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1. Introduction

A neural network is a network that performs computational tasks such as associative
memory, pattern recognition, optimization, model identification, signal processing, etc.
on a given pattern via interaction between a number of interconnected units charac-
terized by simple functions. From the mathematical point of view, an artificial neural
network corresponds to a nonlinear transformation of some inputs into certain outputs.
Many types of neural networks have been proposed and studied in the literature and
the Hopfield-type network has become an important one due to its potential for appli-
cations in various fields of daily life. The model proposed by Hopfield, also known
as Hopfield’s graded response neural network is based on analog circuit consisting of
capacitors, resistors and amplifiers. Among the most popular models in the literature
of artificial neural networks (see, e.g., [1–3, 6, 8, 11–15]) is the continuous time model
described by a system of ordinary differential equations:

dxi

dt
= −aixi(t) +

n∑
j=1

bijfj(xj(t)) + ci, t > 0, (1.1)

wherexi(t) corresponds to the membrane potential of the uniti at timet; fj(·) denotes
a measure of response or activation to its incoming potentials;bij denotes the synaptic
connection weight of the unitj on the uniti; the constantsci correspond to the external
bias or input from outside the network to the uniti; the coefficientai is the rate with
which the unit self-regulates or resets its potential when isolated from other units and
inputs. We refer for more detail to [1,2,6,8,11–15] and the references cited therein.

Dynamical systems are often broadly classified into two categories: continuous
time systems or discrete time systems. Recently there has been introduced a some-
what new category of dynamical systems which is neither purely continuous time nor
purely discrete time ones; these are called dynamical systems with impulses (see for in-
stance [1,2,8] and references therein). Stability conditions for various types of stability
of neural networks problems such as complete stability, asymptotic stability, absolute
stability and exponential stability have been studied extensively. One should underline
the fact that stability properties of a neural network basically depend on the intended
problems. For example in the solution of optimization problems, the neural network
must be designed to have only one equilibrium point and this equilibrium point is glob-
ally stable. See more details in [2,8] and references given therein.

The differences between functional and neural networks and the advantages of using
functional networks instead of standard neural networks can be represented as follows:
Functional networks are a generalization of the standard neural networks in the sense
that the weights are now replaced by neural functions, which can exhibit, in general, a
multivariate character. In addition, when working with functional networks we are able
to connect different neuron outputs at convenience. Furthermore, different neurons can
be associated with neural functions from different families of functions. As a result of
these properties, the functional networks allow more flexibility than the standard neural
networks [11]. Differences can be summarized in the following way:
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1. In neural networks each neuron returns an outputy = f
(∑

ωikxk

)
that depends

only on the value
∑

ωikxk, wherex1, x2, . . . , xn are the received inputs. There-
fore, their neural functions have only one argument. In contrast, neural functions
in functional networks can have several arguments.

2. In neural networks, the neural functions are univariate: a neuron can show differ-
ent outputs but all of them represent the same values. In functional networks, the
neural functions can be multivariate.

3. In a given functional network the neural functions can be different, while in neural
networks they are identical.

4. In neural networks there are weights, which must be learned. These weights do
not appear in functional networks, where neural functions are learned instead.

5. In neural networks the neuron outputs are different, while in functional networks
neuron outputs can be coincident. This fact leads to a set of functional equations.

All these features show that the functional networks exhibit more interesting possi-
bilities than standard neural networks. Recently [12] the stability of the Hopfield-type
neural networks with time varying delays was studied describing the state equations of
the form

d

dt
ui(t) = − 1

Ri

ui(t) +
n∑

j=1

ωijfj(uj(t− τij(t))) + Ii, i = 1, n, (1.2)

whereRi are time constants,ωij are the connection strengths,fi are the input-output
transfer functions,τij are the time varying transmission delays, andIi are the signals
from outside. Defining the dynamical characteristic of the network by the dynamics
of the system of ordinary differential equations is one of the most popular and typical
neural network models. Some other models, such as the continuous bi-directional asso-
ciative memory networks, can be deduced from a special form of system (1.1) (see for
more details [3,8,9,11–15] and references therein.)

In the sequel we consider the system (1.2) subjected to certain impulsive state dis-
placements at fixed moments of time:





d

dt
ui(t) = − 1

Ri

ui(t) +
n∑

j=1

ωijfj(uj(t− τij(t))) + Ii,

t > t0, t 6= tk, i = 1, n,

u(t0+) = u0 ∈ Rn,

ui(tk+)− ui(tk−) = Jik(ui(tk−)), i = 1, n, k = 1, 2, 3, . . . ,

t0 < t1 < t2 < · · · < tk →∞ as k →∞.

(1.3)
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By a solution of (1.3) we meanu(t) = (u1(t), u2(t), . . . , un(t))T ∈ Rn, in which
u(·) is piecewise continuous on[t0, α) for someα > t0 such thatu(tk+) andu(tk−)
exist andu(·) is differentiable on the intervals of the form(tk−1, tk) ⊂ (t0, α) and
satisfies (1.3); we assume thatu(t) is left continuous withu(tk) = u(tk−); the functions
Jik(·) : R→ R are assumed to be Lipschitz continuous. Throughout the present paper,
we will use the following assumptions.

H1. Each transfer functionfi is monotonically increasing, and satisfies the Lipschitz
condition |fi(ui) − fi(vi)| ≤ Mi|ui − vi|, for someMi > 0 and for all real
numbersui, vi.

H2. The delaysτij(t) are bounded, that is, there exists a constantb such that0 ≤ τij ≤ b
for all t 6= tk andi, j = 1, n.

H3. The numberi(t0, t) = max{k ∈ Z+ : tk < t} of moments of impulse effect
betweent0 andt satisfies

lim sup
t→+∞

i(t0, t)

t
= p < +∞

and the impulsive operatorsJik satisfy

|Jik(ui)− Jik(vi)| ≤ c|ui − vi|, i = 1, n, k ∈ Z+ = {1, 2, 3, . . .},

for some positive constantc and any real numbersui, vi.

In neural network applications, the transfer functionfi is generally chosen as a sig-
moidal function. That is, lim

ui→∓∞
fi(ui) = ∓1 and f ′i(0) ≥ f ′i(ui) > 0 for all real

numbersui. Thus the activation functionsfi(·) have been assumed to be continuously
differentiable, monotonic and bounded. However, in some applications, one is required
to use unbounded and non-monotonic activation functions. It has been shown that the
capacity of an associative memory network can be significantly improved if the sig-
moidal functions are replaced by non-monotonic activation functions.

This paper is organized as follows. In Section 2, we introduce a more general time
delay impulsive system (2.1), (2.2) and present the necessary notations and concepts
of the stability analysis of this system. In Section 3 we give the proofs of the main
theorems on existence and stability of equilibrium points of the impulsive system (2.1),
(2.2) and the Hopfield-type neural network with time varying delays in the presence of
impulses (1.3).

2. Notations and Preliminaries

Here we follow [12] adapting the approach expounded therein to impulsive systems. In
order to study the stability analysis of the general time delay system we rewrite system
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(1.3) as

du(t)

dt
= F (u(t)) + G(uτ (t)), t > t0, t 6= tk, (2.1)

∆u(tk) = Jk(u(tk−)) = u(tk+)− u(tk−), k = 1, 2, 3, . . . , (2.2)

whereJk(u) = (J1k(u1), . . . , Jnk(un))T and the operatorsJik satisfy the conditionH3,
u(t) = (u1(t), u2(t), . . . , un(t))T is the state vector of the neural network,F andG
both are mappings from an open subsetΩ of Rn into Rn, andG(uτ (t)) is defined as
G(u) = (G1(u), G2(u), . . . , Gn(u))T and

Gi(uτ (t)) = Gi(u1(t− τi1(t)), u2(t− τi2(t)), . . . , un(t− τin(t))).

Let Rn be then-dimensional real vector space with vector norm‖ · ‖. If v =
(v1, v2, . . . , vn)T ∈ Rn, then commonly used vector norms inRn are‖v‖1, ‖v‖2, ‖v‖∞,
where

‖v‖1 =
n∑

i=1

|vi|, ‖v‖2 =

{
n∑

i=1

|vi|2
}1/2

, ‖v‖∞ = max
i=1,n

|vi|.

We note that‖v‖1 and‖v‖2 are special cases of a more general norm‖v‖p, where

‖v‖p =

{
n∑

i=1

|vi|p
}1/p

, p ≥ 1, v ∈ Rn.

We also use the so-called matrix-deduced norm‖ · ‖P which is defined, given a nonsin-
gular matrixP and a specific vector norm‖ · ‖, by ‖x‖p = ‖Px‖. In particular, if the
matrix P = diag(d1, d2, . . . , dn) anddi 6= 0, i = 1, n, and the vector norm is‖ · ‖1,

then the matrix-deduced norm is‖x‖1,P =
n∑

i=1

|dixi|. We recall the following matrix

norms and matrix measures induced by respective vector norms.
If A = (aij) denotes ann×n matrix, then the norm‖A‖ of the matrixA induced by

a vector norm‖ · ‖ and the corresponding matrix measureµ(A) are defined respectively
by

‖A‖ = sup
v∈Rn\{0}

‖Av‖
‖v‖ = sup

‖v‖=1

‖Av‖ = sup
‖v‖≤1

‖Av‖, µ(A) = lim
λ→0+

‖I + λA‖ − 1

λ
,

whereI denotes the identity matrix. The matrix measure depends on the given vector
norm ofRn. For example, corresponding to the norms

‖A‖1 = max
j=1,n

n∑
i=1

|aij| (column sum), ‖A‖∞ = max
i=1,n

n∑
j=1

|aij| (row sum)
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and‖A‖2 =
(
λmax(A

T A)
)1/2

, whereλmax(A
T A) is the maximum eigenvalue of the

symmetric matrixAT A, are the commonly used matrix measures ofA, denoted by
µ1(A), µ∞(A) andµ2(A), defined respectively by

µ1(A) = max
j=1,n

{
ajj +

n∑

i6=j

|aij|
}

, µ∞(A) = max
i=1,n

{
aii +

n∑

j 6=i

|aij|
}

andµ2(A) =
1

2
λmax(A

T + A). One can easily check that, for all diagonal matrices

P = diag(d1, d2, . . . , dn) (di 6= 0, i = 1, n), the inequality

µ∞(A) ≤ (
min
i=1,n

(di)
)−1

µ∞(PA) (2.3)

holds. For more details about the matrix norm and matrix measure see, e.g., [10].
The importance of the matrix measure in characterizing stability of a linear system

with time delays can be shown by the fact that ifµ(A)+‖B‖ < 0, then the linear system

d

dt
x(t) = Ax(t) + Bx(t− τ), t ≥ 0,

is exponentially stable. In order to introduce a similar quantity for nonlinear systems,
one can observe that ifA is a givenn × n matrix, andRn is endowed with the norm
‖ · ‖1, then the corresponding matrix measureµ1(A) of A can be also defined by

µ1(A) = sup
x∈Rn\{0}

〈Ax, sgn(x)〉
‖x‖1

,

where〈u, v〉 represents the inner product of vectorsu, v ∈ Rn andsgn(x) is the vec-
tor whosei-th component is the sign of thei-th component ofx, that is, sgn(x) =
(sgn(x1), sgn(x2), . . . , sgn(xn))T and for any realt, sgn(t) is defined by

sgn(t) =





1, t > 0,

0, t = 0,

−1, t < 0.

Definition 2.1. Let Ω ⊂ Rn. A functionf : Ω → Rn is said to be aLipschitz operator
onΩ whenever there exists a nonnegative constantM such that for anyx, y ∈ Ω,

‖f(x)− f(y)‖ ≤ M‖x− y‖,
whereM is called aLipschitz constantof f .

Theminimal Lipschitz constant(MLC) of f defined by

L(f) = sup
x,y∈Ω, x 6=y

‖f(x)− f(y)‖
‖x− y‖
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is known as a semi-norm of the space of Lipschitz operators. Naturally the MLC of a
Lipschitz operator varies with the norm adopted. Further on, the MLCs of the Lipschitz
operatorf corresponding to‖ · ‖1 and‖ · ‖∞ will be denoted respectively byL1(f) and
L∞(f).

Definition 2.2. Let f be a Lipschitz operator onΩ ⊂ Rn with the norm‖ · ‖1, then the
constant

m(f) = sup
x,y∈Ω, x 6=y

〈f(x)− f(y), sgn(x− y)〉
‖x− y‖1

is called thenonlinear Lipschitz measure(NLM) of f onΩ.

From Definition 2.1 and Definition 2.2 one can immediately deduce thatm(f) ≤
L(f) for any Lipschitz operatorf. In addition, if f is a matrix, then because of the
definition ofµ1(A) andL(f) the NLM of f coincides exactly with its matrix measure.

Lemma 2.3. [12] AssumeRn is endowed with the norm‖ · ‖1, andf is a Lipschitz
operator onΩ ⊂ Rn. If m(f) < 0, then

(i) f is one-to-one, that is,f(x) 6= f(y) wheneverx 6= y. Moreover, ifΩ = Rn, the
range off denoted byR(f) is the whole spaceRn, thereforef is a homeomor-
phism ofRn.

(ii) The inverse functionf−1 is a Lipschitz operator onR(f) with

L(f−1) ≤ 1

−m(f)
.

We will also need the following simple assertion from calculus.

Lemma 2.4. [12] If a > c > 0, then, for each nonnegative real numberb, the equation

λ− a + ceλb = 0

has a unique positive solution.

In fact, the left hand side of this equation is a strictly monotonic function forλ ≥ 0,
which is positive atλ = a and negative atλ = 0.

Definition 2.5. The time-delay impulsive system (2.1), (2.2) is said to beexponentially
stableon a neighbourhoodΩ of an equilibrium pointu∗ if there are two positive con-
stantsα andM such that

‖u(t)− u∗‖ ≤ Me−α(t−t0) sup
t0−b≤s≤t0

‖u0(s)− u∗‖, t ≥ t0,

whereb = sup{τij(t) : i, j = 1, n, t ∈ R} andu(t) is the unique trajectory of the
system initiated fromu0(s) ∈ Ω with s ∈ (t0 − b, t0]. If the equilibrium point of the
system (2.1), (2.2) is unique and it is exponentially stable on the spaceRn, then system
(2.1), (2.2) is said to beexponentially global stable.
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3. Main Results

Theorem 3.1. LetΩ ⊂ Rn be a neighbourhood of an equilibrium pointu∗ of the system
(2.1), (2.2) andF, G be Lipschitz operators onΩ, Jik, i = 1, n, k ∈ Z+, satisfyH3 and
b = sup{τij(t) : i, j = 1, n, t ∈ R} < ∞. WhenRn is endowed with the norm‖ · ‖1

and for someA = diag(a1, a2, . . . , an) with ai > 0 we havem(FA) + L1(GA) < 0,
then by Lemma 2.4 the equation

λ min
i=1,n

ai + m(FA) + L1(GA)ebλ = 0

has a unique positive solutionλ. If p ln(1 + c) < λ, then system (2.1), (2.2) is exponen-
tially stable onΩ. More precisely, for anỹλ ∈ (0, λ−p ln(1+c)) there exists a constant
M such that

‖x(t)− y(t)‖1 ≤ Me−λ̃(t−t0) sup
t0−b≤s≤t0

‖x0(s)− y0(s)‖1 for all t ≥ t0. (3.1)

In the case ofRn endowed with the norm‖ · ‖∞, F a matrix and if for some matrix
A = diag(a1, a2, . . . , an) with ai > 0, we haveµ∞(AF ) + L∞(AG) < 0, then by
Lemma 2.4 the equation

µ min
i=1,n

ai + µ∞(AF ) + L∞(AG)ebµ = 0

has a unique positive solutionµ. If p ln(1 + c) < µ, then system (2.1), (2.2) is expo-
nentially stable onΩ. More precisely, for anỹµ ∈ (0, µ − p ln(1 + c)) there exists a
constantM such that

‖x(t)− y(t)‖∞ ≤ Me−µ̃(t−t0) sup
t0−b≤s≤t0

‖x0(s)− y0(s)‖∞ for all t ≥ t0. (3.2)

In both cases,x(t) andy(t) are the trajectories of system (2.1), (2.2) initiated respec-
tively from x0(s) andy0(s) wherex0(s), y0(s) ∈ Ω for all s ∈ (t0 − b, t0].

Proof. Let us denoteu(t) = x(t)− y(t).
For any vectorw ∈ Rn we have‖w‖1 = 〈w, sgn(w)〉 and‖w‖1 ≥ 〈w, sgn(z)〉 for

all z ∈ Rn. Therefore for anys ∈ R, s > 0 we have

‖u(t)‖1 − ‖u(t− s)‖1

s
≤ 1

s
〈u(t)− u(t− s), sgn(u(t))〉.

So, from system (2.1) fort 6= tk we have

d‖u(t)‖1

dt
≤

〈
du(t)

dt
, sgn(u(t))

〉

= 〈F (x(t))− F (y(t)), sgn(A−1u(t))〉+ 〈G(xτ (t))−G(yτ (t)), sgn(u(t))〉
≤ m(FA)‖A−1u(t)‖1 + L1(GA)‖A−1xτ (t)− A−1yτ (t)‖1

≤
{

m(FA)‖u(t)‖1 + L1(GA) sup
t−b≤s≤t

‖u(s)‖1

}(
min
i=1,n

ai

)−1

.



Stability of Neural Networks with Time Varying Delays 9

Sincem(FA) + L1(GA) < 0 andL1(GA) ≥ 0, then by Halanay’s inequality [7] and
taking into account the presence of impulses, we have

‖u(t)‖1 ≤ e−λ(t−t0)(1 + c)i(t0,t) sup
t0−b≤s≤t0

‖u(s)‖1,

whereλ is the unique positive solution of the equation

λ = −m(FA)

(
min
i=1,n

ai

)−1

− L1(GA)

(
min
i=1,n

ai

)−1

eλb.

Let ε > 0 be such thatλ− (p + ε) ln(1 + c) > 0. Theni(t0, t) ≤ (p + ε)(t− t0) for all
t large enough and there exists a constantM ≥ 1 such thati(t, t0) ≤ (p + ε)(t− t0) +
ln M/ ln(1 + c) for all t ≥ t0. Then

(1 + c)i(t0,t) ≤ M exp[(p + ε) ln(1 + c)(t− t0)]

and the desired estimate (3.1) follows withλ̃ = λ− (p + ε) ln(1 + c).
WhenF is a matrix andRn is endowed with the norm‖ · ‖∞, we have from system

(2.1)

u(t) = eF (t−s)u(s) +

∫ t

s

eF (t−r)
(
G(xτ (r))−G(yτ (r))

)
dr

for all t > s ≥ t0. Using the well-known properties of the matrix measureµ∞(F ) (see
more details in [10]),‖eFt‖∞ ≤ eµ∞(F )t ∀t ∈ R, we have

‖u(t)‖∞ − ‖u(s)‖∞
t− s

≤ 1

t− s

{(‖eF (t−s)‖ − 1
)‖u(s)‖∞

+

∫ t

s

‖eF (t−r)‖‖G(xτ (r))−G(yτ (r))‖∞ dr

}

≤ 1

t− s

{(
eµ∞(F )(t−s) − 1

)‖u(s)‖∞

+

(
min
i=1,n

ai

)−1

L∞(AG)

∫ t

s

eµ∞(F )(t−r)‖uτ (r)‖∞ dr

}
.

For s → t and using the inequality (2.3), whereP = diag(d1, d2, . . . , dn) (di 6= 0, i =
1, n), we can obtain that almost everywhere on(t0, +∞)

d‖u(t)‖∞
dt

≤ µ∞(F )‖u(t)‖∞ + L∞(AG)‖Auτ (t)‖∞
(

min
i=1,n

ai

)−1

≤
{

µ∞(AF )‖u(t)‖∞ + L∞(AG) sup
t−b≤s≤t

‖u(s)‖∞
} (

min
i=1,n

ai

)−1

.

Now the proof of the estimate (3.2) is completed as the proof of the estimate (3.1).¥
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Now, extending some results of [12], we present some sufficient conditions for ex-
istence and uniqueness of equilibrium of the network (1.2) and the impulsive network
(1.3).

Theorem 3.2. Let Ω ⊂ Rn andmi be the MLC offi on Ωi, the projection ofΩ to the
i-th axis. Ifri (i = 1, n) are positive real numbers such that either

mjRj

(
ωjj +

n∑

i 6=j

rj

ri

|ωij|
)

< 1, j = 1, n, (3.3)

or

Rj

n∑
i=1

ri

rj

mi|ωji| < 1, j = 1, n, (3.4)

then, corresponding to each group of external inputIi, the equilibrium point of system
(1.2) is unique inΩ. Furthermore, ifΩ = Rn, then there exists an equilibrium point.

Proof. Assume thatP = diag(r1, r2, . . . , rn), rj > 0 (j = 1, n) and define the function
F : Ω → Rn by

(
F (u)

)
i
= − ui

Ri

+
n∑

j=1

ωijfj(uj) + Ii, i = 1, n,

whereu =
(
u1, u2, . . . , un

)T
, F (u) =

(
F1(u), F2(u), . . . , Fn(u)

)T
. An equilibrium

pointu∗ of system (1.2) corresponds to a solution of the equation

F (u) = 0. (3.5)

Since the matrixP is nonsingular, the problem of finding a solutionu ∈ Ω of equation
(3.5) is equivalent to the problem of finding a solutionv ∈ P−1(Ω) of

P−1F (Pv) = 0. (3.6)

In fact, these solutions are related byu = Pv.
Let us suppose that (3.3) holds. In this case we follow closely [12].
We denote

µj = ωjj +
n∑

i 6=j

rj

ri

|ωij| andµ+
j = max{0, µj}, j = 1, n.

For eachi = 1, n the transfer functionfi is increasing, or equivalently

(
fi(t)− fi(s)

)
sgn(t− s) = |fi(t)− fi(s)| for all t, s ∈ R.
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It follows that for allx, y ∈ P−1(Ω) we have

〈P−1F (Px)− P−1F (Py), sgn(x− y)〉

=
n∑

i=1

{
−xi − yi

Ri

+
n∑

j=1

r−1
i ωij (fj(rjxj)− fj(rjyj))

}
sgn(xi − yi)

= −
n∑

i=1

|xi − yi|
Ri

+
n∑

j=1

n∑
i=1

r−1
i ωij (fj(rjxj)− fj(rjyj)) sgn(xi − yi)

= −
n∑

j=1

|xj − yj|
Rj

+
n∑

j=1

{
r−1
j ωjj [fj(rjxj)− fj(rjyj)] sgn(xj − yj)

+
n∑

i6=j

r−1
i ωij [fj(rjxj)− fj(rjyj)] sgn(xi − yi)

}

≤ −
n∑

j=1

|xj − yj|
Rj

+
n∑

j=1

{
r−1
j ωjj|fj(rjxj)− fj(rjyj)|

+
n∑

i6=j

r−1
i |ωij| · |fj(rjxj)− fj(rjyj)|

}

≤ −
n∑

j=1

|xj − yj|
Rj

+
n∑

j=1

|fj(rjxj)− fj(rjyj)|r−1
j µj

≤ −
n∑

j=1

R−1
j

(
1− µ+

j mjRj

)|xj − yj|

≤ −
min
j=1,n

{1− µ+
j mjRj}

max
j=1,n

Rj

‖x− y‖1.

This result implies thatm(P−1FP ) < 0. The operatorP−1FP is one-to-one, therefore
there is not more than onev∗ ∈ P−1(Ω) such thatP−1FP (v∗) = 0. The equilibrium
point of (1.2) is unique becauseP is nonsingular. Furthermore, ifΩ = Rn, thenP−1FP
is a homeomorphism ofRn. ThusF is also a homeomorphism ofRn becauseP is
nonsingular. Therefore there is a uniqueu∗ in Rn such thatF (u∗) = 0, that is,u∗ is the
unique equilibrium point of the system (1.2).

Now let us suppose that condition (3.4) holds. We can write the equation (3.6) in
the form

v = Φ(v),

where

Φi(v) = Rir
−1
i

n∑
j=1

ωijfj(rjvj) + RiIi,
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v = (v1, . . . , vn)T , Φ(v) = (Φ1(v), . . . , Φn(v))T . Forx, y ∈ P−1(Ω) ⊂ Rn we have

|Φi(x)− Φi(y)| ≤ Rir
−1
i

n∑
j=1

|ωij||fj(rjxj)− fj(rjyj)|

≤ Rir
−1
i

n∑
j=1

|ωij|mjrj|xj − yj|,

thus
‖Φ(x)− Φ(y)‖∞ ≤ q‖x− y‖∞,

where

q = max
i=1,n

Rir
−1
i

n∑
j=1

|ωij|mjrj = max
j=1,n

Rj

n∑
i=1

ri

rj

|ωji|mi < 1.

This shows that the operatorΦ is a contraction, so it has not more than one fixed point
in P−1(Ω) and exactly one fixed point inRn. The proof of the theorem is complete.¥

It is easy to see that an equilibriumu∗ of the impulsive system (1.3) must be an
equilibrium of the system without impulses (1.2). So there is at most one equilibrium
pointu∗ = (u∗1, . . . , u

∗
n)T of (1.3) and it must satisfy

Jik(u
∗
i ) = 0, i = 1, n, k ∈ Z+. (3.7)

Theorem 3.3. Assume thatu∗ is an equilibrium point of system (1.3) andΩ is a neigh-
bourhood ofu∗. Suppose that there exists a set of positive numbersri, i = 1, n, satis-
fying either

mjRj

n∑
i=1

rj

ri

|ωij| < 1 (3.8)

or (3.4), wheremi is the minimal Lipschitz constant (MLC) offi onΩi. Suppose further
that the unique positive solutionλ of the equation

λ min
i=1,n

Ri − 1 + qeλb = 0

with

q = max
j=1,n

(
mjRjrj

n∑
i=1

r−1
i |ωij|

)

when (3.8) holds, or

q = max
j=1,n

(
Rjr

−1
j

n∑
i=1

miri|ωji|
)
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when (3.4) holds, satisfiesλ > p ln(1 + c). If u(t) is the trajectory of system (1.3)
initiated fromu0(s) ∈ Ω with s ∈ (t0 − b, t0], then

‖u(t)− u∗‖ ≤ Me−λ̃(t−t0)

max
i=1,n

ri

min
i=1,n

ri

sup
t0−b≤s≤t0

‖u0(s)− u∗‖, (3.9)

where the vector norm‖ · ‖ is respectively‖ · ‖1 and‖ · ‖∞, andλ̃ ∈ (0, λ− p ln(1+ c)).

Proof. We can first note that condition (3.8) implies (3.3), so the equilibrium of system
(1.2) or (1.3) is unique, if any. Moreover, ifΩ = Rn, then condition (3.8) or (3.4)
implies the existence of a unique equilibrium of system (1.2). It is an equilibrium of the
impulsive system (1.3) as well if and only if condition (3.7) holds.

We can write system (1.3) in the form (2.1), (2.2), whereF = −diag(R−1
1 , . . ., R−1

n )
andG : Ω → Rn is defined by

(
G(u)

)
i
=

n∑
j=1

ωijfj(uj) + Ii, i = 1, n.

By the changeu = Pv, whereP = diag(r1, . . . , rn), we obtain another system of the
form (2.1), (2.2):





d

dt
v(t) = Fv(t) + P−1G(Pvτ (t)),

∆vi(tk) = r−1
i Jik(rivi(tk)), i = 1, n, k ∈ Z+.

(3.10)

It is easily seen that the new impulse operatorsvi 7→ r−1
i Jik(rivi) satisfy conditionH3

with the same constantc andv∗ = P−1u∗ is an equilibrium point of (3.10).
Let us denoteA = diag(R1, . . . , Rn), thusFA = AF = −I. We shall apply

to system (3.10) the two cases of Theorem 3.1 in dependence on which one of the
conditions (3.8) or (3.4) holds.

First suppose that condition (3.8) holds. Then we havem(FA) = −1. Moreover,
for all x, y ∈ A−1P−1(Ω) we have

‖P−1G(PAx)− P−1G(PAy)‖1 =
n∑

i=1

r−1
i

∣∣∣∣∣
n∑

j=1

ωij

[
fj(rjRjxj)− fj(rjRjyj)

]
∣∣∣∣∣

≤
n∑

i=1

r−1
i

n∑
j=1

|ωij|mjrjRj|xj − yj| =
n∑

j=1

|xj − yj|mjRj

n∑
i=1

|ωij|rj

ri

≤ q‖x− y‖1,

and thusL1(P
−1GPA) ≤ q < 1. Since

m(FA) + L1(P
−1GPA) ≤ q − 1 < 0,
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by Theorem 3.1 the trajectoryv(t) of (3.10) satisfies

‖v(t)− P−1u∗‖ ≤ Me−λ̃(t−t0) sup
t0−b≤s≤t0

‖v(s)− P−1u∗‖ (3.11)

with 1-norm for allt ≥ t0. This estimate easily implies (3.9) with 1-norm.
Next suppose that condition (3.4) holds. We haveµ∞(AF ) = −1 and for allx, y ∈

P−1(Ω)

∣∣∣
(
AP−1G(Px)

)
i
− (

AP−1G(Py)
)

i

∣∣∣

= Rir
−1
i

∣∣∣∣∣
n∑

j=1

ωij

[
fj(rjxj)− fj(rjyj)

]
∣∣∣∣∣ ≤ Rir

−1
i

n∑
j=1

|ωij|mjrj|xj − yj|,

thus

‖AP−1G(Px)− AP−1G(Py)‖∞ ≤ q‖x− y‖∞ and L∞(AP−1GP ) = q < 1.

Since
µ∞(AF ) + L∞(AP−1GP ) = q − 1 < 0,

by Theorem 3.1 the solutionv(t) of (3.10) satisfies the estimate (3.11) with∞-norm for
all t ≥ t0. This estimate implies (3.9) with∞-norm. ¥
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