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Abstract

The objective of this paper is to show a new method for inverting first order
ordinary differential equations with time-delay terms to obtain a new variation of
parameters formula. Then, we will resort to the contraction mapping principle
to obtain results concerning boundedness, stability and periodicity. We present
several instances of these equations and examples.
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1 Introduction and Basic Example

It is customary in a nonlinear differential equation to add and subtract a convenient term
that allows us to invert the equation in question and obtain a variation of parameters
formula that can be used to obtain different results on the solutions. However, the added
term will cause restrictions on the coefficients and, in turn, limit the class of equations
that can be considered. To see this we begin by considering the following totally delayed
nonlinear delay differential equation

ẋ(t) = a(t)l(xr), (1.1)
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where ẋ =
d

dt
x, xr(t) = x(t − r) for r > 0 constant and l = l(t) is a continuous

function that satisfies more conditions to be imposed later. Assume the existence of a
continuous initial function ψ : [−r, 0]→ R and we rewrite (1.1) in the form

ẋ(t) = a(t+ r)l(x)− d

dt

∫ t

t−r
a(s+ r)l(x(s))ds

= a(t+ r)x(t)− a(t+ r)[x(t)− l(x(t))]

− d

dt

∫ t

t−r
a(s+ r)l(x(s))ds. (1.2)

Note that we added and subtracted a(t + r)x so the inversion is possible. Thus, by the
variation of parameters formula we obtain the integral

x(t) = ψ(0)e
∫ t
0 a(s+r)ds

−
∫ t

0

e
∫ t
s a(u+r)dua(s+ r)[x(s)− l(x(s))]ds

−
∫ t

0

e
∫ t
s a(u+r)du

d

ds

∫ s

s−r
a(u+ r)l(x(u))du ds. (1.3)

The appearance of the term x(s) − l(x(s)) in (1.3) is a direct consequence of the bor-
rowed term. In addition, to get any meaningful results one would have to assume that
l(x(t)) is odd. Otherwise, x(s)− l(x(s)) will not define a contraction. For more on such
inversion, we refer the reader to the book [1] and the article [2]. In [8], Raffoul con-
sidered the nonlinear functional delay differential equation that arises from population
models

x′(t) = g(x(t))− g(x(t− L)).

and used the same techniques to overcome some of the difficulties that arise from
straight inversion as we saw above. Next, we invert our way by assuming ν : [0,∞)→

R to be a nonnegative function such that 0 <

∫ ∞
0

ν(s) ds = m < ∞. In order to

solve (1.1), we apply an inversion technique that starts by multiplying both sides by
e
∫ t
0 ν and then integrates them. We simplify notation here and drop the ds at the end of

the exponent. ∫ t

0

e
∫ s
0 ν ẋ(s)ds = x(t)e

∫ t
0 ν − x(0)−

∫ t

0

xνe
∫ s
0 ν ds

Therefore (1.1) becomes

x(t)e
∫ t
0 ν = x(0) +

∫ t

0

xνe
∫ s
0 ν ds+

∫ t

0

e
∫ s
0 νa(s)l(xr) ds,

x(t) = x(0)e−
∫ t
0 ν +

∫ t

0

xνe−
∫ t
s ν ds+

∫ t

0

e−
∫ t
s νa(s)l(xr) ds

(1.4)
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By imposing adequate conditions on ν(t), c(t) and l(t), we will prove the existence of
bounded solutions to (1.1).

1.1 The Fixed Point Theorem
In order to prove existence of bounded solutions to (1.4), we will use the right-hand side
to define a contraction map on a complete metric space S. The resulting unique fixed
point will be the solution we are looking for. The subject of stability using fixed point
arguments in delay differential equations is vast and we refer to [1–3, 6].

Let K > 0 be a constant and fix an initial continuous function Ψ : [−r, 0]→ R with
|Ψ(t)| < K for t ∈ [−r, 0] and |Ψ(0)| > 0.

Define the space

S := {x : [−r,∞)→ R|x ∈ C1[−r,∞), ‖x‖∞ ≤ K, x ≡ Ψ on [−r, 0]}, (1.5)

where C1[−r,∞) denotes the space of continuously differentiable functions and ‖·‖∞ is
the supremum norm. By general principles it follows that S is a complete metric space.

Define a map P on S by

P(x) := x(0)e−
∫ t
0 ν +

∫ t

0

xνe−
∫ t
s ν ds+

∫ t

0

e−
∫ t
s νa(s)l(xr) ds. (1.6)

The following lemma can be adapted to several different situations.

Lemma 1.1. Let {ε1, ε2, ε3} be a triple of positive numbers such that ε1 + ε2 + ε3 ≤
1 − δ for a fixed 0 < δ < 1. Assume that |Ψ(0)| ≤ ε1K and m is small enough that
|1 − e−m| < ε2. Assume that l(y) is Lipschitz on [−K,K] and satisfies |l(y)| ≤ Cl|y|
for y ∈ [−K,K] and for some positive constant Cl. Suppose that a(s) ∈ L1([0,∞))

and
∫ ∞
0

|a(s)| ds ≤ ε3
Cl

. Then the map P has range in S and it is a contraction. This

implies that (1.1) has a unique solution in S.

Proof. We use the hypotheses of the theorem to bound each of the summands on the
right-hand side of (1.6). The first term satisfies the bound∣∣∣x(0)e−

∫ t
0 ν
∣∣∣ ≤ ε1K,

since |e−
∫ t
s ν | ≤ 1. The second summand can be bounded by∣∣∣∣∫ t

0

xνe−
∫ t
s ν ds

∣∣∣∣ ≤ ‖x‖∞ ∫ t

0

νe−
∫ t
s ν ds ≤ (1− e−m)‖x‖∞ ≤ ε2K.

The conditions stated above allow us to bound the third summand by∣∣∣∣∫ t

0

e−
∫ t
s νa(s)l(xr) ds

∣∣∣∣ ≤ ε3‖x‖∞ ≤ ε3K.
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Therefore,
|P(x)| ≤ Kε1 +Kε2 +Kε3 ≤ (1− δ)K. (1.7)

This implies ‖P(x)|‖∞ ≤ (1− δ)K so P has range in S.
The contraction part follows similarly,

|P(x)−P(y)| ≤ |x− y|
(∫ t

0

νe−
∫ t
s νds+ Cl

∫ t

0

|a(s)| ds
)

(1.8)

≤ |x− y|
(
ε2 + Cl

ε3
Cl

)
≤ (1− δ)|x− y|.

Therefore, ‖P(x)−P(y)|‖∞ ≤ (1− δ)‖x− y‖∞. and P : S → S is a contraction.

1.2 A General ODE with Constant Time-Delayed Terms.
Now we consider a slightly more general equation

ẋ(t) = a(t)g(xr) + b(t)G(xr), (1.9)

where a, b, g, G are all continuous on [−r,∞). Let us denote the right-hand side of (1.9)
by L(xr). On the same space S as before we define a new map

P̂(x) := x(0)e−
∫ t
0 ν +

∫ t

0

xνe−
∫ t
s ν ds+

∫ t

0

e−
∫ t
s νL(xr) ds. (1.10)

Impose the same conditions on ν as in Lemma 1.1. The only difference now is the third
term. We impose the following conditions:

C1- Assume g and G are Lipschitz on [−K,K]. Explicitly, there are positive constants
Cg and CG such that, for every y ∈ [−K,K], |g(y)| ≤ Cg|y| and |G(y)| ≤ CG|y|.

C2- Assume a(s), b(s) ∈ L1([0,∞)),
∫ ∞
0

|a(s)| ds ≤ ε3
2Cg

and
∫ ∞
0

|b(s)| ds ≤ ε3
2CG

.

Lemma 1.2. Using the notation and definitions from Lemma 1.1 and conditions C1–C2
above, we get that P̂ : S → S is a contraction.

Proof. The only difference is the third summand in the definition of P̂. We bound it as
follows: ∣∣∣∣∫ t

0

e−
∫ t
s νL(xr) ds

∣∣∣∣ ≤ K

(
Cg

ε3
2Cg

+ CG
ε3

2CG

)
= Kε3,

and the rest follows similarly to the proof of Lemma 1.1.

As a consequence, we find that (1.9) has a unique bounded solution in S.
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2 The Main Inversion
Now we present a more general way of inverting (1.9) that starts by rewriting it as

ẋ(t) = (a+ b)g(xr) + b(G(xr)− g(xr))

= − d

dt

∫ t

t−r
c(p+ r)g(x(p)) dp+ c(t+ r)g(x(t)) + bl(xr),

(2.1)

where c = a+b and l = G−g. Now multiply both sides by e
∫ t
0 ν and integrate as before

to solve for x(t). We get

x(t) =x(0)e−
∫ t
0 ν +

∫ t

0

xνe−
∫ t
s νds

−
∫ t

0

e−
∫ t
s ν

(
d

ds

∫ s

s−r
c(p+ r)g(x(p)) dp

)
ds

+

∫ t

0

c(s+ r)g(x)e−
∫ t
s νds+

∫ t

0

e−
∫ t
s νbl(xr)ds.

(2.2)

Apply integration by parts in the middle line to get

x(t) = x(0)e−
∫ t
0 ν +

∫ t

0

xνe−
∫ t
s νds

− F (t) + e−
∫ t
0 νF (0) +

∫ t

0

νe−
∫ t
s νF (s) ds

+

∫ t

0

c(s+ r)g(x)e−
∫ t
s νds+

∫ t

0

e−
∫ t
s νbl(xr)ds,

(2.3)

where F (t) =

∫ t

t−r
c(p+ r)g(x(p))dp.

Again, we consider the same space S and define a new map

P(x) = x(0)e−
∫ t
0 ν +

∫ t

0

xνe−
∫ t
s νds

− F (t) + e−
∫ t
0 νF (0) +

∫ t

0

νe−
∫ t
s νF (s) ds

+

∫ t

0

c(s+ r)g(x)e−
∫ t
s νds+

∫ t

0

e−
∫ t
s νbl(xr)ds,

(2.4)

We need to impose a different set of conditions on the summands on the right-hand
side of (2.4) in order to get a contraction mapping of S. First label the terms on the
right-hand side 1-7. The new bounds on the absolute values the terms are now:

D1- The first two summands are bounded exactly as in section 1.1. That is x(0) =
Ψ(0) ≤ ε1K and ‖ν‖L1 = m > 0 such that 1− e−m ≤ ε2.
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D2- To bound F (t), assume
∫ ∞
0

|c| dt ≤
∫ ∞
0

|a| dt+

∫ ∞
0

|b| dt ≤ ε3
Cg + CG

. Here Cg

and CG are the Lipschitz constants of the delayed functions. The third and fourth
terms are each bounded above by ε3K.

D3- The definitions above produce an upper bound for the fifth term equal to mε3K,

where m =

∫ ∞
0

|ν|dt.

D4- The sixth term is again bounded above by ε3K.

D5- The upper bound on b above implies that the seventh term is also bounded above
by ε3K.

Therefore,
|P(x)| ≤ K(ε1 + ε2 + (m+ 4)ε3). (2.5)

Theorem 2.1. If the bounds D1–D5 above hold and there is 0 < δ < 1 such that
ε1 + ε2 + (m + 4)ε3 ≤ 1 − δ then the map P : S → S is a contraction with a unique
fixed point. This fixed point is a solution to (1.9) that belongs to S.

Example 2.2. Let α, β > 0 such that

ẋ = e−αtg(xr) + e−βtG(xr), (2.6)

where α and β are big enough that α−1 + β−1 ≤ ε3
Cg + CG

. This equation satisfies the

previous conditions. The equation (2.6) is a first order differential equation with expo-
nentially damped time-delayed terms. Theorem 2.1 implies the existence of a solution
to (2.6) in S .

3 Variable Time Delay
Here we consider r = r(t) variable. We impose conditions on it later on. We want to
find solutions to

ẋ(t) = a(t)g(x(t− r(t))) + b(t)G(x(t− r(t))). (3.1)

We still denote x(t− r(t)) by xr. The same strategy as before gives

ẋ(t) = (a+ b)g(xr) + b(G(xr)− g(xr))

= c(t)g(xr) + bl(xr)

=
cg(xr)

1− ṙ
(1− ṙ) + bl(xr).

(3.2)

Denote f =
c

1− ṙ
and fr = f(t− r(t)). Now we rewrite (3.2) as follows
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ẋ = frg(xr)(1− ṙ) + (f(t)− fr)g(xr)(1− ṙ) + bl(xr)

= (frg(xr)(1− ṙ)− f(t)g(x(t))) + f(t)g(x(t))

+ (f(t)− fr)g(xr)(1− ṙ) + bl(xr)

= −
(
d

dt

∫ t

t−r(t)
f(s)g(x(s))ds

)
+ f(t)g(x(t))

+ (f(t)− fr)g(xr)(1− ṙ) + bl(xr)

(3.3)

To simplify, the upcoming expression assume r(0) = 0.
The inversion gives

x(t) = x(0)e−
∫ t
0 ν +

∫ t

0

xνe−
∫ t
s νds

−
∫ t

t−r(t)
f(p)g(x(p))dp+

∫ t

0

νe−
∫ t
s ν

∫ s

s−r(s)
f(p)g(x(p))dpds

+

∫ t

0

e−
∫ t
s ν (f(s)g(x(s)) + (f(s)− fr)g(xr)(1− ṙ) + bl(xr)) ds,

(3.4)

The most important condition to be imposed on r is |ṙ(t)| ≤ κ < 1 for some κ small
and positive. This condition allows us to get uniform pointwise upper bounds on the
function f =

c

1− ṙ
. From the definition of S, we impose that r(t) ≤ r for all t ≥ 0.

Now we impose bounds on the different terms.

E1- The first two summands are bounded exactly as in section 1.1. That is x(0) =
Ψ(0) ≤ ε1K and ‖ν‖L1 = m > 0 such that 1− e−m ≤ ε2.

E2- To bound f(t), assume∫ ∞
−r
|f | dt ≤ (1− κ)−1

∫ ∞
−r
|c| dt

≤ (1− κ)−1
(∫ ∞

0

|a| dt+

∫ ∞
0

|b| dt
)

≤ ε3
(1− κ)(Cg + CG)

.

This is enough to bound all the terms in the last line as well.

Theorem 3.1. Define a map P on S by the right-hand side of (3.4). Suppose there
are constants {ε1, ε2, ε3} such that the bounds E1–E2 above are satisfied and such that

ε1 + ε2 +
2κ+ 4

1− κ
ε3 ≤ 1− δ for some 0 < δ < 1, then P : S → S is a contraction. This

implies that (3.1) has a unique solution in S.
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4 Periodicity
The objective of this section is to prove existence of periodic solutions to

ẋ(t) = a(t)g(x) + b(t)G(x), (4.1)

where xL = x(t−L) and a(t), b(t) are continuous periodic functions with period L > 0.
We also assume g = g(t, x) = g(t+ L, x) and G = G(t, x) = G(t+ L, x). We assume
g and G are Lipschitz on [0, L] (and extended periodically) with constants Cg and CG
respectively. For more on periodicity we refer to [1, 4–7, 9]. Our aim is to prove that
there is a solution to (4.1) contained in the space

T := {y ∈ C|y(t+ L) = y(t), ∀t ∈ R}. (4.2)

It is well known that T is a Banach space with the maximum norm.
Choose a positive function ν(t) = ν(t + L). Multiply both sides of (4.1) by e

∫ t
0 ν

and integrate by parts between t− L and t. Manipulations similar to the previous cases
give

x(t) =

∫ t

t−L
xνe−

∫ t
s νds−

(
1− e−

∫ 0
−L ν
)
η(t)

+

∫ t

t−L
η(s)νe−

∫ t
s νds+

∫ t

t−L
e−

∫ t
s νc(s)g(x(s))ds

+

∫ t

t−L
e−

∫ t
s νQ(s)ds,

(4.3)

where η(t) =

∫ t

t−L
c(s)g(x(s)) ds and Q(s) = b(s)l(x(s)). Remember that we assume

x ∈ T . It follows that the right-hand side of (4.3) is periodic of period L. Now we
impose conditions on the coefficients of (4.1).

F1- Assume 0 < m =

∫ t

t−L
νds < ε1.

F2- Assume 0 <

∫ t

t−L
|c(s)| ds ≤ ε2

Cg + CG
.

In a similar fashion to the previous sections, we define a map P using the right-hand side
of (4.3) and prove the following theorem regarding the existence of a unique periodic
solution.

Theorem 4.1. Assume {ε1, ε2} satisfy ε1 + ε1ε2 + 3ε2 ≤ 1− δ < 1 for some 0 < δ < 1
and the bounds F1–F2 above hold, then P : T → T is a contraction and (4.1) has a
unique solution in T .
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