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Abstract

The aim of this work is to study the initial value problem of a coupled system of
nonlinear fractional differential equations with Katugampola derivative. Some new
existence and uniqueness results of solutions for the given problems are obtained
by using the Banach contraction principle, Schauder’s and nonlinear alternative
Leray–Schauder fixed point theorems. Several examples are presented to illustrate
the usefulness of our main results.
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1 Introduction

Fractional calculus is a mathematical branch which investigates the properties of deriva-
tives and integrals of non integer orders (also known as fractional derivatives and inte-
grals, briefly differ-integrals). The interested readers in the subject should refer to the
books (Miller and Ross 1993 [11], Samko et al. 1993 [14], Podlubny 1999 [12], Kilbas
et al. 2006 [10], Diethelm 2010 [4]).

The differential equations of fractional order are generalizations of classical differ-
ential equations of integer order; they are increasingly used in such fields as fluid flow,
control theory of dynamical systems, diffusive transport akin to diffusion, probability
and statistics ... etc.
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In recent years, some authors have investigated the existence and uniqueness of
solutions for a coupled system of nonlinear fractional differential equations. For a small
sample of such work, we refer the reader to the works [1–3, 7, 13, 15–17].

In [1], Bashir Ahmad and Sotiris K. Ntouyas, studied a three point boundary value
problem for a coupled system of nonlinear fractional differential equations given by

Dα0+u(t) = f(t, v(t),Dp0+v(t)), t ∈ (0, 1),

Dβ0+v(t) = g
(
t, u(t),Dq0+u(t)

)
, t ∈ (0, 1),

u(0) = 0, u(1) = γu(η), v(0) = 0, v(1) = γv(η),

where 1 < α, β < 2, p, q, γ > 0, 0 < η < 1, D is the standard Riemann–Liouville
fractional derivative and f : [0, 1]× R× R→ R are given continuous functions.

In [17], Zhai and Jiang considered a new coupled system of fractional differential
equations with integral boundary conditions

Dαu(t) + f(t, v(t)) = a, 0 < t < 1,

Dβv(t) + g(t, u(t)) = b, 0 < t < 1,

u(0) = 0, u(1) =

∫ 1

0

φ(t)u(t)dt,

v(0) = 0, v(1) =

∫ 1

0

ψ(t)v(t)dt,

where 1 < α, β ≤ 2, a, b are constants. D denotes the usual Riemann–Liouville frac-
tional derivative. f, g ∈ C([0, 1]× R× R), φ, ψ ∈ L1[0, 1].

In this paper, we discuss the existence and uniqueness of solutions for a coupled
system of Katugampola type fractional differential equations{

ρDα0+u(t) = f(t, u(t), v(t),ρDα0+u(t))
ρDβ0+v(t) = g(t, u(t), v(t),ρDβ0+v(t))

, t ∈ [0, T ], (1.1)

with the initial condition
u(0) = 0, v(0) = 0, (1.2)

where 0 < α, β ≤ 1, ρ > 0, and T ≤ (pc)
1
pc for any 1 ≤ p ≤ ∞, c > 0, is a finite

positive constant. The symbol ρDδ, δ = α, β, is the Katugampola fractional derivative
of fractional order δ, and f, g : [0, T ]× R3 → R are continuous functions.

Based upon a contraction mapping principle, Schauder’s and nonlinear alternative
Leray–Schauder’s fixed point theorems. We obtain three various results of the existence
and uniqueness about the initial value problem (1.1)–(1.2).

Throughout this paper, we assume the following hypotheses
(H1) f, g : [0, T ]× R3 → R are continuous functions.
(H2) There exists the constants λi, µi (i = 1.2.3), such that

|f(t, u, v, w)− f(t, ũ, ṽ, w̃)| ≤ λ1 |u− ũ|+ λ2 |v − ṽ|+ λ3 |w − w̃| ,



A Coupled System of Katugampola-Type FDEs 31

|g(t, u, v, w)− g(t, ũ, ṽ, w̃)| ≤ µ1 |u− ũ|+ µ2 |v − ṽ|+ µ3 |w − w̃| ,

for any u, v, w, ũ, ṽ, w̃ ∈ R and t ∈ [0, T ].
(H3) There exist three positive functions ai, bi, ci ∈ C[0, T ], (i = 1.2), such that

|f(t, u, v, w)| ≤ a1(t) + b1(t) |u|+ c1(t) |v|+ d1(t) |w| ,
|g(t, u, v, w)| ≤ a2(t) + b2(t) |u|+ c2(t) |v|+ d2(t) |w| ,

for all t ∈ [0, T ] and u, v, w ∈ R.
We denote

Mi =
a∗i

1− d∗i
, Ni =

b∗i + c∗i
1− d∗i

, and Ki =
b∗i

1− d∗i
, Hi =

c∗i
1− d∗i

, (i = 1.2),

where

a∗i = sup
t∈[0,T ]

ai(t), b
∗
i = sup

t∈[0,T ]

bi(t), c
∗
i = sup

t∈[0,T ]

ci(t), d
∗
i = sup

t∈[0,T ]

di(t),with d∗i < 1.

2 Preliminaries
In this section we present the necessary definitions from fractional calculus theory. As
in [10], consider the space Xp

c [0, T ], (c ∈ R, 1 ≤ p ≤ ∞), of those complex-valued
Lebesgue measurable functions y on [0, T ], for which ‖y‖Xp

c
< ∞, where the norm is

defined by

‖y‖Xp
c

=

(∫ T

0

|scy (s)|p ds
s

) 1
p

<∞,

for 1 ≤ p <∞, c ∈ R. For the case p =∞

‖y‖X∞
c

= ess sup
0≤t≤T

[tc |y (t)|] , (c ∈ R).

By C[0, T ], we denote the Banach space of all continuous functions from [0, T ] into R
with the norm

‖y‖∞ = sup
0≤t≤T

|y(t)| .

Remark 2.1. Let p, c, T ∈ R∗+, be such that p ≥ 1, c > 0, and T ≤ (pc)
1
pc . It is clear

that ∀y ∈ C[0, T ]

‖y‖Xp
c

=

(∫ T

0

|scy(s)|p ds
s

) 1
p

≤
(
‖y‖p∞

∫ T

0

spc−1ds

) 1
p

=
T c

(pc)
1
p

‖y‖∞ ,

and
‖y‖X∞

c
= ess sup

0≤t≤T
[tc |y (t)|] ≤ T c ‖y‖∞ ,

which implies that C[0, T ] ↪→ Xp
c [0, T ], and

‖y‖Xp
c
≤ ‖y‖∞ , for all T ≤ (pc)

1
pc .
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Definition 2.2 (See [10]). The left-sided Riemann–Liouville fractional integral of order
α > 0 of a continuous function y : [0, T ]→ R, is given by

RLIα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds, t ∈ [0, T ].

Definition 2.3 (See [10]). The left-sided Riemann–Liouville fractional derivative of
order α > 0 of a continuous function y : [0, T ]→ R, is given by

RLDα0+y(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1y(s)ds, t ∈ [0, T ], n = [α] + 1.

A recent generalization, introduced by Udita Katugampola (2011) [8], generalizes
the Riemann–Liouville fractional integral and the Hadamard fractional integral (see
[10]). The integral is now known as the Katugampola fractional integral, it is given
in the following definition.

Definition 2.4 (See [8]). The Katugampola fractional integrals of order α > 0 of a
function y ∈ Xp

c [0, T ], is defined by

ρIα0+y(t) =
ρ1−α

Γ(α)

∫ t

0

sρ−1y(s)

(tρ − sρ)1−αds, t ∈ [0, T ], (2.1)

for ρ > 0. These integrals are called left-sided integrals.

Similarly we can define right-sided integrals (See [8–10]).

Definition 2.5 (See [9]). The generalized fractional derivatives of order α > 0, corre-
sponding to the Katugampola fractional integrals (2.1) defined for any t ∈ [0, T ], by

ρDα0+y(t) =

(
t1−ρ

d

dt

)n
(ρIn−α0+ y)(t) =

ρα−n+1

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

0

sρ−1y(s)

(tρ − sρ)α−n+1
ds,

(2.2)
where n = [α] + 1, and ρ > 0, provided the integrals exist.

Remark 2.6 (See [8, 9]). As a basic example, we quote for α, ρ > 0, and µ > −ρ

ρDα0+tµ =
ρα−1Γ(1 + µ

ρ
)

Γ(1− α + µ
ρ
)
tµ−αρ.

Giving in particular

ρDα0+tρ(α−m) = 0, for each m = 1, 2, . . . , n.
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Theorem 2.7 (See [8, 9]). Let α, ρ, c ∈ R, be such that α, ρ > 0. Then for any f, g ∈
Xp
c [0, T ], where 1 ≤ p ≤ ∞, we have

- Inverse property:

ρDα0+ ρIα0+f(t) = f(t), for all α ∈ (0, 1). (2.3)

- Linearity property: for all α ∈ (0, 1), we have{
ρDα0+(f + g)(t) = ρDα0+f(t)+ρDα0+g(t),
ρIα0+(f + g)(t) = ρIα0+f(t)+ρ Iα0+g(t).

(2.4)

Definition 2.8 (Equicontinuous). Let E be a Banach space. Call a part P in C(E)
equicontinuous if

∀ε > 0,∃δ > 0,∀u, v ∈ E, ∀A ∈ P, ‖u− v‖ < δ ⇒ ‖A(u)−A(v)‖ < ε.

Theorem 2.9 (Ascoli–Arzela). Let E be a compact space. If A is an equicontinuous,
bounded subset of C(E), then A is relatively compact.

Definition 2.10 (Completely continuous). We say A : E → E, is completely continu-
ous if for any bounded subset P of E, the set A(P ) is relatively compact.

Lemma 2.11 (Gronwall. See [6]). Let u(t) and g(t) be nonnegative, continuous func-
tions on 0 ≤ t ≤ T , for which the inequality

u(t) ≤ µ+

∫ t

0

g(s)u(s)ds, 0 ≤ t ≤ T,

holds, where µ is a nonnegative constant. Then

u(t) ≤ µ exp

(∫ t

0

g (s) ds

)
, 0 ≤ t ≤ T.

Theorem 2.12 (Banach’s fixed point. See [5]). Let P be a non-empty closed subset of
a Banach space E, then any contraction mapping F of P into itself has a unique fixed
point.

Theorem 2.13 (Schauder’s fixed point. See [5]). Let E be a Banach space, and P be a
closed, convex and non-empty subset of E. Let F : P → P be a continuous mapping
such that F (P ) is a relatively compact subset of E. Then F has at least one fixed point
in P .

Theorem 2.14 (Nonlinear Alternative of Leray–Schauder type. See [5]). Let E be a
Banach space, P be a closed, convex subset of E, U be an open subset of P and 0 ∈ U :
Suppose that F : Ū → P is a continuous, compact (that is, F

(
Ū
)
, is a relatively

compact subset of P ) map. Then either,
(i) F has a fixed point in Ū ; or
(ii) There is a point u ∈ ∂U and µ ∈ (0, 1) with u = µF (u).
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3 Main Results
Throughout the remaining of this paper T , p and c are real constants such that

p ≥ 1, c > 0, and T ≤ (pc)
1
pc .

In what follows, we present some significant lemmas to show the main theorems.

Lemma 3.1. Let α, ρ > 0. If u ∈ C([0, T ],R), then
(i) The fractional deferential equation ρDα0+u(t) = 0, has a solutions

u(t) = C1t
ρ(α−1) + C2t

ρ(α−2) + . . .+ Cnt
ρ(α−n),where Cm ∈ R, m = 1, 2, . . . , n.

(ii) If ρDα0+u ∈ C([0, T ],R) and 0 < α ≤ 1, then

ρIα0+ ρDα0+ u(t) = u(t) + Ctρ(α−1), for some constant C ∈ R. (3.1)

Proof. (i) Follows immediately from Remark 2.6.
(ii) If we apply the operator ρDα0+ to ρIα0+ ρDα0+ u(t) − u(t), and use the properties

(2.3), (2.4), we have

ρDα0+ [ρIα0+ ρDα0+u (t)− u (t) ] = ρDα0+ ρIα0+ ρDα0+u (t) − ρDα0+u (t)

= ρDα0+u (t) − ρDα0+u (t) = 0.

After the step (i) we deduce there exists C ∈ R, such that

ρIα0+ ρDα0+u(t)− u(t) = Ctρ(α−1),

After the step (i) we deduce there exists C ∈ R, such that

ρIα0+ ρDα0+ u(t)− u(t) = Ctρ(α−1),

which implies the law of composition (3.1). The proof is complete.

Lemma 3.2. Let 0 < δ ≤ 1, and ρ > 0. We give y, ρDδ0+y ∈ C([0, T ],R). Then the
solution of problem{

ρDδ0+y(t) = f(t, y(t),ρDδ0+y(t)), t ∈ [0, T ],

y(0) = 0,
(3.2)

is equivalent to the fractional integral equation

y(t) =

∫ t

0

Gδ(t, s)f(s, y(s),ρDδ0+y(s))ds, (3.3)

where

Gδ(t, s) =
ρ1−δ

Γ(δ)
sρ−1(tρ − sρ)δ−1. (3.4)
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Proof. By applying ρIδ0+ to equation (3.2), we obtain

ρIδ0+ ρDδ0+y(t) = ρIδ0+f(t, y(t),ρDδ0+y(t)) . (3.5)

From Lemma 3.1, we find easily

ρIδ0+ ρDδ0+y(t) = y(t) + Ctρ(δ−1),

for some C ∈ R. Then the fractional integral equation (3.2), gives

y(t) = ρIδ0+f(t, y(t),ρDδ0+y(t)) − Ctρ(δ−1). (3.6)

In view of the initial condition y(0) = 0, we get

y(0) = 0 = −C lim
t→0+

tρ(δ−1) ⇒ C = 0.

Therefore, the problem (3.2), is equivalent to

y(t) =

∫ t

0

Gδ(t, s)f(s, y(s),ρDδ0+y(s))ds, (3.7)

where Gδ(t, s), which given by the equality (3.4). The proof is complete.

Based on the previous lemma, we will define the integral solution of the problem
(1.1)–(1.2).

Lemma 3.3. Let 0 < α, β ≤ 1, and ρ > 0. We give u,ρDα0+u,ρD
β
0+u ∈ C([0, T ],R).

Then the solution of problem (1.1)–(1.2) is equivalent to the coupled fractional integral
equation

u(t) =

∫ t

0

Gα(t, s)f(s, u(s), v(s),ρDα0+u(s))ds,

v(t) =

∫ t

0

Gβ(t, s)g(s, u(s), v(s),ρDβ0+v(s))ds,

with

Gα(t, s) =
ρ1−α

Γ(α)
sρ−1(tρ − sρ)α−1,

Gβ(t, s) =
ρ1−β

Γ(β)
sρ−1(tρ − sρ)β−1.

Proof. In view of Lemma 3.2, for δ = α, and δ = β, respectively.
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We will now prove a theorem about existence and uniqueness of solutions of initial
value problem (1.1)–(1.2), which is based on Banach’s fixed point theorem.

Let us introduce the space E = X × Y , with the norm ‖(u, v)‖ = ‖u‖ + ‖v‖,
Obviously (E, ‖(u, v)‖), is a Banach space, where X = {u(t)/u(t) ∈ C([0, T ],R)},
with the norm ‖u‖ = max

0≤t≤T
|u(t)|, and Y = {v(t)/v(t) ∈ C([0, T ],R)}, with the norm

‖v‖ = max
0≤t≤T

|v(t)|.
We define an operator F : E → E by

F (u, v)(t) =

(
F1(u, v)(t)
F2(u, v)(t)

)
, (3.8)

where

F1(u, v)(t) =

∫ t

0

Gα(t, s)f(s, u(s), v(s),ρDα0+u(s))ds,

F2(u, v)(t) =

∫ t

0

Gβ(t, s)g(s, u(s), v(s),ρDβ0+v(s))ds,

with

Gα(t, s) =
ρ1−α

Γ(α)
sρ−1(tρ − sρ)α−1,

Gβ(t, s) =
ρ1−β

Γ(β)
sρ−1(tρ − sρ)β−1.

Theorem 3.4. Assume the hypotheses (H1)–(H2) hold. If

T ρα (λ1 + λ2)

(1− λ3) ραΓ (α + 1)
+

T ρβ (µ1 + µ2)

(1− µ3) ρβΓ (β + 1)
< 1. (3.9)

Then the problem (1.1)–(1.2) has a unique solution on [0, T ].

Proof. By the Lemma 3.3, we will transform the problem (1.1)–(1.2) into a fixed point
problem F (u, v) = (u, v), where the operator F is defined by (3.8). Using the Banach
contraction principle, we shall show thatF has a fixed point. Now for (u2, v2) , (u1, v1) ∈
E and t ∈ [0, T ], we get

|F1 (u2, v2) (t)− F1 (u1, v1) (t)| ≤
∫ t

0

Gα (t, s) |f (s, u2 (s) , v2 (s) ,ρDα0+u2 (s))

− f (s, u1 (s) , v1 (s) , ρDα0+u1 (s))| ds

≤
∫ t

0

Gα (t, s) |ρDα0+u2 −ρ Dα0+u1| ds. (3.10)

By (H2), we have

|ρDα0+u2 − ρDα0+u1 | = |f (s, u2 (s) , v2 (s) ,ρDα0+u2 (s))
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− f (s, u1 (s) , v1 (s) ,ρDα0+u1 (s))|
≤ λ1 |u2 − u1|+ λ2 |v2 − v1|+ λ3 |ρDα0+u2 − ρDα0+u1 | .

Thus
|ρDα0+u2 − ρDα0+u1 | ≤

1

1− λ3

[λ1 |u2 − u1|+ λ2 |v2 − v1|] .

From (3.10), we have

|F1 (u2, v2) (t)− F1 (u1, v1) (t)| ≤ 1

1− λ3

∫ t

0

Gα (t, s) [λ1 |u2 (s)− u1 (s)|

+ λ2 |v2 (s)− v1 (s)|] ds

≤ T ρα (λ1 + λ2)

(1− λ3) ραΓ (α + 1)

× (‖u2 − u1‖+ ‖v2 − v1‖) .

Then

‖F1 (u2, v2)− F1 (u1, v1)‖ ≤ T ρα (λ1 + λ2)

(1− λ3) ραΓ (α + 1)
(‖u2 − u1‖+ ‖v2 − v1‖) . (3.11)

Similarly, one can find that

‖F2 (u2, v2)− F2 (u1, v1)‖ ≤ T ρβ (µ1 + µ2)

(1− µ3) ρβΓ (β + 1)
(‖u2 − u1‖+ ‖v2 − v1‖) . (3.12)

Thus it follows from (3.11) and (3.12), that

‖F (u2, v2)− F (u1, v1)‖ ≤
[

T ρα (λ1 + λ2)

(1− λ3) ραΓ (α + 1)
+

T ρβ (µ1 + µ2)

(1− µ3) ρβΓ (β + 1)

]
× (‖u2 − u1‖+ ‖v2 − v1‖) .

This implies that by (3.9), F is a contraction operator. As a consequence of Banach’s
contraction principle, Theorem 2.12, we deduce that F has a unique fixed point which
is the unique solution of the problem (1.1)–(1.2) on [0, T ]. The proof is complete.

Theorem 3.5. Assume that hypotheses (H1)–(H3) hold. If

T ρα

ραΓ(α + 1)
N1 +

T ρβ

ρβΓ(β + 1)
N2 < 1. (3.13)

Then the problem (1.1)–(1.2) has at least one solution on [0, T ].

Proof. In the previous theorem, we already transform the problem (1.1)–(1.2) into a
fixed point problem F (u, v) = (u, v), where the operator F is defined by (3.8). We
demonstrate that F satisfies the assumption of Schauder’s fixed point theorem, Theorem
2.13. This could be proved through three steps:
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Step 1. F is a continuous operator. Let (xn, yn)n∈N be a real sequence such that
lim
n→∞

(xn, yn) = (x, y) in E. Then for each t ∈ [0, T ],

|F1 (xn, yn) (t)− F1 (x, y) (t)| ≤
∫ t

0

Gα (t, s)

∣∣∣∣ f (s, xn (s) , yn (s) , ρDα0+xn (s))
−f (s, x (s) , y (s) , ρDα0+x (s))

∣∣∣∣ ds,
where

ρDα0+xn (t) = f (t, xn (t) , yn (t) , ρDα0+xn (t)) ,
ρDα0+x (t) = f (t, x (t) , y (t) , ρDα0+x (t)) .

As a consequence of (H2), we find easily ρDα0+xn → ρDα0+x in C [0, T ]. In fact we
have

|ρDα0+xn (t)− ρDα0+x (t) | = |f (t, xn (t) , yn (t) ,ρDα0+xn (t))

− f (t, x (t) , y (t) ,ρDα0+x (t))|
≤ λ1 |xn (t)− x (t)|+ λ2 |yn (t)− y (t)|

+λ3 |ρDα0+xn (t)− ρDα0+x (t) | .

Thus

|ρDα0+xn (t)− ρDα0+x (t) | ≤ 1

1− λ3

(λ1 |xn (t)− x (t)|+ λ2 |yn (t)− y (t)|) .

Since (xn, yn) → (x, y), then we get ρDα0+xn (t) → ρDα0+x (t) as n → ∞ for each
t ∈ [0, T ]. Now let K0 > 0, be such that for each t ∈ [0, T ], we have

|ρDα0+xn (t)| ≤ K0, |ρDα0+x (t)| ≤ K0.

Then, we have

|F1 (xn, yn) (t)− F1 (x, y) (t)| ≤
∫ t

0

Gα (t, s)

∣∣∣∣ f (s, xn (s) , yn (s) , ρDα0+xn (s))
−f (s, x (s) , y (s) , ρDα0+x (s))

∣∣∣∣ ds
≤

∫ t

0

Gα (t, s) |ρDα0+xn (s)− ρDα0+x (s) | ds

≤
∫ t

0

Gα (t, s) [|ρDα0+xn (s)|+ |ρDα0+x (s)|] ds

≤
∫ t

0

2K0Gα (t, s) ds.

For each t ∈ [0, T ], the function s → 2K0Gα (t, s) is integrable on [0, t], then the
Lebesgue dominated convergence theorem imply that

|F1 (xn, yn) (t)− F1 (x, y) (t)| → 0 as n→∞,
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and hence
lim
n→∞

‖F1 (xn, yn)− F1 (x, y)‖ = 0. (3.14)

Similarly, one can find that

lim
n→∞

‖F2 (xn, yn)− F2 (x, y)‖ = 0. (3.15)

Thus it follows from (3.14) and (3.15), that

lim
n→∞

‖F (xn, yn)− F (x, y)‖ = 0.

Consequently, F is continuous.
Step 2. Let

r ≥
T ρα

ραΓ(α+1)
M1 + T ρβ

ρβΓ(β+1)
M2

1− T ρα

ραΓ(α+1)
N1 − T ρβ

ρβΓ(β+1)
N2

.

We define
Pr = {(u, v) ∈ E : ‖(u, v)‖ ≤ r} .

It is clear that Pr is a bounded, closed and convex subset of E.
Let (u, v) ∈ Pr, and F : Pr → E be the integral operator defined in (3.8), then

F (Pr) ⊂ Pr. In fact, for each t ∈ [0, T ], we have from (H3)

|ρDα0+u (t)| = |f (t, u (t) , v (t) ,ρDα0+u (t))| ≤ a1 (t) + b1 (t) |u (t)|+ c1 (t) |v (t)|
+d1 (t) |ρDα0+u (t)| ,∣∣∣ρDβ0+v (t)

∣∣∣ =
∣∣∣g (t, u (t) , v (t) ,ρDβ0+v (t)

)∣∣∣ ≤ a2 (t) + b2 (t) |u (t)|+ c2 (t) |v (t)|

+d2 (t)
∣∣∣ρDβ0+v (t)

∣∣∣ .
Then

|ρDα0+u (t)| ≤ a∗1
1− d∗1

+
b∗1 + c∗1
1− d∗1

r = M1 +N1r

and ∣∣∣ρDβ0+v (t)
∣∣∣ ≤ a∗2

1− d∗2
+
b∗2 + c∗2
1− d∗2

r = M2 +N2r.

Thus

|F1 (u, v) (t)| ≤
∫ t

0

Gα (t, s) |f (s, u (s) , v (s) , ρDα0+u (s))| ds

≤
∫ t

0

Gα (t, s) |ρDα0+u (s) | ds

≤ T ρα

ραΓ (α + 1)
(M1 +N1r) , (3.16)
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and

|F2 (u, v) (t)| ≤
∫ t

0

Gβ (t, s)
∣∣∣g (s, u (s) , v (s) , ρDβ0+v (s)

)∣∣∣ ds
≤

∫ t

0

Gβ (t, s)
∣∣∣ρDβ0+v (s)

∣∣∣ ds
≤ T ρβ

ρβΓ (β + 1)
(M2 +N2r) . (3.17)

In consequence, we have
‖F (u, v)‖ ≤ r.

Then F (Pr) ⊂ Pr.
Step 3. F (Pr) is relatively compact. Let t1, t2 ∈ [0, T ], t1 < t2 and (u, v) ∈ Pr.

Then

|F1 (u, v) (t2)− F1 (u, v) (t1)| =

∣∣∣∣∫ t2

0

Gα (t2, s) f (s, u (s) , v (s) ,ρDα0+u (s)) ds

−
∫ t1

0

Gα (t1, s) f (s, u (s) , v (s) ,ρDα0+u (s)) ds

∣∣∣∣
≤

∫ t1

0

|[Gα (t2, s)−Gα (t1, s)]

× f (s, u (s) , v (s) , ρDα0+u (s))| ds

+

∫ t2

t1

Gα (t2, s) |f (s, u (s) , v (s) , ρDα0+u (s))| ds

≤ (M1 +N1r)

[∫ t1

0

|(Gα (t2, s)−Gα (t1, s))| ds

+

∫ t2

t1

G (t2, s) ds

]
. (3.18)

We have

Gα (t2, s)−Gα (t1, s) =
ρ1−α

Γ (α)
sρ−1

[
(tρ2 − sρ)

α−1 − (tρ1 − sρ)
α−1
]

=
−1

αραΓ (α)

d

ds
[(tρ2 − sρ)

α − (tρ1 − sρ)
α] ,

then ∫ t1

0

|(Gα (t2, s)−Gα (t1, s))| ds ≤
1

ραΓ (α + 1)
[(tρ2 − t

ρ
1)α + (tρα2 − t

ρα
1 )] ,

we have also∫ t2

t1

Gα (t2, s) ds =
ρ1−α

Γ (α)

∫ t2

t1

sρ−1 (tρ2 − sρ)
α−1 ds =

−1

αραΓ (α)
[(tρ2 − sρ)

α]
t2
t1
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≤ 1

ραΓ (α + 1)
(tρ2 − t

ρ
1)α .

Then (3.18) gives

|F1 (u, v) (t2)− F1 (u, v) (t1)| ≤ M1 +N1r

ραΓ (α + 1)
[2 (tρ2 − t

ρ
1)α + (tρα2 − t

ρα
1 )] .

As t1 → t2, the right-hand side of the above inequality tends to zero.
In the same way, we can obtain

|F2 (u, v) (t2)− F2 (u, v) (t1)| ≤ M2 +N2r

ρβΓ (β + 1)

[
2 (tρ2 − t

ρ
1)β +

(
tρβ2 − t

ρβ
1

)]
.

As t1 → t2, the right-hand side of the above inequality tends to zero.
Therefore, the operator F (u, v) is equicontinuous, and by means of the Arzela–

Ascoli theorem 2.9, we deduce that F : Pr → Pr is continuous, relatively compact
and satisfies the assumption of Schauder’s fixed point theorem 2.13. Then F has a fixed
point which is a solution of the problem (1.1)–(1.2) on [0, T ]. The proof is complete.

Our next existence result is based on the nonlinear alternative of Leray–Schauder
type.

Theorem 3.6. Assume (H1)–(H3) holds. Then the problem (1.1)–(1.2) has at least one
solution on [0, T ].

Proof. We shall show that the operator F defined in (3.8) satisfies the assumption of
Leray–Schauder fixed point theorem 2.14. The proof will be given in several steps.

Step 1. Clearly F is continuous.
Step 2. F maps bounded sets into bounded sets in E. Indeed, it is enough to show

that for any ω > 0, there exist a positive constant ` such that for each (u, v) ∈ Bω =
{(u, v) ∈ E : ‖(u, v)‖ ≤ ω}, we have ‖F (u, v)‖ ≤ `.

For (u, v) ∈ Bω, we have, for each t ∈ [0, T ]

|F1 (u, v) (t)| ≤
∫ t

0

Gα (t, s) |f (s, u (s) , v (s) , ρDα0+u (s))| ds,

|F2 (u, v) (t)| ≤
∫ t

0

Gβ (t, s)
∣∣∣g (s, u (s) , v (s) , ρDβ0+v (s)

)∣∣∣ ds.
By (H3), similarly of (3.16) and (3.17), for each t ∈ [0, T ], we have

|F1 (u, v) (t)| ≤ T ρα

ραΓ (α + 1)
(M1 +N1ω) , (3.19)

|F2 (u, v) (t)| ≤ T ρβ

ρβΓ (β + 1)
(M2 +N2ω) . (3.20)



42 Yacine Arioua

Thus (3.19) and (3.20), implies that

‖F (u, v)‖ ≤ T ρα

ραΓ (α + 1)
(M1 +N1ω) +

T ρβ

ρβΓ (β + 1)
(M2 +N2ω) = `.

Step 3. Clearly, F maps bounded sets into equicontinuous sets of E. We conclude
that F : E → E is continuous and completely continuous.

Step 4. A priori bounds. We now show there exists an open set U ⊂ E with
(u, v) 6= µF (u, v) for µ ∈ (0, 1) and (u, v) ∈ ∂U .

Let (u, v) ∈ E and (u, v) = µF (u, v) for some 0 < µ < 1. Thus for each t ∈ [0, T ],
we have

u (t) ≤ µ

∫ t

0

Gα (t, s) |f (s, u (s) , v (s) , ρDα0+u (s))| ds,

v (t) ≤ µ

∫ t

0

Gβ (t, s)
∣∣∣g (s, u (s) , v (s) , ρDβ0+v (s)

)∣∣∣ ds.
By (H3), for all solutions (u, v) ∈ E of the problem (1.1)–(1.2), we have

|u (t)| =

∣∣∣∣∫ t

0

Gα (t, s) |f (s, u (s) , v (s) ,ρDα0+u (s))| ds
∣∣∣∣

≤
∫ t

0

Gα (t, s) |ρDα0+u (s)| ds,

|v (t)| =

∣∣∣∣∫ t

0

Gβ (t, s)
∣∣∣g (s, u (s) , v (s) ,ρDβ0+v (s)

)∣∣∣ ds∣∣∣∣
≤

∫ t

0

Gβ (t, s)
∣∣∣ρDβ0+v (s)

∣∣∣ ds.
Then for each t ∈ [0, T ], we have

|ρDα0+u (t)| = |f (t, u (t) , v (t) ,ρDα0+u (t))| ≤ a1 (t) + b1 (t) |u (t)|+ c1 (t) |v (t)|
+d1 (t) |ρDα0+u (t)| ,∣∣∣ρDβ0+v (t)

∣∣∣ =
∣∣∣g (t, u (t) , v (t) ,ρDβ0+v (t)

)∣∣∣ ≤ a2 (t) + b2 (t) |u (t)|+ c2 (t) |v (t)|

+d2 (t)
∣∣∣ρDβ0+v (t)

∣∣∣ .
Then

|ρDα0+u (t)| ≤ a∗1
1− d∗1

+
b∗1

1− d∗1
|u (t)|+ c∗1

1− d∗1
|v (t)|

≤ M1 +K1 |u (t)|+H1 |v (t)| ,

and ∣∣∣ρDβ0+v (t)
∣∣∣ ≤ a∗2

1− d∗2
+

b∗2
1− d∗2

|u (t)|+ c∗2
1− d∗2

|v (t)|
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≤ M2 +K2 |u (t)|+H2 |v (t)| .

Hence

|u (t)| ≤ M1T
ρα

ραΓ (α + 1)
+

∫ t

0

Gα (t, s) (K1 |u (s)|+H1 |v (s)|) ds,

|v (t)| ≤ M2T
ρβ

ρβΓ (β + 1)
+

∫ t

0

Gβ (t, s) (K2 |u (s)|+H2 |v (s)|) ds.

Choosing K1, K2, H1, H2 ≤ 1, we find that

|u (t)|+ |v (t)| ≤ M1T
ρα

ραΓ (α + 1)
+

M2T
ρβ

ρβΓ (β + 1)
+

∫ t

0

(Gα (t, s) +Gβ (t, s))

× (|u (s)|+ |v (s)|) ds.

After the Gronwall lemma, Lemma 2.11, we have

|u (t)|+ |v (t)| ≤
[

M1T
ρα

ραΓ (α + 1)
+

M2T
ρβ

ρβΓ (β + 1)

]
exp

(
M1T

ρα

ραΓ (α + 1)
+

M2T
ρβ

ρβΓ (β + 1)

)
.

Thus

‖(u, v)‖ ≤
[

M1T
ρα

ραΓ (α + 1)
+

M2T
ρβ

ρβΓ (β + 1)

]
exp

(
M1T

ρα

ραΓ (α + 1)
+

M2T
ρβ

ρβΓ (β + 1)

)
= L.

Let
U = {(u, v) ∈ E : ‖(u, v)‖ < L+ 1} .

By choosing of U , there is no (u, v) ∈ ∂U , such that (u, v) = µF (u, v), for µ ∈ (0, 1).
As a consequence of Leray–Schauder’s theorem, Theorem 2.14, F has a fixed point u
in U which is a solution to (1.1)–(1.2). The proof is finished.

4 Illustrative Examples
In this section, we present some examples to illustrate the usefulness of our main results.

Example 4.1. Consider the following coupled system of Katugampola type fractional
differential equations

1D
1
2

0+u(t) =
arctan(t)[

1 + 1
5
|u(t)|+ 1

50
|v(t)|+ 1

100

∣∣∣1D 1
2

0+u(t)
∣∣∣] ,

1D
1
3

0+v(t) =
1

10 + |u(t)|
+

1

50 + |v(t)|
+

1

100 + t2
(1D

1
3

0+v(t)),

u(0) = 0, v(0) = 0,

t ∈ [0, 1]. (4.1)
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Let

f
(
t, u, v, 1D

1
2

0+u
)

=
arctan(t)[

1 + 1
5
|u (t)|+ 1

50
|v (t)|+ 1

100

∣∣∣1D 1
2

0+u (t)
∣∣∣] ,

g
(
t, u, v, 1D

1
3

0+v
)

=
1

10 + |u (t)|
+

1

50 + |v (t)|
+

1D
1
3

0+v (t)

100 + t2
.

Clearly f, g : [0, 1]× R3 → R are continuous functions and we have∣∣∣f (t, u, v, 1D
1
2

0+u
)
− f

(
t, ũ, ṽ, 1D

1
2

0+ũ
)∣∣∣ ≤ π

10
|u− ũ|+ π

100
|v − ṽ|

+
π

200

∣∣∣1D 1
2

0+u −
1D

1
2

0+ũ
∣∣∣ ,∣∣∣g (t, u, v, 1D

1
3

0+v
)
− g

(
t, ũ, ṽ, 1D

1
3

0+ ṽ
)∣∣∣ ≤ 1

10
|u− ũ|+ 1

50
|v − ṽ|

+
1

100

∣∣∣1D 1
3

0+v −
1D

1
3

0+ ṽ
∣∣∣ .

Thus the hypothesis (H2) is satisfied with λ1 =
π

10
, λ2 =

π

100
, λ3 =

π

200
, µ1 =

1

10
, µ2 =

1

50
, µ3 =

1

100
and

T ρα (λ1 + λ2)

(1− λ3) ραΓ (α + 1)
+

T ρβ (µ1 + µ2)

(1− µ3) ρβΓ (β + 1)
w 0.5318 < 1.

Therefore, (3.9) is satisfied. Hence, all conditions of theorem 3.4 hold. thus the coupled
system (4.1) has a unique solution on [0, 1].

Example 4.2. Consider the following coupled system of Katugampola type fractional
differential equations

1D
3
4

0+u(t) =
1 + u (t) + v (t)√

16 + t2
+

arctan (t)

2

(
1D

3
4

0+u(t)
)
,

1D
4
5

0+v(t) =
1 +

(
3
√
|u (t)|+ 3

√
|v (t)|

)3

et2
+
π ln

(∣∣∣1D 4
5

0+v (t)
∣∣∣)

8 + t2
,

u(0) = 0, v(0) = 0,

t ∈ [0, 1].

(4.2)
Let

f
(
t, u, v, 1D

3
4

0+u
)

=
1 + u (t) + v (t)√

16 + t2
+

arctan (t)

2

(
1D

3
4

0+u(t)
)
,

g
(
t, u, v, 1D

4
5

0+v
)

=
1 +

(
3
√
|u (t)|+ 3

√
|v (t)|

)3

et2
+
π ln

(∣∣∣1D 4
5

0+v (t)
∣∣∣)

8 + t2
.
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Clearly f, g : [0, 1]× R3 → R are continuous functions and we have∣∣∣f (t, u, v, 1D
3
4

0+u
)∣∣∣ =

1√
16 + t2

+
1√

16 + t2
|u (t)|+ 1√

16 + t2
|v (t)|

+
arctan (t)

2

∣∣∣1D 3
4

0+u
∣∣∣ ,∣∣∣g (t, u, v, 1D

4
5

0+v
)∣∣∣ =

1

4
e−t

2

+
1

4
e−t

2 |u (t)|+ 1

4
e−t

2 |v (t)|+ π

8 + t2

∣∣∣1D 4
5

0+v (t)
∣∣∣ .

Thus the hypothesis (H3) is satisfied with

a1 (t) = b1 (t) = c1 (t) =
1√

16 + t2
, d1 (t) =

arctan (t)

2
,

a2 (t) = b2 (t) = c2 (t) =
1

4
e−t

2

, d2 (t) =
π

8 + t2
,

a∗1 = b∗1 = c∗1 = a∗2 = b∗2 = c∗2 =
1

4
, d∗1 = d∗2 =

π

8
< 1,

M1 = M2 =
2

8− π
, N1 = N2 =

4

8− π
,

and the condition (3.13),

T ρα

ραΓ (α + 1)
N1 +

T ρβ

ρβΓ (β + 1)
N2 w 0.8753 < 1.

It follows from Theorem 3.5 and Theorem 3.6, that the problem (4.2) has at least one
solution on [0, 1].

5 Conclusion
In this paper, the existence and uniqueness of solution for a new coupled system of
nonlinear fractional differential equations involving Katugampola fractional derivative
in bounded domain have been discussed. For our discussion, we have used the Banach
contraction principle, Schauder, nonlinear alternative Leray–Schauder fixed point theo-
rems. From the above discussion, it is expected that this may provide a new direction to
the study of coupled systems of nonlinear fractional differential equations.
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