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Abstract

In this paper, we study Hyers–Ulam stability of general Volterra type inte-
gral equations on unbounded and bounded time scales. We give an existence and
uniqueness conditions of the solutions of Volterra type integral equations on time
scales using Banach contraction principle, Bielecki type norm and Lipschitz type
functions. Furthermore it allows to get sufficient conditions for Hyers–Ulam sta-
bility.
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1 Introduction
In 1940, S.M. Ulam [25] at the Mathematics Club of the University of Wisconsin raised
the question when a solution of an equation, differing slightly from a given one, must
be somehow near to the exact solution of the given equation. In the following year,
D.H. Hyers [12] gave an affirmative answer to the question of S.M. Ulam for Cauchy
additive functional equation in a Banach space. So the stability concept proposed by
S.M. Ulam and D.H. Hyers was named as Hyers–Ulam stability. Afterwards Th.M.
Rassias [18] introduced new ideas of Hyers–Ulam stability using unbounded right-hand

Received March 14, 2020; Accepted April 4, 2020
Communicated by Sandra Pinelas



40 A. Reinfelds and S. Christian

side in the involved inequalities, depending on certain functions, introducing therefore
the so-called Hyers–Ulam–Rassias stability. However, we will use only the term Hyers–
Ulam stability in this article.

In 2007, S.M. Jung [15] proved, using a fixed point approach, that the Volterra non-
linear integral equation is Hyers–Ulam–Rassias stable, on a compact interval under cer-
tain conditions. Then several authors [6, 13, 14] generalized the previous result on the
Volterra integral equations to infinite interval in the case when the integrand is Lips-
chitz with a fixed Lipschitz constant. In the near past many research papers have been
published about Ulam-Hyers stability of Volterra integral equations of different type
including nonlinear Volterra integro-differential equations, mixed integral dynamic sys-
tem with impulses etc. [7, 8, 21–23, 26].

The theory of time scales analysis has been rising fast and has acknowledged a lot
of interest. The pioneer of this theory was S. Hilger [10]. He introduced this theory in
1988 with the inspiration to unify continuous and discrete calculus. For the introduction
to the calculus on time scales and to the theory of dynamic equations on time scales, we
recommend the books [4] and [5] by M. Bohner and A. Peterson.

T. Kulik and C.C. Tisdell [16, 24] gave the basic qualitative and quantitative results
to Volterra integral equations on time scales in the case when the integrand is Lipschitz
with a fixed Lipschitz constant. A. Reinfelds and S. Christian [19, 20] generalized pre-
vious results using Lipschitz functions, whose Lipschitz coefficients can be unbounded.

To the best of our knowledge, the first ones who pay attention to Hyers–Ulam sta-
bility for Volterra integral equations on time scales are S. Andras, A.R. Meszaros [1]
and L. Hua, Y. Li, J. Feng [11]. However they restricted their research to the case when
integrand satisfies Lipschitz conditions with some Lipschitz constant. We generalize
the results of [1, 11] using Lipschitz functions, whose Lipschitz coefficients can be un-
bounded, and the Banach fixed point theorem for an appropriate functional space with
Bielecki type norm.

D.B. Pachpatte [17] studied qualitative properties of solutions of general nonlinear
Volterra integral equation

x(t) = f

(
t, x(t),

∫ t

a

K(t, s, x(s))

)
∆s

on time scales. In the present paper, using the methods developed at [19, 20], we give
new existence and uniqueness conditions of solutions and analyze Hyers–Ulam stability
for the following class of Volterra type integral equation on an arbitrary time scales T

x(t) = f

(
t, x(t), x(σ(t)),

∫ t

a

K(t, s, x(s), x(σ(s)))∆s

)
,

a, t ∈ IT = [a,+∞) ∩ T. (1.1)

This type of integral equations could be very useful for modelling economic process,
for example, a Keynesian–Cross model with “lagged” income [9, 24].
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2 Preliminaries on Time Scales
In this section, we present some basic notation, definitions and properties concerning
the calculus on time scales, for more details the reader is referred to [4,5]. A time scale
T is an arbitrary nonempty closed subset of real numbers R. Since a time scales may or
may not be connected, we need the concept of jump operators. For t ∈ T, the forward
jump operator σ : T → T is defined by σ(t) = inf{s ∈ T : s > t}, while the backward
jump operator ρ : T → T is defined by ρ(t) = sup{s ∈ T : s < t}. In this definitions
we put inf ∅ = supT and sup ∅ = inf T, where ∅ denotes the empty set. Using these
operators we can classify the points of time scale T as left dense, left scattered, right
dense and right scattered according to whether ρ(t) = t, ρ(t) < t, σ(t) = t and σ(t) > t
respectively. If T has a left scattered maximum m, then Tκ = T \ {m}, otherwise set
Tκ = T. The function g : T → R is called rd-continuous provided it is continuous at
every right dense points in T and its left sided limits exist (finite) at every left dense
points in T. The graininess function µ : T → [0,+∞) is defined by µ(t) = σ(t) − t.
The function g : T→ R is regressive if

1 + µ(t)g(t) 6= 0 for all t ∈ Tκ.

Assume g : T → R is a function and fix t ∈ Tκ. The delta derivative (also Hilger
derivative) g∆(t) exists if for every ε > 0 there exists a neighbourhood U = (t− δ, t+
δ) ∩ T for some δ > 0 such that∣∣(g(σ(t))− g(s))− g∆(t)(σ(t)− s)

∣∣ ≤ ε |σ(t)− s| for all s ∈ U.

If g is rd-continuous, then there is function F [4,5] such that F∆(t) = g(t). In this case,
we define the (Cauchy) delta integral by∫ s

r

g(t) ∆t = F (s)− F (r), for all r, s ∈ T.

Let β : T → R be a nonnegative (and therefore regressive) and rd-continuous scalar
function. The Cauchy initial value problem for scalar linear equation

x∆ = β(t)x, x(a) = 1, a ∈ T

has the unique solution eβ(·, a) : T → R [4, 5]. More explicitly, using the cylinder
transformation the exponential function eβ(·, a) is given by

eβ(t, a) = exp

(∫ t

a

ξµ(s)(β(s)) ∆s

)
,

where

ξh(z) =

{
z, h = 0;
1

h
log(1 + hz), h > 0.
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We will use the following property of exponential functions [4, 5]

eβ(σ(t), a) = (1 + µ(t)β(t))eβ(t, a).

Observe that we also have the Bernoulli type estimate

1 +

∫ t

a

β(s) ∆s ≤ eβ(t, a) ≤ exp

(∫ t

a

β(s) ∆s

)
for all t ∈ IT = [a,+∞) ∩ T.

Let | · | denote the Euclidean norm on Rn. We will consider the linear space of
continuous functions C(IT;Rn) such that

sup
t∈IT

|x(t)|
eβ(t, a)

<∞

and denote this special space by Cβ(IT;Rn). The space Cβ(IT;Rn) endowed with the
Bielecki type norm (see [2, 24])

‖x‖β = sup
t∈IT

|x(t)|
eβ(t, a)

is a Banach space.

3 Volterra Type Integral Equations
Let us introduce new existence and uniqueness conditions of solutions and analyze
Hyers–Ulam stability for the class of Volterra type integral equations (1.1). We assume
that the Lipschitz coefficients L1 and L2 can be unbounded rd-continuous functions.
The use of Bielecki type norms related to Lipschitz coefficients allows to choose a suit-
able functional space to prove the following theorem.

Theorem 3.1. Consider the integral equation (1.1). Let K : IT × IT × Rn × Rn → Rn

be continuous in its first, third and fourth variables and rd-continuous in its second
variable, f : IT×Rn×Rn×Rn → Rn be continuous, L1, L2 : IT → R be rd-continuous,
sup
s∈IT
|L1(s)µ(s)| = q <∞, sup

s∈IT
|L2(s)µ(s)| = r < 1, 1 < γ < r−1 and

β(s) =
[L1(s) + L2(s)]γ

1− rγ
.

If
|f(t, x, x′, x′′)− f(t, x̄, x̄′, x̄′′)| ≤M(|x− x̄|+ |x′ − x̄′|+ |x′′ − x̄′′|),

where

M

(
1 +

1 + pγ

1− rγ
+

1

γ

)
< 1,
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|K(t, s, x, x̄)−K(t, s, x′, x̄′)| ≤ L1(s)|x− x′|+ L2(s)|x̄− x̄′|, s < t,

and

m = sup
t∈IT

1

eβ(t, a)

∣∣∣∣f (t, 0, 0,∫ t

a

K(t, s, 0, 0) ∆s

)∣∣∣∣ <∞,
then the integral equation (1.1) has a unique solution x ∈ Cβ(IT;Rn).

Proof. Let L1, L2 : IT → R be the Lipschitz coefficients and let

β(s) =
[L1(s) + L2(s)]γ

1− γr
, where 1 < γ < r−1.

It follows that

1 + µ(s)β(s) = 1 +
µ(s)(L1(s) + L2(s))γ

1− γr
= 1 +

(q + r)γ

1− γr
=

1 + qγ

1− rγ

and

L1(s) + L2(s)(1 + µ(s)β(s)) = L1(s) + L2(s) + L2(s)µ(s)β(s)

≤ L1(s) + L2(s) +
r [L1(s) + L2(s)] γ

1− rγ

=
L1(s) + L2(s)

1− rγ
=
β(s)

γ
.

Consider the Banach space Cβ(IT;Rn). To prove the result, we define an operator
F : Cβ(IT;Rn)→ Cβ(IT;Rn) by the expression

[Fx](t) = f

(
t, x(t), x(σ(t)),

∫ t

a

K(t, s, x(s), x(σ(s))) ∆s

)
.

We show that for any u, v ∈ Cβ(IT;Rn)

‖Fu− Fv‖β = sup
t∈IT

|[Fu](t)− [Fv](t)|
eβ(t, a)

= sup
t∈IT

1

eβ(t, a)

∣∣∣∣f (t, u(t), u(σ(t)),

∫ t

a

K(t, s, u(s), u(σ(s))) ∆s

)
− f

(
t, v(t), v(σ(t)),

∫ t

a

K(t, s, v(s), v(σ(s))) ∆s

)∣∣∣∣
≤ M sup

t∈IT

1

eβ(t, a)
(|u(t)− v(t)|+ |u(σ(t))− v(σ(t))|

+

∣∣∣∣∫ t

a

K(t, s, u(s), u(σ(s))) ∆s−
∫ t

a

K(t, s, v(s), v(σ(s))) ∆s

∣∣∣∣)
= I1 + I2 + I3.
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We get

I1 = M sup
t∈IT

1

eβ(t, a)
|u(t)− v(t)| = M‖u− v‖β,

I2 = M sup
t∈IT

1 + µ(t)β(t)

eβ(σ(t), a)
|u(σ(t))− v(σ(t))| = M

1 + qγ

1− rγ
‖u− v‖β,

I3 = M sup
t∈IT

1

eβ(t, a)

∣∣∣∣∫ t

a

K(t, s, u(s), u(σ(s))) ∆s−
∫ t

a

K(t, s, v(s), v(σ(s))) ∆s

∣∣∣∣
≤ M sup

t∈IT

1

eβ(t, a)

∣∣∣∣∫ t

a

[L1(s)|u(s)− v(s)|+ L2(s)|u(β(s))− v(β(s))|] ∆s

∣∣∣∣
≤ M‖u− v‖β sup

t∈IT

1

eβ(t, a)

∫ t

a

[L1(s) + L2(s)(1 + µ(s)β(s))] eβ(s, a) ∆s]

≤ M

γ
‖u− v‖β sup

t∈IT

1

eβ(t, a)

∫ t

a

β(s)eβ(s, a) ∆s

=
M

γ
‖u− v‖β sup

t∈IT

1

eβ(t, a)

∫ t

a

e∆
β (s, a) ∆s

=
M

γ
‖u− v‖β sup

x∈IT

1

eβ(t, a)
(eβ(t, a)− 1)

=
M

γ
‖u− v‖β sup

t∈IT

(
1− 1

eβ(t, a)

)
=
M

γ
‖u− v‖β.

It follows that

‖Fu− Fv‖β ≤M‖u− v‖β
(

1 +
1 + qγ

1− rγ
+

1

γ

)
.

We show that F : Cβ(IT;Rn) → Cβ(IT;Rn). Let x ∈ Cβ(IT;Rn). Taking norms, we
obtain

‖Fx‖β = ‖Fx− F0 + F0‖β ≤ ‖Fx− F0‖β + ‖F0‖β

≤M‖x‖β
(

1 +
1 + qγ

1− rγ
+

1

γ

)
+m.

As M
(

1 +
1 + qγ

1− rγ
+

1

γ

)
< 1, we see that F is a contraction map and so Banach’s

fixed point theorem applies, yielding the existence of a unique fixed point x of the map
F .
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Definition 3.2. We say that integral equation (1.1) is Hyers–Ulam stable if there exists
a constant C > 0 such that for each real number ε > 0 and for each solution x ∈
Cβ(IT;Rn) of the inequality

sup
t∈IT

∣∣∣x(t)− f
(
t, x(t), x(σ(t)),

∫ t
a
K(t, s, x(s), x(σ(s))) ∆s

)∣∣∣
eβ(t, a)

= ‖x− Fx‖β ≤ ε,

there exists a solution x0 ∈ Cβ(IT;Rn) of the integral equation (1.1) with the property

‖x− x0‖β ≤ Cε.

Let us find a sufficient condition for the Volterra type integral equation (1.1) to be
Hyers–Ulam stable.

Theorem 3.3. If x0 ∈ Cβ(IT;Rn) is a solution of the Volterra type integral equation
(1.1) and

M

(
1 +

1 + qγ

1− rγ
+

1

γ

)
< 1,

then the Volterra type integral equation (1.1) is Hyers–Ulam stable.

Proof. According to Theorem 3.1, there is a unique solution x0 ∈ Cβ(IT;Rn) to the
Volterra type integral equation (1.1) in Banach space. Therefore we get the estimate

‖x− x0‖β ≤ ‖x− Fx‖β + ‖Fx− Fx0‖β

≤ ε+M

(
1 +

1 + qγ

1− rγ
+

1

γ

)
‖x− x0‖β.

Hence,
‖x− x0‖β ≤ Cε,

where C =

(
1−M

(
1 +

1 + qγ

1− rγ
+

1

γ

))−1

.

4 The Case of Bounded Time Scales
In the case of a bounded (compact) time scale a, b ∈ IT = [a, b] ∩ T, we have

1 ≤ sup
t∈IT

eβ(t, a) ≤ sup
t∈IT

exp

∫ t

a

β(s) ∆s = N <∞.

Let us note that every rd-continuous function on a compact interval is bounded. There-
fore, the supremum norm and the Bielecki type norm in the Banach space Cβ(IT;Rn)
are equivalent, i.e.,

sup
t∈IT
|x(t)| ≤ N‖x‖β ≤ N sup

t∈IT
|x(t)|.
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We can take also γ = 1. Then β(s) =
L1(t) + L2(t)

1− r
and we get estimates

‖Fx− Fx0‖β ≤M

(
1 +

1 + q

1− r
+ (1−N−1)

)
‖x− x0‖β

and

‖x− Fx‖β ≤ sup
t∈IT

∣∣∣∣x(t)− f
(
t, x(t), x(σ(t)),

∫ t

a

K(t, s, x(s), x(σ(s))) ∆s

)∣∣∣∣ ≤ ε.

From Theorem 3.3, we get

‖x− x0‖β ≤ ‖x− Fx‖β + ‖Fx− Fx0‖β

≤ ε+M

(
1 +

1 + qγ

1− rγ
+ 1−N−1

)
‖x− x0‖β.

It follows that
sup
t∈IT
|x(t)− x0(t)| ≤ N‖x− x0‖β ≤ Cε.

Here,

C = N

(
1−M

(
2 +

1 + qγ

1− rγ
−N−1

))−1

.

It follows that integral equation (1.1) on bounded time scales is also Hyers–Ulam stable
in Banach space with supremum norm.
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la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci. Cl. III 4
(1956), 261–264.

[3] M. Bohner, Some oscillation criteria for first order delay dynamic equations, Far
East J. Appl. Math. 18 (2005), no. 3, 289–304.

[4] M. Bohner and A. Peterson. Dynamic Equations on Time Scales. An Introduction
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