(n) and
z(n) are solution of difference inequalities (3.2) and (3.3), respectively, andx(n) is a
solution of difference equation (3.1).

Corollary 4.6. SupposeX0(n, k) > 0, n ≥ k ≥ n0, is the fundamental function of the
equation

x(n + 1)− x(n) = −
m∑

l=1

a+
l (n)x(hl(n))

andx0(n) > 0, n ≥ n0, is a solution of this equation. Supposex(n) = x0(n), n ≤ n0,
wherex(n) is a solution of (3.1). Thenx(n) ≥ x0(n), n > n0.

5. Explicit Nonoscillation and Oscillation Conditions

To obtain explicit conditions for positiveness of the fundamental function we apply
Theorem 3.1. By this theorem, if inequality (3.4) has a nonnegative solution forn ≥ n0,
thenX(n, k) > 0, n ≥ k ≥ n0. In the following theorem we also use some ideas
from [11], where the authors obtain nonoscillation conditions for Eq. (3.1) withm = 1.

Theorem 5.1. Suppose for somen0 ≥ 0

sup
n≥n0

m∑

l=1

a+
l (n) <

1

2
, sup

n≥n0

m∑

l=1

n−1∑

k=max{n0,minl hl(n)}
a+

l (k) ≤ 1

4
. (5.1)

Then for Eq. (3.1) we haveX(n, k) > 0, n ≥ n0.
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Proof. By Corollary 4.3 it is sufficient to prove the theorem foral(n) ≥ 0 only. In-
equality (3.4) is a corollary of the following one

u(n) ≥ a(n)
n−1∏

k=h(n)

[1− u(k)]−1, n ≥ n0, (5.2)

where

a(n) :=
m∑

l=1

al(n), h(n) := min
l

hl(n).

The first inequality in (5.1) implies0 ≤ a(n) <
1

2
.

We will show thatu(n) =

{
2a(n), n ≥ n0,
0, n < n0,

is a solution of (5.2), such that0 ≤
u(n) < 1. It is equivalent to the inequality

n−1∏

k=h(n)

[1− 2a(n)] ≥ 1

2
.

We have
n−1∏

k=h(n)

(1− 2a(n)) ≥ 1− 2
n−1∑

k=h(n)

a(n) ≥ 1− 2 · 1

4
=

1

2
.

Hence the sequence{u(n)} is a solution of inequality (3.4). Thus by Theorem 3.1 the
fundamental solution of Eq. (3.1) is positive. ¥

The following theorem is an analogue of the well-known result for delay differential
equations ( [4, Theorem 3.3.1]). To the best of our knowledge such results for linear
difference equations have not been published yet.

Theorem 5.2. Supposeal(n) ≥ 0 and for somen0 ≥ 0 (5.1) holds. Ifx(n0) > 0,
0 ≤ ϕ(n) ≤ x(n0), then for solutionx(n) of (3.1), (2.2) we havex(n) > 0, n > n0.

Proof. By the proof of Theorem 5.1 the sequence

u(n) =





2
m∑

l=1

al(n), n ≥ n0,

0, n < n0,

is a solution of inequality (3.4) such that0 ≤ u(n) < 1. By Corollary 3.3

y(n) =





x(n0)
n−1∏

l=n0

[1− u(l)], n ≥ n0,

x(n0), n < n0,

is a solution of (3.2) with initial conditionsy(n) = x(n0), n ≤ n0.
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Solution representation formula (2.3) implies

x(n) = X(n, n0)x(n0)−
n−1∑

k=n0

X(n, k + 1)
m∑

l=1

al(k)ϕ(hl(k)),

whereϕ(hl(k)) = 0, hl(k) ≥ n0. By Corollary 4.5 the sequencey(n) does not exceed
the solution of (3.1), withϕ(n) = x(n0), n < n0, thus

y(n) = X(n, n0)x(n0)−
n−1∑

k=n0

X(n, k + 1)
m∑

l=1

al(k)x(n0)ξ(hl(k))− g(n),

whereξ(hl(k)) = 0, hl(k) ≥ n0, ξ(hl(k)) = 1, hl(k) ≤ n0, andg(n) is a nonnegative
function.

Since0 ≤ ϕ(n) ≤ x(n0), we havex(n) ≥ y(n) > 0, n ≥ n0. ¥

The following result demonstrates that condition (5.1) cannot be replaced by a more
general conditionX(n, k) > 0, n ≥ k ≥ n0.

Example 5.3. The solution of the equation

x(n + 1) = x(n)− 102−4nx(n− 1) (5.3)

with positive increasing initial conditionsx(−1) = 0.1, x(0) = 1 is not positive:

x(1) = x(0)− 100x(−1) = 1− 10 = −9.

The fundamental functionX(n, k) > 0 for n ≥ k ≥ 0. For example, the positiveness
of X(n, 0) is obtained by the immediate computationX(0, 0) = X(1, 0) = 1,

X(2, 0) = 1−0.01 = 0.99, X(3, 0) = 0.99−10−6, . . . , 1− 0.01

1− 0.0001
< X(n, 0) < 1.

Condition (5.1) does not holds forn ≥ n0, wheren0 = 0 or n0 = 1. If n ≥ n0 = 2,
then this condition holds for Eq. (5.3). If we take as beforex(0) = 0.1, x(1) = 1, then
the solution of Eq. (5.3) is positive forn ≥ 2.

However, with some additional restriction of the positiveness of a specific solution
the conditionX(n, k) > 0, n ≥ k ≥ n0 is sufficient for the positiveness of all solutions,
with a positive initial value and an initial function, which does not exceed this value.

Theorem 5.4. Supposeal(n) ≥ 0 for n ≥ n0, X(n, k) > 0, n ≥ k ≥ n0, x(n0) > 0
and the solution of the initial value problem (3.1), (2.2), withϕ(n) = x(n0) is positive.
If in (2.2) 0 ≤ ϕ(n) ≤ x(n0), then for the solutionx(n) of (3.1), (2.2) we havex(n) >
0, n > n0.
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Proof. Lety(n) be a solution of the initial value problem (3.1), (2.2) withϕ(n) = x(n0).
Then (2.3) implies

0 < y(n) = X(n, n0)x(n0)−
n−1∑

k=n0

X(n, k + 1)
m∑

l=1

al(k)x(n0)ξ(hl(k))

≤ X(n, n0)x(n0)−
n−1∑

k=n0

al(k)ϕ(hl(k)) = x(n),

whereξ(hl(k)) = 0, hl(k) ≥ n0, ξ(hl(k)) = 1, hl(k) ≤ n0. Thusx(n) > 0. ¥

Remark 5.5. Eq. (3.1) is linear, so the condition that the solution with the initial func-
tionϕ(n) = x(n0) can be changed by any constant initial function, say,ϕ(n) = x(n0) =
1.

Remark 5.6. [4, Theorem 7.8.1] presents sufficient conditions for the positiveness of a
solution with a given initial function for the equation with constant delays. However the
conditions imposed on initial values are rather restrictive:ϕ(n + 1) ≥ µϕ(n), where
µ is as in Corollary 3.2. The following example presents the case of an equation with
constant delays, where [4, Theorem 7.8.1] fails to establish positiveness of the solution
but our results work.

Example 5.7. The solution of the equation

x(n + 1)− x(n) = − 1

32
x(n− 4)− 1

32
x(n− 2), n ≥ 0,

with the initial conditionsx(−4) = 1, x(−3) = 0, x(−2) = 1, x(−1) = 0, x(0) = 1 is
positive by Theorem 5.2. [4, Theorem 7.8.1] cannot be applied since inequality0 ≥ µ ·1
cannot be satisfied for a positiveµ.

Remark 5.8. It is to be noted that, unlike delay differential equations, under the condi-
tion lim

n→∞
hl(n) = ∞ the set of initial functions of a difference equation is finite dimen-

sional. Thus, taking any basis of this set, such that solutions are positive, we obtain that
any initial function which is a linear combination of basis functions with positive coef-
ficients, leads to a positive solution. For example, taking basis functions asϕ(n) = 1,
j ≤ n ≤ 0, we get the following result.

Suppose the solutionyj(n) of (3.1), (2.2), withϕ(n) = 0, n < j, ϕ(n) = 1,
j ≤ n ≤ 0, is positive for anyj ≥ H. Then the solution of (3.1), (2.2) is positive for
any nonnegative nondecreasing sequenceϕ(n) andϕ(0) = x(0) > 0.

In particular cases it is possible to check the positiveness of all basis solutions, as
the following example illustrates.

Example 5.9. Consider the equation

x(n + 1)− x(n) = − 1

n + k
x(n− 1), n ≥ 0, (5.4)
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wherek > 0. Fork = 1 and the initial functionx(−1) = x(0) = 1 we havex(1) = 0,
x(2) = −0.5, solutions of this equation are not necessarily positive for a nonnegative
increasing initial function, for example,x(−1) = 0.9, x(1) = 1, x(2) = 1 − 0.9 =
0.1, x(3) = 0.1 − 0.5 = −0.4. For k ≥ 4 the solution withx(−1) = 0, x(0) = 1 is
positive (see [11]). It is easy to check that the solution withx(−1) = x(0) = 1 is also
positive. So is any solution withx(−1) ≤ x(0), x(0) > 0.

By analyzing the proof of Theorem 5.2 we have the following comparison result.

Theorem 5.10. Supposeal(n) ≥ 0 and for somen0 ≥ 0 inequality (3.4) has a solution
0 ≤ u(n) < 1. If x(n) andy(n) are two solutions of (3.1) such that0 < x(n0) = y(n0),
0 ≤ x(n) ≤ y(n), n < n0, y(n) > 0, n ≥ n0, thenx(n) ≥ y(n), n ≥ n0.

Proof. Repeats the proof of Theorem 5.2. ¥

A shortcoming of inequality (5.1) is in the application of the “worst” delay only.
The following sufficient condition employs all delays.

Theorem 5.11. Suppose there existλ1 ≥ 1, . . . , λl ≥ 1 such that forn ≥ n0

m∑
j=1

λja
+
j (n) < 1,

m∑
j=1

λj

n−1∑

k=hl(n)

a+
j (k) ≤ 1− 1

λl

, l = 1, . . . , m. (5.5)

Then for Eq. (3.1) we haveX(n, k) > 0, n ≥ k ≥ n0.

Proof. By Corollary 4.3 it is sufficient to consideral(n) ≥ 0. We will show that the

functionu(n) =
m∑

l=1

λlal(n) is a solution of inequality (3.4), i.e.,

m∑

l=1

λlal(n) ≥
m∑

l=1

al(n)
n−1∏

k=hl(n)

[
1−

m∑
j=1

λjaj(k)

]−1

.

This inequality holds if

λl ≥
n−1∏

k=hl(n)

[
1−

m∑
j=1

λjaj(k)

]−1

, l = 1, . . . , m,

which can be written as
n−1∏

k=hl(n)

[
1−

m∑
j=1

λjaj(k)

]
≥ 1

λl

, l = 1, . . . , m.

The latter inequality, if the first inequality in (5.5) is valid, is a consequence of the
following one

1−
m∑

j=1

λj

n−1∑

k=hl(n)

aj(k) ≥ 1

λl

, l = 1, . . . , m,
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which is equivalent to the second inequality in (5.5). ¥

Remark 5.12. If h1(n) ≡ n, thenλ1 = 1 and the system in Theorem 5.11 contains
l − 1 inequalities only.

Consider the equation with two delays:

x(n + 1)− x(n) = −a(n)x(h(n))− b(n)x(g(n)). (5.6)

Corollary 5.13. Suppose there existλ1 ≥ 1, λ2 ≥ 1 such that forn ≥ n0

λ1a
+(n) + λ2b

+(n) < 1,

λ1

n−1∑

k=h(n)

a+(k) + λ2

n−1∑

k=h(n)

b+(k) ≤ 1− 1

λ1

,

λ1

n−1∑

k=g(n)

a+(k) + λ2

n−1∑

k=g(n)

b+(k) ≤ 1− 1

λ2

.

Then the fundamental solution of Eq. (5.6) is positive forn ≥ k ≥ n0.

Corollary 5.14. Supposeh(n) ≡ n and there existsλ ≥ 1 such that forn ≥ n0

a+(n) + λb+(n) < 1,
n−1∑

k=g(n)

a+(k) + λ

n−1∑

k=g(n)

b+(k) ≤ 1− 1

λ
.

Then the fundamental solution of Eq. (5.6) is positive forn ≥ k ≥ n0.

Let us note that Theorem 5.11 and its corollaries can be applied to equations with
unbounded delays.

Now let us present an explicit oscillation result.

Lemma 5.15. [11] Suppose
lim sup

n→∞
p(n) > 0, (5.7)

lim inf
n→∞

n−1∑

i=h(n)

p(i) >
1

e
. (5.8)

Then all solutions of Eq. (1.2) are oscillatory.

Theorem 5.16. Supposeal(n) ≥ 0, lim sup
n→∞

m∑

l=1

al(n) > 0, and

lim inf
n→∞

m∑

l=1

n−1∑

k=maxl hl(n)

al(k) >
1

e
. (5.9)
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Then all solutions of Eq. (3.1) are oscillatory.

Proof. Lemma 5.15 implies that all solutions of the equation

x(n + 1)− x(n) = −
m∑

l=1

al(n)x(max
l

hl(n)) (5.10)

are oscillatory. But Eq. (5.10) also has form (4.1), withbl = al, gl = max
l

hl(n). By

Theorem 4.1 all solutions of Eq. (3.1) are oscillatory. ¥

6. Numerical Examples

Example 6.1. Let us illustrate comparison Theorem 4.4 and Corollary 4.5. We consider
the equation

x(n + 1)− x(n) = f(n)− 0.02x(n− 2)− 0.06x(n− 3), (6.1)

which by Theorem 5.1 has a positive fundamental function. Here the initial function
and the initial value are equal to one, for solutionsy, x andz of (6.1) we havef(n) ≡
−0.01, 0, 0.01, respectively. See Fig. 1 for illustration.

Example 6.2. Now let us analyze the sharpness of the condition (5.1) for the equation
with two delays

x(n + 1)− x(n) = −ax(n− 2)− bx(n− 3). (6.2)

Consider the solution withx(0) = ϕ(n) ≡ 1. According to (5.1) the solution should
be positive for3(a + b) ≤ 0.25, or b < 0.25/3 − a. We also compare the result to the
following estimate

sup
n≥n0

m∑

l=1

max{n−1,hl(n)}∑

k=hl(n)

al(k) ≤ 1

4
, (6.3)
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Figure 1: Solutionsy ≤ x ≤ z of (6.1) for f(n) ≡ −0.01, 0, 0.01, respectively. Here
the initial function and the initial value are equal to one.
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Figure 2: Oscillation bounds for Eq. (6.2): numerical results, sufficient condition (5.1)
and the estimate (6.3). Non-oscillatory domains are below the lines. Here for numerical
simulations we assumedx(0) = ϕ(n) ≡ 1.

or 2a + 3b ≤ 0.25, which is more general than (5.1) for any linear difference equation
including delay terms.

Let us also present a similar graph for oscillation conditions, based on numerical
results, sufficient oscillation condition (5.9) and the estimate

sup
n≥n0

m∑

l=1

n−1∑

k=hl(n)

al(k) >
1

e
. (6.4)

Example 6.3. Let us illustrate the sharpness of Corollary 5.14 for the equation

x(n + 1)− x(n) = −ax(n)− bx(n− τ), a, b ≥ 0, τ ≥ 0. (6.5)

There should beλ ≥ 1, such that

a + λb < 1, τa + τλb ≤ 1− 1

λ
. (6.6)

Sinceλ > 0, the second inequality in (6.6) is equivalent to

f(λ) = (τb)λ2 − (1− τa)λ + 1 ≤ 0. (6.7)

We havef(1) = τ(a + b) > 0, so (6.7) has a solutionλ ≥ 1 only if thex-coordinate of
the vertex of the parabolaf(x) exceeds one and the quadratic inequality (6.7) has real
solutions:

1− τa

2τb
> 1, (1− τa)2 > 4τb,
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Figure 3: Oscillation bounds for Eq. (6.2): numerical results, sufficient condition (5.9)
and the estimate (6.4). Non-oscillatory domains are below the lines. Here for numerical
simulations we assumedx(0) = ϕ(n) ≡ 1.
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Figure 4: Oscillation bounds for Eq. (6.5): numerical results, second sufficient condition
(6.8) and (5.1) forτ = 3.

which can be rewritten as

b <
1− τa

2τ
, b <

(1− τa)2

4τ
. (6.8)

If the second inequality in (6.6) is satisfied, withλ ≥ 1, then the first inequality is
also valid. Thus (6.8) are sufficient conditions for nonoscillation. Note that the second
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inequality in (6.8) implies the first one. So, if the second inequality (6.8) holds, then
Eq. (6.6) has a nonoscillatory solution.

Fig. 4 presents bounds (6.8) for a particular caseτ = 3, which isb < (1− 3a)2/12,
together with numerically established bounds of oscillation. For comparison we present
a stricter sufficient condition3(a + b) < 1/4 (5.1) of Theorem 5.1.
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