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Abstract

This paper discusses the oscillatory behavior of solutions to a class of second-
order half-linear neutral differential equations with a damping term. Some new
sufficient conditions for all solutions to be oscillatory are given. Examples illus-
trating our results are also included.
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1 Introduction
This paper deals with the oscillatory behavior of all solutions of the second-order half-
linear neutral differential equation with a damping term(

r(t) (z′(t))
α)′

+ p(t) (z′(t))
α

+ q(t)f(t, x(σ(t))) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t) + h(t)x(τ(t)), and α ≥ 1 is the ratio of two positive odd integers.
Throughout this paper, we always assume that the following conditions are satisfied:

(i) p, q, r : [t0,∞) → R are continuous functions with p(t) ≥ 0, r(t) > 0, q(t) > 0,
and ∫ ∞

t0

[
1

r(t)
exp

(
−
∫ t

t0

p(s)

r(s)
ds

)]1/α
dt =∞; (1.2)
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(ii) h : [t0,∞)→ R is a continuous function with h(t) ≥ 1, and h(t) 6≡ 1 for large t;

(iii) τ, σ : [t0,∞) → R are continuous functions such that τ is strictly increasing,
τ(t) < t, and lim

t→∞
τ(t) = lim

t→∞
σ(t) =∞;

(iv) f(t, u) : [t0,∞)× R→ R is a continuous function such that uf(t, u) > 0 for all
u 6= 0 and there exists a positive constant k such that

f(t, u)/uα ≥ k for u 6= 0.

The cases where
τ(t) ≥ σ(t) (1.3)

and
τ(t) ≤ σ(t) (1.4)

are considered.
By a solution of equation (1.1), we mean a function x ∈ C ([tx,∞),R) for some

tx ≥ t0 that has the properties z ∈ C1 ([tx,∞),R), r (z′)
α ∈ C1 ([tx,∞),R), and

satisfies (1.1) on [tx,∞). We only consider those solutions of (1.1) that exist on some
half-line [tx,∞) and satisfy the condition

sup {|x(t)| : T ≤ t <∞} > 0 for any T ≥ tx;

moreover, we tacitly assume that (1.1) possesses such solutions. Such a solution x(t) of
(1.1) is said to be oscillatory if it has arbitrarily large zeros on [tx,∞), i.e., for any t1 ∈
[tx,∞) there exists t2 ≥ t1 such that x(t2) = 0; otherwise it is called nonoscillatory,
i.e., if it is eventually positive or eventually negative. Equation (1.1) itself is termed
oscillatory if all its solutions are oscillatory.

The oscillatory behavior of solutions to various classes of second order functional
differential equations has been the object of research of a number of authors and many
interesting results have been obtained. For some typical results, we refer the reader to
[2–4,7,8,10–12,15–20,23] and the references cited therein as examples of recent results
on this topic. However, results on the oscillatory behavior of solutions of second-order
neutral differential equations with damping term are relatively scarce in the literature;
some results can be found, for example, in [5,6,21,22]. It should be noted that although
papers [5, 6, 21, 22] deal with second-order neutral differential equations with damping
term, the results obtained in these papers except [22] cannot be applied to the case where
h(t) → ∞ as t → ∞. Motivated by the above observations, here we wish to develop
sufficient conditions for equation (1.1) to be oscillatory in the case where h(t) > 1
and/or h(t) → ∞ as t → ∞. The results of the present paper are obtained by using an
integral averaging technique due to Philos [13] (see also [9, 14] for the refined integral
averaging technique) and can easily be extended to more general second-order nonlinear
neutral differential equations with damping term. It is therefore hoped that the present
paper will contribute significantly to the study of oscillatory behavior of solutions of
second-order neutral differential equations with damping term.
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2 Main Results
In the following theorems, we establish new oscillation criteria for (1.1) by using the
integral averaging technique due to Philos [13]. In order to present our theorems,
following Philos [13], we first introduce the function class P . Namely, let D0 =
{(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}. We say that the function H ∈
C (D,R) belongs to the class P , denoted by H ∈ P , if

(i) H(t, t) = 0 for t ≥ t0, and H(t, s) > 0 on (t, s) ∈ D0;

(ii) H has a continuous and nonpositive partial derivative on D0 with respect to the
second variable.

For notational purposes, we let

A(t, t∗) :=

∫ t

t∗

ds

r1/α(s)
, t∗ ≥ t0,

for any positive function η ∈ C1 ([t0,∞),R),

ξ(t) =
η′(t)r(t)− η(t)p(t)

η(t)r(t)
,

and

ψ(t, t∗) :=
1

h(τ−1(t))

(
1− 1

h(τ−1(τ−1(t)))

A(τ−1(τ−1(t)), t∗)

A(τ−1(t), t∗)

)
, t∗ ≥ t0,

where τ−1 is the inverse function of τ . Throughout this section we assume thatψ(t, t∗) >
0 for all sufficiently large t.

Our first main result is contained in the following theorem.

Theorem 2.1. Let conditions (i)–(iv), (1.2) and (1.3) hold, and let h,H : D → R be
continuous functions such that H belongs to the class P and

−∂H
∂s

(t, s) = h(t, s)
√
H(t, s) for all (t, s) ∈ D0. (2.1)

If there exists a positive function η ∈ C1 ([t0,∞),R) such that, for some γ ≥ 1,

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds =∞, (2.2)

for all sufficiently large t2 ∈ [t1,∞) ⊆ [t0,∞), and all T > t2 with σ(t) > t2 for all
t ≥ T , where

Ψ(t) = kη(t)q(t)ψα(σ(t), t2)
Aα (τ−1(σ(t)), t2)

Aα(t, t2)
, (2.3)

and
Φ(t, s) =

(
−h(t, s) + ξ(s)

√
H(t, s)

)2
, (2.4)

then every solution of (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality, we may
assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0
for t ≥ t1. If x(t) is eventually negative, the proof is similar, so we omit the details of
that case here, as well as in the remaining proofs in this paper. Then, it follows from
(1.1) that (

r(t) (z′(t))
α)′

+ p(t) (z′(t))
α

+ kq(t)xα(σ(t)) ≤ 0, (2.5)

and so (
r(t) (z′(t))

α)′
+ p(t) (z′(t))

α
< 0 for t ≥ t1. (2.6)

Letting v(t) = r(t) (z′(t))
α, it follows from (2.6) that

v′(t) +
p(t)

r(t)
v(t) < 0 for t ≥ t1,

which implies (
exp

(∫ t

t1

p(s)

r(s)
ds

)
v(t)

)′
< 0 for t ≥ t1,

and so, v(t) exp

(∫ t

t1

p(s)

r(s)
ds

)
is decreasing and eventually does not change its sign,

say on [t2,∞) for some t2 ≥ t1. Therefore, z′(t) eventually has a fixed sign on [t2,∞),
and so we have two cases to consider: (I) z′(t) > 0 for t ≥ t2 or (II) z′(t) < 0 for
t ≥ t2.

We first assume that case (I) holds. It then follows from (2.5) and the definition of z
that

z(t) > 0, z′(t) > 0, and
(
r(t) (z′(t))

α)′
< 0 for t ≥ t2,

from which, we see that

z(t) = z(t2) +

∫ t

t2

1

r1/α(s)

(
r(s) (z′(s))

α)1/α
ds ≥ r1/α(t)z′(t)A(t, t2). (2.7)

In view of (2.7), we have for all t ≥ t3 for t3 ∈ (t2,∞) that(
z(t)

A(t, t2)

)′
=
r−1/α(t)[r1/α(t)z′(t)A(t, t2)− z(t)]

A2(t, t2)
≤ 0,

i.e., z(t)/A(t, t2) is nonincreasing for t ≥ t3.
From the definition of z (see also inequality (8.6) in [1]), it follows that

x(t) =
1

h(τ−1(t))

[
z(τ−1(t))− x(τ−1(t))

]
=

z(τ−1(t))

h(τ−1(t))
− [z(τ−1(τ−1(t)))− x(τ−1(τ−1(t)))]

h(τ−1(t))h(τ−1(τ−1(t)))
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≥ z(τ−1(t))

h(τ−1(t))
− 1

h(τ−1(t))h(τ−1(τ−1(t)))
z(τ−1(τ−1(t))). (2.8)

Now τ(t) < t and τ is strictly increasing, so τ−1 is increasing and τ−1(t) > t. Thus,

τ−1(τ−1(t)) > τ−1(t),

and since z(t)/A(t, t2) is nonincreasing for t ≥ t3, we have

A(τ−1(τ−1(t)), t2)z(τ−1(t))

A(τ−1(t), t2)
≥ z(τ−1(τ−1(t))).

Substituting the last inequality into (2.8) yields

x(t) ≥ ψ(t, t2)z
(
τ−1(t)

)
for t ≥ t3. (2.9)

Since lim
t→∞

σ(t) =∞, we can choose t4 ≥ t3 such that σ(t) ≥ t3 for all t ≥ t4. Thus, it
follows from (2.9) that

x(σ(t)) ≥ ψ(σ(t), t2)z
(
τ−1(σ(t))

)
for t ≥ t4. (2.10)

Using (2.10) in (2.5) gives(
r(t) (z′(t))

α)′
+ p(t) (z′(t))

α
+ kq(t)ψα(σ(t), t2)z

α
(
τ−1(σ(t))

)
≤ 0 (2.11)

for t ≥ t4. Define the function w by the Riccati type substitution

w(t) = η(t)
r(t) (z′(t))α

zα(t)
for t ≥ t4. (2.12)

Clearly, w(t) > 0, and from (2.11)–(2.12), we see that

w′(t) ≤ ξ(t)w(t)− kη(t)q(t)ψα(σ(t), t2)
zα (τ−1(σ(t)))

zα(t)
− α w(1+α)/α(t)

(η(t)r(t))1/α
(2.13)

for t ≥ t4. From (1.3) and the fact that τ is strictly increasing, we have

τ−1(σ(t)) ≤ t,

and since z(t)/A(t, t2) is nonincreasing on [t4,∞) ⊆ [t3,∞), we get

z (τ−1(σ(t)))

z(t)
≥ A (τ−1(σ(t)), t2)

A(t, t2)
. (2.14)

Using (2.14) in (2.13), we obtain

w′(t) ≤ ξ(t)w(t)− kη(t)q(t)ψα(σ(t), t2)
Aα (τ−1(σ(t)), t2)

Aα(t, t2)
− α w(1+α)/α(t)

(η(t)r(t))1/α
,
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which can be written as, for t ≥ t4,

w′(t) ≤ ξ(t)w(t)−Ψ(t)− αw1/α−1(t)

(η(t)r(t))1/α
w2(t). (2.15)

In view of (2.7) and (2.12), for t ≥ t4 we have

w
1
α
−1(t) = (η(t)r(t)

1
α
−1
((

z′(t)

z(t)

)α) 1
α
−1

= (η(t)r(t)
1
α
−1
(
z(t)

z′(t)

)α−1
≥ η

1
α
−1(t)Aα−1(t, t2). (2.16)

Using (2.16) in (2.15), we arrive at

w′(t) ≤ ξ(t)w(t)−Ψ(t)− αAα−1(t, t2)

η(t)r1/α(t)
w2(t). (2.17)

Multiplying (2.17) by H(t, s) and integrating from T to t, we have, for some γ ≥ 1 and
for all t ≥ T ≥ t4,∫ t

T

H(t, s)Ψ(s)ds ≤ −
∫ t

T

H(t, s)w′(s)ds+

∫ t

T

H(t, s)ξ(s)w(s)ds

− α

γ

∫ t

T

H(t, s)
Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds

− α(γ − 1)

γ

∫ t

T

H(t, s)
Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds. (2.18)

An integrating by parts yields∫ t

T

H(t, s)w′(s)ds = H(t, s)w(s) |tT −
∫ t

T

∂H

∂s
(t, s)w(s)ds

= −H(t, T )w(T )−
∫ t

T

∂H

∂s
(t, s)w(s)ds. (2.19)

Substituting (2.19) into (2.18) and taking (2.1) into account yields∫ t

T

H(t, s)Ψ(s)ds ≤ H(t, T )w(T )

+

∫ t

T

[
−h(t, s)

√
H(t, s) +H(t, s)ξ(s)

]
w(s)ds

− α

γ

∫ t

T

H(t, s)
Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds

− α(γ − 1)

γ

∫ t

T

H(t, s)
Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds. (2.20)
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Completing the square with respect to w, it follows from (2.20) that∫ t

T

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds ≤ H(t, T )w(T )

−α(γ − 1)

γ

∫ t

T

H(t, s)
Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds. (2.21)

So, for every t ≥ t4, we obtain∫ t

t4

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds ≤ H(t, t4)w(t4),

which contradicts (2.2).
Next, we consider case (II). Letting u(t) = r(t) (−z′(t))α > 0 for t ≥ t2, it follows

from (1.1) that

u′(t) +
p(t)

r(t)
u(t) ≥ 0 for t ≥ t2.

Integrating this relation from t2 to t, we obtain

u(t) ≥ u(t2) exp

(
−
∫ t

t2

p(s)

r(s)
ds

)
,

from which we have

z′(t) ≤ r1/α(t2)z
′(t2)

[
1

r(t)
exp

(
−
∫ t

t2

p(s)

r(s)
ds

)]1/α
. (2.22)

Integrating (2.22) from t2 to t and taking (1.2) into account, we see that

z(t) ≤ z(t2) + r1/α(t2)z
′(t2)

∫ t

t2

[
1

r(s)
exp

(
−
∫ s

t2

p(u)

r(u)
du

)]1/α
ds→ −∞

as t→∞, which contradicts the positivity of z(t) and completes the proof.

The following oscillation criterion follows immediately from Theorem 2.1.

Corollary 2.2. Let the assumptions of Theorem 2.1 be satisfied except that condition
(2.2) is replaced by

lim sup
t→∞

1

H(t, T )

∫ t

T

k−1H(t, s)Ψ(s)ds =∞ (2.23)

and

lim sup
t→∞

1

H(t, T )

∫ t

T

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)
ds <∞. (2.24)

Then equation (1.1) is oscillatory.
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Theorem 2.3. Suppose that conditions (i)–(iv), (1.2) and (1.3) are satisfied. Let H and
h be as in Theorem 2.1 such that (2.1) holds, and

0 < inf
s≥t0

{
lim inf
t→∞

H (t, s)

H (t, t0)

}
≤ ∞. (2.25)

If there exist functions φ ∈ C ([t0,∞),R) and η ∈ C1 ([t0,∞), (0,∞)) such that, for
some γ > 1,

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds ≥ φ(T ) (2.26)

and ∫ ∞
T

Aα−1(s, t2)

η(s)r1/α(s)
φ2
+(s)ds =∞, (2.27)

for all sufficiently large t2 ∈ [t1,∞) ⊆ [t0,∞), and all T > t2 with σ(t) > t2 for all
t ≥ T , where Ψ(s) and Φ(t, s) are as in Theorem 2.1, and φ+(t) = max{φ(t), 0}, then
every solution of (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(τ(t)) >
0, and x(σ(t)) > 0 for t ≥ t1 for some t1 ∈ [t0,∞). Proceeding as in the proof of
Theorem 2.1, we again have the two cases to consider: (I) z′(t) > 0 for t ≥ t2 or (II)
z′(t) < 0 for t ≥ t2. If case (II) holds, proceeding exactly as in the proof of Theorem
2.1, we obtain a contradiction to the positivity of z.

Next, assume that case (I) holds. Proceeding as in the proof of Theorem 2.1, we
again arrive at (2.21), which can be written as, for t > T ≥ t4,

1

H(t, T )

∫ t

T

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds

≤ w(T )− 1

H(t, T )

∫ t

T

α(γ − 1)

γ

H(t, s)Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds. (2.28)

From (2.28), we see that

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds

≤ w(T )− lim inf
t→∞

1

H(t, T )

∫ t

T

α(γ − 1)

γ

H(t, s)Aα−1(s, t2)

η(s)r1/α(s)
w2(s). (2.29)

In view of (2.26), it follows from (2.29) that

w(T ) ≥ φ(T ) + lim inf
t→∞

1

H(t, T )

∫ t

T

α(γ − 1)

γ

H(t, s)Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds (2.30)
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for all t > T ≥ t4 and for any γ > 1. Thus, for all T ≥ t4,

w(T ) ≥ φ(T ) (2.31)

and

lim inf
t→∞

1

H(t, t4)

∫ t

t4

H(t, s)Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds ≤ γ(w(t4)− φ(t4))

α(γ − 1)
<∞. (2.32)

Now, we claim that ∫ ∞
t4

Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds <∞. (2.33)

Suppose the contrary, that is,∫ ∞
t4

Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds =∞. (2.34)

By (2.25), there exists a constant ε > 0 such that

inf
s≥t0

{
lim inf
t→∞

H (t, s)

H (t, t0)

}
> ε. (2.35)

On the other hand, by virtue of (2.34), for any positive number δ, there exists a t5 > t4
such that ∫ t

t4

Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds ≥ δ

ε
for all t ≥ t5. (2.36)

Using integration by parts and taking (2.36) into account, we conclude that, for all
t ≥ t5,

1

H(t, t4)

∫ t

t4

H(t, s)
Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds

=
1

H(t, t4)

∫ t

t4

H(t, s)d

[∫ s

t4

Aα−1(ξ, t2)

η(ξ)r1/α(ξ)
w2(ξ)dξ

]
=

1

H(t, t4)

∫ t

t4

[∫ s

t4

Aα−1(ξ, t2)

η(ξ)r1/α(ξ)
w2(ξ)dξ

] [
−∂H(t, s)

∂s

]
ds

≥ δ

ε

1

H(t, t4)

∫ t

t5

[
−∂H(t, s)

∂s

]
ds

=
δ

ε

H(t, t5)

H(t, t4)
≥ δ

ε

H(t, t5)

H(t, t0)
. (2.37)

It follows from (2.35) that

lim inf
t→∞

H(t, s)

H(t, t0)
> ε > 0, (2.38)
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and hence there exists a t6 ≥ t5 such that

H(t, t5)

H(t, t0)
≥ ε for all t ≥ t6.

From the latter inequality and (2.37), we see that

1

H(t, t4)

∫ t

t4

H(t, s)
Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds ≥ δ for t ≥ t6. (2.39)

Since δ is an arbitrary positive constant, we have

lim inf
t→∞

1

H(t, t4)

∫ t

t4

H(t, s)
Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds =∞, (2.40)

which contradicts (2.32). Thus, (2.33) should hold, and so, by (2.31) we have∫ ∞
t4

Aα−1(s, t2)

η(s)r1/α(s)
φ2
+(s)ds ≤

∫ ∞
t4

Aα−1(s, t2)

η(s)r1/α(s)
w2(s)ds <∞, (2.41)

which contradicts (2.27). This proves the theorem.

Theorem 2.4. Let all conditions of Theorem 2.3 be satisfied except that condition (2.26)
be replaced with

lim inf
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds ≥ φ(T ). (2.42)

Then, every solution of (1.1) is oscillatory.

Proof. The proof follows from the fact that

φ(T ) ≤ lim inf
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds

≤ lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ψ(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds,

and so we omit the details.

Next, we give oscillation results in the case when (1.4) holds.

Theorem 2.5. Let conditions (i)–(iv), (1.2) and (1.4) be fulfilled, and let H and h
be as in Theorem 2.1 such that (2.1) holds. If there exists a positive function η ∈
C1 ([t0,∞),R) such that, for some γ ≥ 1,

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ω(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds =∞, (2.43)
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for all sufficiently large t2 ∈ [t1,∞) ⊆ [t0,∞), and all T > t2 with σ(t) > t2 for all
t ≥ T , where

Ω(t) = kη(t)q(t)ψα(σ(t), t2), (2.44)

and Φ(t, s) is as in (2.4), then every solution of (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1) with x(t) > 0, x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1 for some t1 ∈ [t0,∞) . Proceeding as in the proof of Theorem
2.1, we again have two cases to consider: (I) z′(t) > 0 for t ≥ t2 or (II) z′(t) < 0 for
t ≥ t2. If case (II) holds, as in the proof of Theorem 2.1, we contradict the positivity of
z(t).

If case (I) holds, then, as in the proof of Theorem 2.1, we again arrive at (2.13) for
t ≥ t4. From (1.4) and the fact that τ is strictly increasing, we have

τ−1(σ(t)) ≥ t,

and since z is increasing, we obtain

z (τ−1(σ(t)))

z(t)
≥ 1. (2.45)

Using (2.45) in (2.13) yields

w′(t) ≤ ξ(t)w(t)− kη(t)q(t)ψα(σ(t), t2)− α
w(1+α)/α(t)

(η(t)r(t))1/α
. (2.46)

The remainder of the proof is similar to the first part of the proof of Theorem 2.1 and
hence is omitted.

Corollary 2.6. The conclusion of Theorem 2.5 remains intact if assumption (2.43) is
replaced by the two conditions

lim sup
t→∞

1

H(t, T )

∫ t

T

k−1H(t, s)Ω(s)ds =∞, (2.47)

and (2.24).

Theorem 2.7. Suppose that conditions (i)–(iv), (1.2) and (1.4) are satisfied. Let H
and h be as in Theorem 2.1 such that (2.1) and (2.25) hold. If there exist functions
φ ∈ C ([t0,∞),R) and η ∈ C1 ([t0,∞), (0,∞)) such that (2.27) holds, and for some
γ > 1,

lim sup
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ω(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds ≥ φ(T ), (2.48)

for all sufficiently large t2 ∈ [t1,∞) ⊆ [t0,∞), and all T > t2 with σ(t) > t2 for all
t ≥ T , where Ω(t) is as in (2.44), then every solution of (1.1) is oscillatory.
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Proof. The proof follows from (2.45), (2.46) and Theorem 2.3, so we omit the details.

Theorem 2.8. Let all conditions of Theorem 2.7 be satisfied except that condition (2.48)
be replaced with

lim inf
t→∞

1

H(t, T )

∫ t

T

[
H(t, s)Ω(s)− γ

4α

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)

]
ds ≥ φ(T ). (2.49)

Then, every solution of (1.1) is oscillatory.

Proof. The proof follows from (2.45), (2.46) and Theorem 2.4, so we omit the details.

3 Examples
We conclude this paper with the following examples to illustrate the above results. The
first example is concerned with the case where h(t) → ∞ as t → ∞, and the second
example is concerned with the case where h is a constant function.

Example 3.1. Consider the half-linear neutral differential equation with damping(
(z′(t))

5
)′

+
1

t
(z′(t))

5
+ (t+ 1)4x5(t− 1) = 0, t ≥ 2, (3.1)

with z(t) = x(t) + tx(t− 2). Here we have α = 5, τ(t) = t− 2, σ(t) = t− 1, r(t) = 1,
p(t) = 1/t, q(t) = (t + 1)4, h(t) = t, and f(t, x(σ(t))) = x5(t − 1). It is easy to see
that conditions (i)–(iv), (1.2) and (1.4) hold. Choosing t2 = t1 = t0 = 2, we have

A(t, t2) = A(t, 2) = t− 2,

A(τ−1(t), t2) = A(t+ 2, 2) = t,

A(τ−1(τ−1(t)), t2) = A(t+ 4, 2) = t+ 2,

ψ(t, t2) =
1

t+ 2

(
1− t+ 2

t(t+ 4)

)
> 0 for t ≥ t0 = 2.

Letting H(t, s) = (t − s)2, we see that H ∈ P and h(t, s) = 2. With η(t) = t, we see
that ξ(t) = 0, and conditions (2.47) and (2.24) become, for all T ∈ (3,∞),

lim sup
t→∞

1

H(t, T )

∫ t

T

k−1H(t, s)Ω(s)ds ≥ lim sup
t→∞

(2/5)5

(t− T )2

∫ t

T

(t− s)2 s

s+ 1
ds

≥ lim sup
t→∞

(2/5)5T

T + 1

1

(t− T )2

∫ t

T

(t− s)2ds
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= lim sup
t→∞

(2/5)5T (t3 − 3t2T + 3tT 2 − T 3)

3(T + 1)(t− T )2
=∞

and

lim sup
t→∞

1

H(t, T )

∫ t

T

η(s)r1/α(s)Φ(t, s)

Aα−1(s, t2)
ds = lim sup

t→∞

1

(t− T )2

∫ t

T

4s

(s− 2)4
ds

≤ lim sup
t→∞

1

(t− T )2
4

(T − 2)4

∫ t

T

sds

= lim sup
t→∞

2(t2 − T 2)

(T − 2)4(t− T )2
=

2

(T − 2)4
<∞,

i.e., conditions (2.47) and (2.24) hold. Thus, all conditions of Corollary 2.6 are satisfied,
so equation (3.1) is oscillatory.

Example 3.2. Consider the half-linear neutral differential equation with damping(
1

t3
(z′(t))

3

)′
+

1

t4
(z′(t))

3
+ t2x3(t/2) = 0, t ≥ 2, (3.2)

with z(t) = x(t) + 10x(t − 1). Here we have α = 3, τ(t) = t − 1, σ(t) = t/2,
r(t) = 1/t3, p(t) = 1/t4, q(t) = t2, h(t) = 10, and f(t, x(σ(t))) = x3(t/2). It is easy
to see that conditions (i)–(iv), (1.2) and (1.3) hold, and with t2 = t1 = t0 = 2, we have

A(t, t2) = A(t, 2) = (t2 − 4)/2,

A(τ−1(t), t2) = A(t+ 1, 2) = ((t+ 1)2 − 4)/2,

A(τ−1(τ−1(t)), t2) = A(t+ 2, 2) = ((t+ 2)2 − 4)/2,

ψ(t, t2) =
1

10

(
1− t(t+ 4)

10(t− 1)(t+ 3)

)
> 0 for t ≥ t0 = 2.

Letting H(t, s) = (t− s)2, we see that H ∈ P and h(t, s) = 2. With η(t) = t, we have
ξ(t) = 0, and as in Example 3.1, it is easy to see that conditions (2.23) and (2.24) hold.
Thus, all conditions of Corollary 2.2 are satisfied, so equation (3.2) is oscillatory.
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