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Abstract

Here we present the necessary background on nabla time scales approach. Then
we give general related time scales nabla Iyengar type inequalities for all basic
norms. We finish with applications to specific time scales like R, Z and ¢ q> 1.
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1 Introduction

We are motivated by the following famous Iyengar inequality (1938), [8].

Theorem 1.1. Let f be a differentiable function on |a,b] and |f' (x)| < M. Then

[1@ar-30-0 @+ oy < o= LOLA) gy,

We present generalized analogs of (1.1) to time scales in the nabla sense. Motivation
comes also from [1-3].

2 Background

Here we follow [5-7,10]. Let T be a time scale (a closed subset of R) ( [8]), [a, b] be
the closed and bounded interval in T, i.e. [a,b] := {t € T:a <t < b} and a,b € T.
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Clearly, a time scale T may or may not be connected. Therefore we have the concept
of forward and backward jump operators as follows. Define o, p : T — T by

o(t)=inf{seT:s>t} and p(t) =sup{seT:s <t}

(inf @ := sup T, sup ) := inf T).

Ifo(t)=to(t) >t p(t) =t p(t) <t thent € T is called right-dense, right-
scattered, left-dense, left-scattered, respectively. The set Tj which is derived from T
is as follows: if T has a right-scattered minimum m, then T, = T — {m}, otherwise
T, = T. We also define the backwards graininess function v : T —— [0,00) as
v(t)=t—p(t). If f: T —— Ris a function, we define the function f* : T} — R by
P ()= f(p(t)) forallt € Ty and 0° (t) = p° (t) = t; Tpnt1 := (Tpn),.

Definition 2.1. If f : T — R is a function and ¢t € Ty, then we define the nabla
derivative of f at a point ¢ to be the number fV (t) (provided it exists) with the property
that, for each € > (0, there is a neighborhood of U of ¢ such that

|[F (@) = F ()] =Y () [p(t) = sl <elp(t) — s,

forall s € U.
Note that in the case T = R, then [V (t) = f'(t), and if T = Z, then [V (t) =
Vi) =r@)-ft-1).

Definition 2.2. A function F' : T — R we call a nabla-antiderivative of f : T — R
provided that FV (t) = f (t) for all t € T). We then define the Cauchy V-integral from
atotof f by

/tf(s)Vs:F(t)—F(a), forallt € T.

Note that in the case T = R we have

[ rovi= [ swa

and in the case T = Z we have

/mmzzﬂw

k=a+1
where a,b € T with a < b.

Definition 2.3. A function f : T — R is left-dense continuous (or 1d-continuous)
provided that it is continuous at left-dense points in T and its right-sided limits exist at
right-dense points of T.

If T = R, then f is ld-continuous iff f is continuous. If T = 7Z, then any function is
1d-continuous.
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Theorem 2.4. Let T be a time scale, f : T — R, andt € Ty. The following holds:
1. If f is nabla differentiable at t, then f is continuous at t.

2. If f is continuous at t and t is left-scattered, then f is nabla differentiable at t and

J@) = f(p(t)
t—p(t)

3. If t is left-dense, then f is nabla differentiable at t if and only if the limit
t _
LD~ f ()

s—t t— s

V)=

exists as a finite number. In this case,

fV (t) — limf (t) — f (3)

4. If f is nabla differentiable at t, then f (p (t)) = f (t) — v (¢) f¥ (1).

For any time scale T, when f is a constant, then f¥ = 0; if f (t) = kt for some
constant k, then ¥ = k.

Theorem 2.5. Suppose f,g: T — R are nabla differentiable at t € T}. Then,

1. the sum f + g : T — R is nabla differentiable at t and
(f+9)7 (&)= FY (1) + 97 (1);
2. for any constant o, af : T — R is nabla differentiable at t and
(af) (1) = af¥ (1)
3. the product fg : T — R is nabla differentiable at t and
(f9)" (1) = ¥ (O g () + f2(£) g7 (t) = f¥ (1) g* (1) + £ (£) g7 (¢) .

Some results concerning 1d-continuity are useful:
Theorem 2.6. Let T be a time scale, f : T — R.

1. If f is continuous, then f is ld-continuous.

2. The backward jump operator p is ld-continuous.

3. If f is ld-continuous, then f” is also ld-continuous.
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4. If T =R, then f is continuous if and only if f is ld-continuous.
5. If T = 7Z, then f is ld-continuous.

Theorem 2.7. Every ld-continuous function has a nabla antiderivative. In particular, if
a € T, then the function F' defined by

F(t):/tf(T)VT, teT,

is a nabla antiderivative of f.

The set of all 1d-continuous functions f : T — R is denoted by C}; (T, R), and the
set of all nabla differentiable functions with ld-continuous derivative by C}, (T, R) .

Theorem 2.8. If f € Cjy (T,R) and t € Ty, then
t
[V =v(t)f@).

p(t)

Theorem 2.9. Ifa,b,c € T,a <c<b a € R, and f,g € Ciy(T,R), then:

b b b
L[ twra@nve= [ ovis [gwve

N

/abaf(t)w:a/abm)w;

./abf(t)Vt——/baf(t)Vt;

4, /aam)w:o;

./abf(t)Vt:/acf(t)VtJr/cbf(t)Vt;

b
Iff(t)>0f0ralla<t§b,then/ f(t)Vt > 0;

w

n

S

N

/ 72 (8) g% (1) Vit = [(fg) (D]=" - / 17 () g () vt

S

b b
/ £ (1) g% (1) VE=[(fg) (1) — / 7 (1) g (1) Vt:
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b
0. IFf(H)>0a<t<b then/ £Vt > 0;

b c
0. Iff(t)zo,agcgb,then/ f(t)Vtz/ £(t) Ve

11. If f and fV are jointly continuous in (t, s), then
t v t
([reovs) = s+ [ Tesvs
ab v ' b
([reavs) = —16wa0+ [T eovs
12.Iff (1) = g(t), then/bf(t)VtZ/bg(t)Vt;

13 /abf(t)Vt‘ < [

b
14. / 1Vt =b—a.
Similarly we define higher order nabla derivatives on Tjn+1 by
A (fvn)V , neN.

If T = R, then f¥"" = fO*Y and if T = Z, then f¥"" (t) = V"' f(t) =

n+1

> (M) s m).

m=0
Let by, : T?> — R, k € Ny = NU {0}, defined recursively as follows:

~

ho (t,s) =1, all s,t €T,

and, given ﬁk for k € Ny, the function ﬁkﬂ is
t
his1 (t,8) = / hi (1,s) VT, foralls,t €T.

Note thatA ﬁk are all well defined, since each is Id-continuous in t.
If we let ) (¢, s) denote for each fixed s the nabla derivative of hy, (¢, s) with respect
to ¢, then R R
hY (t,s) = hj_1 (t,5), fork € N,t € Ty.

Notice that /; (t,s) =t —s,forall s,t € T.
By [2] we have that Ay, (t,s) > 0, for any ¢, s € T, when £ is even.
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Example 2.10. 1. If T = R, then p (¢) = ¢, t € R, so that hy, (£, s) =
all 5,t € R, k € Ny.

~ t—s)F
2.IfT =7Z,thenp(t) =t —1,t € Z, and hy (t,s) = %, for all s,t € Z,
k€N, where t* .=t (t+1)...(t+k—1), ke N;¢*:=

Definition 2.11. The set C}; (T,R) = C},(T), n € N, denotes the set of all n times

continuously nabla differentiable functions from T into R, i.e. all f, fV, f Vz, Ve
Cld (T, R) .
This definition requires Ty = T.

We need the following result.

Theorem 2.12 (Nabla Taylor Formula, see [4]). Suppose f is n times nabla differen-
tiable on Tyn, n € N. Let a € Tyn-1,t € T. Then

ZE ba) 1% @+ [ st () £ () V7

If f € CJ; (T, R), then nabla Taylor formula is true for all t,a € T.

Corollary 2.13 (to Theorem 2.12). Assume f € C[;(T), n € N, and s,t € T. Let
m € N withm < n. Then

n—m—1

ANGESSY
k=0

Proof. Use Theorem 2.12 with n and f substituted by n—m and fV ", respectively. [

Y () By (8, 8) + / T (t,p (7)) £ (1) V7.

Define [a,b], = [a,b] if a is right-dense, and [a,b], = [0 (a),b] if a is right-
scattered.

Proposition 2.14 (See [10]). Suppose a,b € T, a < b, and f € Ciy([a,b],R) is such
b
that f > 0 on [a,b]. If/ f{t)Vt=0, then f =0on [a,b],.

Theorem 2.15 (Nabla Holder Inequality, see [2]). Let a,b € T, a < b. For f,g €
Ca ([a, b)) we have

[ 1ol < (/ab|f<t>|pw)’l’ ([worw)

1 1
wherep,q >1: -+ — =1.
p q
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Next define gy (¢, s) = 1,

t
Buet (t5) = [ 3.(0(7) 5 Vi nENsteT.

Notice that Gy, (t,5) = G (p(t),5),t € Ty; g1 (t,s) =t — s, forall s, € T.
If T has a left-scattered maximum M, define T* := T— {M}; otherwise, set TF =T.
Similarly define T = (Tkn)k Notice Tyn+1 C Ty and T+ < T*.

Theorem 2.16 (See [4]). Lett € T, NT*, s € T, and n > 0. Then

-~

hy (t,8) = (—=1)" g, (s, 1) .

Remark 2.17. Let the time scale T be such that T* = T, = T. Clearly both ﬁn, In
are nabla differentiable in their first variables, therefore both are continuous in their first
variables.

Using now Theorem 2.16 we get that also both /f;n g, are continuous in their second
variables. R R

Consequently h,, (, s) is 1d-continuous in each variable and thus h,, (¢, p (s)) is 1d-
continuous in s. R R R

Notice also in general thatif ¢ > sthen hy (¢,s) > 0, ho (t,8) > 0,..., hyp—1 (t,5) >
0. So that 7,1 (t,p(1)) >0foralls <7 <t.

Also in general it holds

Iy, (t,5) < (t— )", V> s,k €N,
and easily we get:
’ﬁk(t,s)‘ <|t—s*, Vt,s €T, keN,.

We need the following result.

Theorem 2.18 (Nabla Chain Rule, see [6]). Let f : R — R be continuously differen-
tiable and suppose that g : T — R is nabla differentiable on T. Then fog: T — R is
nabla differentiable on T and the formula

(Fog)¥ (1) = { [ 760+ 0) dh} 6 (1)

holds.

We formulate the following assumption.

Assumption 2.19. Let the time scale T be such that T* = T, = T.
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Remark 2.20. Assume that p is a continuous function, ']I‘k =T, hn 1 (t s) and hn 2 (t, s)
are jointly continuous in (t,s) € T% p > 1. Clearly Y , (t,s) = hy_s (t,s)int € T.
Also By, (t,p(s)), s (t, p(s)) are jointly continuous in (¢, s) € T?,

p\ V
By Theorem 2.18 we have that ((hn_l (t,p (7’))) > exists in t € T, where 7 is

fixed in T, and
((Rns o)) =

p{ [ (Fucs G+ OB 1009} Rt

~ P\ V
By bounded convergence theorem we obtain that ((hn_l (t,p (7’))) ) is jointly con-

~ p
tinuous in (¢, 7), and of course <hn_1 (t,p (7’))) is jointly continuous in (¢, 7).
Therefore by Theorem 2.9 (11), we derive for

o~

u(t) —/ By (t,p (7)) VT

(t € [a,b] C T), that

Le.

uY (t) = /at (ﬁn_l (t,p (7’))7’)V A%

That is w (¢) is nabla differentiable, hence continuous and therefore 1d-continuous on
[a,b] C T.

We formulate the next assumptions.

Assumption 2.21. We suppose that p is a continuous function and
?lnfl (t, S) ) /};an (ta 8)

are jointly continuous in (¢, s) € T
Assumption 2.22. We suppose that p is a continuous function and

-~ -~

hn—m—l (ta S) ) hn—m—2 (ta S)

are jointly continuous in (¢, s) € T
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3 Main Results

Next we present nabla Iyengar type inequalities on time scales for all norms |-, 1 <
p < co. We give the following result.

Theorem 3.1. Let f € C};(T), n € Nis odd, a,b € T; a < b. Here p is continuous
and h,,_1 (t, s) is jointly continuous. Also assume that Ty, = T. Then

1)

< van Hoo,[mb]ﬂ']l'
k=0

([ ([rerers)eg ([ ([Fermnsr)w)]

3.1

b n—1 N .
[ 109 =3 (17 @ (0.0) = % @ s (0.)

Vaela,bNT,

2) assuming ¥ (a) = v (b) =0, k=0,1,...,n — 1, we get from (3.1) that

b
/ f () Vt‘ < vanHoo,[a,b]ﬂT

K/ (/atﬁn—l (tp (7)) VT) Vt) + (/b (/tbﬁn_l (t,P(T))VT) w?lz,)

VaelabNT,

21) when x = a we get from (3.2) that

/abf (t) w‘ <15 e (/b (/tbﬁn_l (t.p(r)) vT) w)  33)

2,) when x = b we get from (3.2) that

/abf(t) Vt' 1A - (/b (/atfzn_l (t,p(T))VT> Vt) (34

23) by (3.3) and (3.4) we get

b
/a f () Vt' < so,[abjnT %

min {/b (/tbﬁnl (t, p (7)) VT) Vi, /ab </atﬁn1 (t,p(T))vT) w},

(3.5)

and
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3) assuming f¥" (a) = f¥ (b)) =0,k =1,...,n— 1, by (3.1) we have

/ FOVE=[F (@) (@ —a) + £ ®) 62| < 17| e *

(3.6)
VaelabNT.

Proof. By [7, p. 23], we have that van || < 00. By Theorem 2.12 we have

00,[a,b]NT

vak ) i (£, ) / T (£, p (7)) F¥" (7) VT, 3.7)

and
n—1 t
F &)=Y (b) e (t,0) = / hoi (t,p (7)) fY" () VT, (3.8)
k=0 b
Vtea,bNT.
Then we get
k ~ @3 .7) " t .
' va Vo (k@) < (7 o e / hoot (tp(T)) VT, (3.9)
and
n—1 N b
|f(t) ST ) e (10)| / Tt (8, p (7)) f¥" (1) VT
k=0 t
b’\ n
< (/ s (£, (7) w) 17" e (3.10)

Therefore it holds (by (3.9), (3.10))

b ~
- vanHoo,[a,b]ﬂT/ Pt (t,p (7)) VT < f (2 vak ) b (t, a)

t/\
I g | Frcr tp () V7

and

b L
M g ([ T p o) 97) < 1 va ) (1.0
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b
<7 e (T €0 97).
Vtea,bNT.

Consequently we have

wa hk (t,a) HfV"H ab]mr/ B (t,p(7)) VT < f (1) (3.11)

-1

t/\
Z VTt (1) + 7 | poggs [ s 80 (7)) 97

ol

and
n—1 b
vak( b) e (£, 0) — || £¥" | P (/ s (t,p(T))VT) <f@t) (312
k=0 t
n—1 b
S ARULRTRS Vg N § I
k=0 t
Vtela,bNT.

Let any = € [a, b] N T, then integrating (3.11), (3.12) we obtain:

n—1

vak () hpsr (2, @) — [FA |- (/j (/tﬁn—l (tp (7)) VT) Vt>

k=0 a

< /If<t> Vit < (3.13)

ZfV’“ Vs (020 + 15 e ([ ([ s ep o) 97 91),

and

n—1

=3 T O e @) = 1 g ( / b ( / Tt (0) VT) W)

k=0

b
< / F () Vi < (3.14)

n—1

=S T O e @)+ (|7 am(/:(/tbﬁn1<t,p<7>>v7)w).

k=0
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Adding (3.13) and (3.14) we derive

,_.

n—

(ka ( )fl%k—i-l (l‘, a) - ka (b) /l;k—i-l (I7 b)) - vannoo,[a,b]ml‘ X

0

([ ([rerersr)e) ([ ([ Feomse)w)]

i

< /bf (t) Vt < (3.15)
n—1
> (ka ) hisr (z,0) = £V (b) hiyr (D) > 1 e oo >
k=0
T t b b
([ (st o) ([ ([3er0m) ).
Vaela,bNT.
The proof is now complete. O

We continue with the following result.

Theorem 3.2. Let f € C};(T), n € Nisodd, a,b € T; a < b, where T, = T. Then

1)
[ rove- (fV’“ (@) B (20) = 57 ) e (2.)) | <
vanHLl([a,b]ﬂT) {/I (t—p(a))" "Vt + / (p(b) —t)" Vt} ., (3.16)
Va€la,bNT,

2) assuming f¥" (a) = f¥° (b) =0,k =0,1,...,n— 1, from (3.16) we obtain

/abf (t) Vt' < vanHL1([a,b]ﬂ'H') "
{/x (t—p(a))”‘ler/:(p(b)—zf)”—lvz}, (3.17)

Vi €la,b]NT,

21) when x = a by (3.16) we get

b . b
[ 1O U e ([ 0007 91) 6w
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2,) when x = b by (3.16) we get

b x
[ 1O <15 g, ([ €@ 0] a9

23) by (3.18), (3.19) we have

[ 1 O9 <15 s
min { </b () —1)"" Vf) ! </b (t —p(a)"™ Vt) } . (3.20)

ka (b)=0,k=1,...,n—1, by (3.16) we derive

3) assuming ka (a) =

a)(z —a)+ f(0) (b—x)]| <

T b
HanHqua,b]mm{/ (t—p(a))”‘1Vt+/ (p(b)—t)”‘lw}, (3.21)

VaelabNT.

Proof. Clearly, here it holds H v H Ly(fapnT) < OO
By Theorem 2.12 we have

P03 @Rt = [ Fuslpt) 17 )97,
k=0 a
and
vak D8 = [ B () 57 (1) O
Vtea,bNT.
Then
'f(t)—ika (@ (t.0)| = | [ Bucs (60 () 17" (1) V| <
/hnltp )\fv )\v7</|t— (DY ()| VT <

(t=p(a)"™ vanHLl([a,b]rﬂI‘) :
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Furthermore we have

'f(t) =D T O e (1,0)] =

r

b/\
[ b (£, (1) £7" (1) V| <

(o (D[ 117 DV < [Tt oo™ |57 (7)| 97 <

O =" YL s -

Therefore it holds
n—1
n— n k -
=t = @) N oy oy <L O =D F7 (@) i (t,a)
k=0

< (t—p(a)" [T HLl([a,b}rﬂr) ’
Vtela,bNT,and

n—1

= (0O =" I gy asiomy < F O =D F7 ) (,0)

k=0

< ® ="M e

Vtea,bNT.
Consequently it holds

va’“ ) (8,0) = (¢ = p (@) Y] oy < ()

< va’“ ) (8,0) + (8= p (@) Y| o
Vt€[a,b]NT,and
wa 0) hu (1,0) = (0 (0) = " 1" || ey < S (O

<vak ) I (60) + (0 (0) = " YN ain)

VtelablN
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Let any = € [a,b] N T, then by integration we have

n—1

> 17 @ ) = ([ =0 @I I ey G2
k=0 a
< / Fmvis
n—1 . R aa:
g fv (a) hk—i—l (‘7;7 (l) + (/a (t - P (a))n_l Vt) ||fV” HLl([%b]ﬁT) )
and
n—1 i b .
- ; P (0) by (2, 0) — ( / (p(0) =)™ w) (A P
b
< / f)Vt <
n—1 . N b ’
= Y (b) byt (,0) + (/ (p(b) =) Vt) [ [P (3.23)
k=0 z
VaelabNT.

Adding (3.22) and (3.23) we obtain

1

(F7" @hess (@,0) = £7° (0) haca (2,)) -

0

£ 2 e { ( / (- pla)! w) + ( / (o) — 1y w) }

b

n

£
Il

< | FOVES
n—1
(F7 @ P (@) = 7" (B g (1)) +
k=0
T b
15 Voo { ([ = oy 5e) + ([ o -0 wi) ). @2
Vaela,bNT.

The proof is now complete. ]

We continue with the next result.

1 1
Theorem 3.3. Let f € C;(T), n € Nisodd, a,b € T; a <b;p,g>1:—-+—-=1
p g
We suppose Assumptions 2.19, 2.21. Then
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1)

n—1

b ~ ~
[ 109 =3 (17 @ (0.0) = 1% @ s (2.) ‘

k=

< 1 N 2o o

[/: (/atﬁn—l (t,p(f))er) v+ /: (/tbﬁn_l (t,p (7)) VT);Vt] :

(3.25)
VaelabNT,

2) assuming ka (a) = ka (b)=0,k=0,1,...,n—1, by (3.25) we have that
b o
[ 1O <157

[/j (/:ﬁn—l (tap(T))pVT);Vt—l—/: (/tbﬁn_l (t,p(T))pVT);Vt] :

(3.26)

VaelabNT,

2,) when x = a by (3.26) we get

/abf(t) Vt‘ < van”/;q([a,b]my) (/ab (/tb/i;n_l (t,p (1)) VT) Vt) ’

(3.27)

S =

2,) when x = b by (3.26) we get

/abf(t) w’ <17 N ooy </ab (/:ﬁnl (t,p (7)) Vr) Vt) ,

(3.28)

B =

23) by (3.27), (3.28) we derive that
b o
/a foyvt| <||f HLq([a,b]ﬂ’ﬂ‘) X

min {/b (/tbﬁnl (t, p (7)) w)p vt, /ab (/atﬁnl (t, p (7)) w)p w} :
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3) assuming ¥ (a) = f¥° (b) =0,k =1,...,n — 1, by (3.25) we obtain

/ FOVE=17 (@) @ =)+ 7 0) 0| < 177 quom

[/ ([ Frrttor o) o [ ([ sty o) v

(3.30)

)

Va€la,b]NT.
Proof. As before we have

n—1

K (t,a) == f () - Z ¥ (@) P (t,0) = / T b0 (1) 7 (1) ¥
and _

K (t,b) == f (t) :Z_:ka (b) P (,b) = / T b (1) 7" (1) ¥
Vitela,bNT. i

We have that (by use of Theorem 2.15)

Kol ([T oy VT); ([1r e va

: ;
< (/ - (t,p(T))pVT) 1Y ||Lq([a,b1rﬂr)’

and
K0 =| [ s (o0 17 ()97 <
(/tbﬁn_l (t,p (1)) w)i (/tb £ (@) w)é
<(/ Tt (Lo (1)) vf); 17 o
Vtéela,bNT.

Hence it holds

=

= ([ B ten @ 97) 1y < K (1)
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t L
< (/ [ (t>P(7))pV7> 1Y ||Lq([a,b]rﬂl’)

and
b » .
— (/t A1 (t,p(T))" VT) va HLq([a,b}ﬂT) < K (t,0)
b » .
< (/t Py (t,p(T))" VT) [ HLq([a,b]ﬂT)’
Vtea,bNT.
That is
n—1 . R t %
kaV (a) hy (t,a) — </ b1 (t,p(7))° VT) ||fvnHLq([a,b]ﬁT) </
—0 a
n—1 X =R t D
< va hy, (t,a) + (/ Ao (t,p(T))" VT) vanHLq([a,b]ﬂ’]I‘)
k=0 “
and
n—1 . . bA %
> 17 O .0~ ([ o 00007 97) 17 oy < 0
b P
< va hk t,b) + (/t By (t, p (7))° VT) [E ”Lq([a,b]mr)’
Vitéea,bNT.

Let any = € [a,b] N T, then by integration we get

”zi £ (@) b (z,0) — £ 2, aemy (/; (/atﬁn_l (t,p (1)) VT); Vt)

k=0
< [rmis
n—1 i . T t %
Z fv (a’) hk—l—l ((L’, CL) + vanHLq([a,b]rﬂI‘) (/ </ hn—l (ta p (T))p VT) Vt> )
= (3.31)
and

-1

b b :
Z hk’“ z,0) — vanHLq([a,b}mr) (/m (/t hn-1 (t, p (7)) VT> Vt>

k=
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b
[ v
n—1 X N . b b/\ %
S AR GLTRICR R Faul F ( [ ([ o eoeirer) w)
= (3.32)
Adding (3.31) and (3.32) we obtain
n—1
(7% (@ s (@) = £%° (8) P (2,0) ) =
k=0

vanHLq([a,b]ﬂ'I[‘) { (/ (/ - (t,p (7)) VT) ’ Vt) +

1

(/: (/tbﬁnl (t,p (7)) vf)p w)}

<[ rwyvi<

(F7" @ s (@) = £ (0) B (1)) +

Lq([a,6]NT) { (/; (/atﬁn—l (t,p (7)) VT); Vt) +
(/: (/tbﬁn_l (t,p (7)) VT) % w) } , (3.33)
Vaé&la,bNT.

The proof is now complete. ]

‘ ‘ fvn

We give the next result.

Theorem 34. Let f € C[;(T), m,n € Nym <n,n—misodd, a,b € T; a <b. Here
p is continuous and hy,_,,_1 (t, s) is jointly continuous. Also assume Ty = T. Then

1)

b n—m—1 R R
. <t>w—< - (7 @) P (@) = 17 0 B <x,b>))

ool [( / m ( / T (69 () w) w) i

I
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(/: (/tbﬁnml (t,p(7)) VT) Vt)} , (3.34)

2) assuming vam (a) = fVHm b)) =0, k=0,1,...,n —m — 1, we get from
(3.34) that

b
/a fv (t) vt‘ < va 00,[a,b)NT X

V (/:ﬁnml (t,p(r))w) Vt+/: (/tbﬁnml (t,p(T))w) w} 7

(3.35)

VaelabNT,

Va€labNT,

21) when x = a we get from (3.35) that

/a vl < | - ( / ’ ( / s (89 () VT) w) |

(3.36)
2,) when x = b we get from (3.35) that

/ab V") Vt’ < ||fV"H007[a7b]rﬂr (/ab (/atﬁn_m_l (t,p(T))VT) Vt) 7

(3.37)

23) by (3.36), (3.37) we get

b
/ Y () Vt‘ < vanHoo,[a,b]ﬂ'ﬂ' X

min {/b (/tbﬁn_m_l (t,p (7)) VT) Vi, /ab (/:En_m_l (t, p (7)) vT) w} |

(3.38)

and

3) assuming ¥ (a) = Tl (b)=0,k=1,...,n—m — 1, from (3.34) we
obtain

b
/ T OVE= [V (a) (x—a)+ V() (b—2)]| < van”oo,[a,b}mr X

[/ (/:ﬁn_m_l (t,p(T))VT) Vit /: </tbﬁn_m_1 (t,p(T))vT) w} ,

(3.39)

VaelabNT.
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Proof. As in the proof of Theorem 3.1, now using Corollary 2.13. [
We give the following theorem.

Theorem 3.5. Ler f € C},(T), myn € N, m <n,n—misodd, a,b € T; a < b, where
Ty, =T. Then
1)

n— 1

b m- ~
I Ove= 3 (57 @ e (@.0) = 7 0 B (2,0 )| <

k=0

T b
van”Ll([a,b]rﬂ]‘) {/ (t—p(a)" "Vt +/ (p(b) —t)" ™1 Vt} ,

(3.40)
Vaéela,bNT,

2) assuming vam (a) = fVHm ) =0, k=0,1,...,n—m — 1, we get from
(3.40) that

b
/ fvm (t) Vt‘ S Han

{/z (t—p(a)" ™" Vt+/: (p(b)—t)”‘m‘lw}, (3.41)

Vaela,bNT,

Li(apnT) <

21) when x = a by (3.41) we get

b . . b
POV < 1 oy ([ 0007 01) G

25) when x = b by (3.41) we get

b x
1 OF <17 Dy ([ €= ply ™ 00), )

23) by (3.42), (3.43) we have
b o v
[ @9 <17y

min { ( / " (p(b) — ! w) | ( / (= p(a)) ! w) }  (3.44)

and
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3) assuming ¥ " (a) = ¥ (0) =0,k =1,....,n —m — 1, from (3.40) we
obtain

b
[ 0w [ @ -+ 7 0 60| <

T b
van”Ll([a,b]m’]l‘) {/ (t—p(a))" " VI +/ (p(b) —t)" ™! Vt} :

VaelabNT.
Proof. As in Theorem 3.2, now using Corollary 2.13. [
We also give the next result.

Theorem 3.6. Let f € C};(T), m,n € N, m <n,n—misodd, a,b € T; a <b. Let
1

alsop,q >1: -+ — = 1. We suppose Assumptions 2.19, 2.22. Then
p 4q

1)

n—m—1

b o~
I OVe= > (5 @ (@,0) = 7 0) g (2,0)) | <

k=0
T t

vanHLq([a,b}ﬂ'H‘) [(/ (/ Po—m—1 (t, p (T))" VT) Vt) +

; (3.46)

( / b < /t s (£ p (1) VT); Vt)

2) assuming vam (a) = fVHm b)) =0 k=0,1,...,n—m — 1, we get from
(3.46) that

/ab AU w' < 1 e goremy [(/w (/:En—m—l (t.p(1)) Vr);w) +
< A (/ T (69 (1)) vf)’l’ w)

S

Va€labNT,

, (3.47)

Vaela,bNT
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21) when x = a we get from (3.47) that

1

b b b __ P
[ @ <1l [ ([ s oty ee) 52).

(3.48)

2,) when x = b we get from (3.47) that

1

b b t p
/ ) Vt‘ < vanHLq([ap}mr) (/ (/ hn—m—1 (t’P(T))pVT> Vt) :

(3.49)

23) by (3.48), (3.49) we get

b
[ AL Y P

" { (/b (/ s (o () vf) : w) ,
</ab (/t B (£, p (7)) VT) : w) } , (3.50)

3) assuming ¥ (a) = A (b)=0,k=1,...,n—m— 1, we get from (3.46)

and

that ,
[ OV [T @+ T 0 60| <
N x t/\ %
1 i | ([ ([ s st em) 52 4
by opb 7
( / ( / P (£ (7)) Vf) w) , (3.51)
x t
VaelabNT.
Proof. As in Theorem 3.3, by using Corollary 2.13. [

4 Applications

Next we give applications of our initial main results.
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Theorem 4.1. Let f € C" ([a,b]), n € Nis odd and [a,b] C R. Then

dt - 3: I (PP @ =)™+ (0 0 @) -2
k:O
f(n a 1 1
< H(HL# [(z—a)" ™ + (b—2)"], (4.1)
Vaelab.
Proof. By Theorem 3.1, (3.1). L]

We continue with the following.

Theorem 4.2. Let f € C" ([a,b]), n € Nis odd, [a,b] C R. Then

n—1

Z (k‘ + 1) (f(k ( ) ( a)k-i-l + (_1)k f(k) (b) (b i :(:)k+1>

< Hf(n)HLl([a,b})

n

(z—a)" +(b—2)"], (4.2)

Velab.

Proof. By Theorem 3.2, (3.16). [
We also give the next result.

Theorem 4.3. Let f € C" ([a,b]), n € Nis odd and [a,b] C R. Let also p,q > 1 :

1 + 1 = 1. Then
p q

n—1

=3 gy PP @ e =@ 0 W ) 0 0

k= O

(n)
< [ P : [(x Q)™ (b— x)"ﬂ O (43)
(n—1)!(p (n—1)+1)z( l)

Ve lab.
Proof. By Theorem 3.3, (3.25). ]

We continue with the following theorem.
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Theorem 4.4. Let f : Z — R, n is an odd number, a,b € Z; a < b. Then

b n—1
> S o1 (V55 @ @ =)&) =95 ) -0 ()| <
”V}Zf”_ s (Z (5 ren))-
t=a+1 \7=a+1
EEe)]
t=z+1 \7=t+1
Ve labNZ.
Proof. By Theorem 3.1, (3.1). [

We give the next result.

Theorem 4.5. Let f : 7Z — R, n € Nisodd, a,b € Z; a < b. Then

n—1 -
Z e (k +11>' (V*f (@) (@ = ) =¥ p ) (@ = ) D) | <
t=a+1 k=0 .
b . ,
t=a+1 t=a-+1 P
Ve labNZ.
Proof. By Theorem 3.2, (3.16). B

We give the next theorem.

Theorem 4.6. Let f : 7Z — R, n is an odd number, a,b € Z; a < b, let also p,q > 1 :

1 + 1 = 1. Then
P q
i ft) — n-l ( (0) (z — a)(k—H) VEF(b) (z — b)(k+1)) <
(t—il v (t)|q)q . d ——\\ P z
SO (B (5 o))

(i (i ((t—T—i— 1)("1)>p>p>] , (4.6)

Vaela,bNZ
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Proof. By Theorem 3.3, (3.25). [

We need the following remark.
Remark 4.7 (See [4]). We consider the time scale T = ¢ = {0,1,¢,¢ %, ¢*. ¢ %.. .},
t
for some g > 1. Here p (t) = —, V¢t € T. We have that
q
~ gt
hi (t,s) = L27°  forall s,t €T,

=0 2;’:0 qj
for all k£ € N,.

We continue with the next theorem.

Theorem 4.8. Ler f € CJ), (qz>, n € Nisodd, a,b € qz; a <b. Then

AN

ko, ko,
0N D Fad) | E= Sy g § A
a k=0 v=0 Zq“ v=0

pu=0 n=0

§ z a n—1 b b n—1
[Ead HLl([a,b]ﬂqz) {/a (t a 5) Vi +/x <& - t) Vt} 7 @

V€ la,bNg
Proof. By Theorem 3.2, (3.16). O
We finish with the next theorem.

Theorem 4.9. Let f € (Y, (qz>, m,n € Nym <n,n—misodd a,b € qz; a < 0.
Then

b n—m—1 kv . kv
[rrove- Y | @[ - o [[5| <
a k=0 v=0 Zq“ v=0 Zq“
p=0 p=0

on z g\ ™1 b/ n—m—1
(FA PR / (t—g) Vi + / (5—75) Vie, (48)

Vaelabnd.
Proof. By Theorem 3.5, (3.40). [

One can give many similar applications for other time scales.
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