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Abstract

Here we present the necessary background on nabla time scales approach. Then
we give general related time scales nabla Iyengar type inequalities for all basic
norms. We finish with applications to specific time scales like R, Z and qZ, q > 1.
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1 Introduction
We are motivated by the following famous Iyengar inequality (1938), [8].

Theorem 1.1. Let f be a differentiable function on [a, b] and |f ′ (x)| ≤M . Then∣∣∣∣∫ b

a

f (x) dx− 1

2
(b− a) (f (a) + f (b))

∣∣∣∣ ≤ M (b− a)

4

2

− (f (b)− f (a))2

4M
. (1.1)

We present generalized analogs of (1.1) to time scales in the nabla sense. Motivation
comes also from [1–3].

2 Background
Here we follow [5–7, 10]. Let T be a time scale (a closed subset of R) ( [8]), [a, b] be
the closed and bounded interval in T, i.e. [a, b] := {t ∈ T : a ≤ t ≤ b} and a, b ∈ T.
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Clearly, a time scale T may or may not be connected. Therefore we have the concept
of forward and backward jump operators as follows. Define σ, ρ : T 7−→ T by

σ (t) = inf{s ∈ T : s > t} and ρ (t) = sup{s ∈ T : s < t},

(inf ∅ := supT, sup ∅ := inf T).
If σ (t) = t, σ (t) > t, ρ (t) = t, ρ (t) < t, then t ∈ T is called right-dense, right-

scattered, left-dense, left-scattered, respectively. The set Tk which is derived from T
is as follows: if T has a right-scattered minimum m, then Tk = T − {m}, otherwise
Tk = T. We also define the backwards graininess function ν : Tk 7−→ [0,∞) as
ν (t) = t− ρ (t). If f : T 7−→ R is a function, we define the function fρ : Tk 7−→ R by
fρ (t) = f (ρ (t)) for all t ∈ Tk and σ0 (t) = ρ0 (t) = t; Tkn+1 := (Tkn)k.

Definition 2.1. If f : T 7−→ R is a function and t ∈ Tk, then we define the nabla
derivative of f at a point t to be the number f∇ (t) (provided it exists) with the property
that, for each ε > 0, there is a neighborhood of U of t such that∣∣[f (ρ (t))− f (s)]− f∇ (t) [ρ (t)− s]

∣∣ ≤ ε |ρ (t)− s| ,

for all s ∈ U .
Note that in the case T = R, then f∇ (t) = f ′ (t), and if T = Z, then f∇ (t) =

∇f (t) = f (t)− f (t− 1) .

Definition 2.2. A function F : T → R we call a nabla-antiderivative of f : T → R
provided that F∇ (t) = f (t) for all t ∈ Tk. We then define the Cauchy∇-integral from
a to t of f by ∫ t

a

f (s)∇s = F (t)− F (a) , for all t ∈ T.

Note that in the case T = R we have∫ b

a

f (t)∇t =

∫ b

a

f (t) dt,

and in the case T = Z we have∫ b

a

f (t)∇t =
b∑

k=a+1

f (k) ,

where a, b ∈ T with a ≤ b.

Definition 2.3. A function f : T → R is left-dense continuous (or ld-continuous)
provided that it is continuous at left-dense points in T and its right-sided limits exist at
right-dense points of T.

If T = R, then f is ld-continuous iff f is continuous. If T = Z, then any function is
ld-continuous.
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Theorem 2.4. Let T be a time scale, f : T→ R, and t ∈ Tk. The following holds:

1. If f is nabla differentiable at t, then f is continuous at t.

2. If f is continuous at t and t is left-scattered, then f is nabla differentiable at t and

f∇ (t) =
f (t)− f (ρ (t))

t− ρ (t)
.

3. If t is left-dense, then f is nabla differentiable at t if and only if the limit

lim
s→t

f (t)− f (s)

t− s

exists as a finite number. In this case,

f∇ (t) = lim
s→t

f (t)− f (s)

t− s
.

4. If f is nabla differentiable at t, then f (ρ (t)) = f (t)− ν (t) f∇ (t) .

For any time scale T, when f is a constant, then f∇ = 0; if f (t) = kt for some
constant k, then f∇ = k.

Theorem 2.5. Suppose f, g : T→ R are nabla differentiable at t ∈ Tk. Then,

1. the sum f + g : T→ R is nabla differentiable at t and

(f + g)∇ (t) = f∇ (t) + g∇ (t) ;

2. for any constant α, αf : T→ R is nabla differentiable at t and

(αf)∇ (t) = αf∇ (t) ;

3. the product fg : T→ R is nabla differentiable at t and

(fg)∇ (t) = f∇ (t) g (t) + fρ (t) g∇ (t) = f∇ (t) gρ (t) + f (t) g∇ (t) .

Some results concerning ld-continuity are useful:

Theorem 2.6. Let T be a time scale, f : T→ R.

1. If f is continuous, then f is ld-continuous.

2. The backward jump operator ρ is ld-continuous.

3. If f is ld-continuous, then fρ is also ld-continuous.
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4. If T = R, then f is continuous if and only if f is ld-continuous.

5. If T = Z, then f is ld-continuous.

Theorem 2.7. Every ld-continuous function has a nabla antiderivative. In particular, if
a ∈ T, then the function F defined by

F (t) =

∫ t

a

f (τ)∇τ , t ∈ T,

is a nabla antiderivative of f.

The set of all ld-continuous functions f : T → R is denoted by Cld (T,R), and the
set of all nabla differentiable functions with ld-continuous derivative by C1

ld (T,R) .

Theorem 2.8. If f ∈ Cld (T,R) and t ∈ Tk, then∫ t

ρ(t)

f (τ)∇τ = ν (t) f (t) .

Theorem 2.9. If a, b, c ∈ T, a ≤ c ≤ b, α ∈ R, and f, g ∈ Cld (T,R), then:

1.
∫ b

a

(f (t) + g (t))∇t =

∫ b

a

f (t)∇t+

∫ b

a

g (t)∇t;

2.
∫ b

a

αf (t)∇t = α

∫ b

a

f (t)∇t;

3.
∫ b

a

f (t)∇t = −
∫ a

b

f (t)∇t;

4.
∫ a

a

f (t)∇t = 0;

5.
∫ b

a

f (t)∇t =

∫ c

a

f (t)∇t+

∫ b

c

f (t)∇t;

6. If f (t) > 0 for all a < t ≤ b, then
∫ b

a

f (t)∇t > 0;

7.
∫ b

a

fρ (t) g∇ (t)∇t = [(fg) (t)]t=bt=a −
∫ b

a

f∇ (t) g (t)∇t;

8.
∫ b

a

f (t) g∇ (t)∇t = [(fg) (t)]t=bt=a −
∫ b

a

f∇ (t) gρ (t)∇t;
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9. If f (t) ≥ 0, a ≤ t ≤ b, then
∫ b

a

f (t)∇t ≥ 0;

10. If f (t) ≥ 0, a ≤ c ≤ b, then
∫ b

a

f (t)∇t ≥
∫ c

a

f (t)∇t;

11. If f and f∇ are jointly continuous in (t, s), then(∫ t

a

f (t, s)∇s
)∇

= f (ρ (t) , t) +

∫ t

a

f∇ (t, s)∇s,(∫ b

t

f (t, s)∇s
)∇

= −f (ρ (t) , t) +

∫ b

t

f∇ (t, s)∇s;

12. If f (t) ≥ g (t), then
∫ b

a

f (t)∇t ≥
∫ b

a

g (t)∇t;

13.
∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∫ b

a

|f (t)| ∇t;

14.
∫ b

a

1∇t = b− a.

Similarly we define higher order nabla derivatives on Tkn+1 by

f∇
n+1

:=
(
f∇

n)∇
, n ∈ N.

If T = R, then f∇
n+1

= f (n+1), and if T = Z, then f∇
n+1

(t) = ∇n+1f (t) =
n+1∑
m=0

(−1)m
(
n+ 1
m

)
f (t−m) .

Let ĥk : T2 → R, k ∈ N0 = N ∪ {0}, defined recursively as follows:

ĥ0 (t, s) = 1, all s, t ∈ T,

and, given ĥk for k ∈ N0, the function ĥk+1 is

ĥk+1 (t, s) =

∫ t

s

ĥk (τ, s)∇τ , for all s, t ∈ T.

Note that ĥk are all well defined, since each is ld-continuous in t.
If we let ĥ∇k (t, s) denote for each fixed s the nabla derivative of ĥk (t, s) with respect

to t, then
ĥ∇k (t, s) = ĥk−1 (t, s) , for k ∈ N, t ∈ Tk.

Notice that ĥ1 (t, s) = t− s, for all s, t ∈ T.
By [2] we have that ĥk (t, s) ≥ 0, for any t, s ∈ T, when k is even.
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Example 2.10. 1. If T = R, then ρ (t) = t, t ∈ R, so that ĥk (t, s) =
(t− s)k

k!
for

all s, t ∈ R, k ∈ N0.

2. If T = Z, then ρ (t) = t − 1, t ∈ Z, and ĥk (t, s) =
(t− s)k

k!
, for all s, t ∈ Z,

k ∈ N0, where tk := t (t+ 1) . . . (t+ k − 1), k ∈ N; t0 := 1.

Definition 2.11. The set Cn
ld (T,R) = Cn

ld (T), n ∈ N, denotes the set of all n times
continuously nabla differentiable functions from T into R, i.e. all f, f∇, f∇

2

, . . . , f∇
n ∈

Cld (T,R).
This definition requires Tk = T.

We need the following result.

Theorem 2.12 (Nabla Taylor Formula, see [4]). Suppose f is n times nabla differen-
tiable on Tkn , n ∈ N. Let a ∈ Tkn−1 , t ∈ T. Then

f (t) =
n−1∑
k=0

ĥk (t, a) f∇
k

(a) +

∫ t

a

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ.

If f ∈ Cn
ld (T,R), then nabla Taylor formula is true for all t, a ∈ T.

Corollary 2.13 (to Theorem 2.12). Assume f ∈ Cn
ld (T), n ∈ N, and s, t ∈ T. Let

m ∈ N with m < n. Then

f∇
m

(t) =
n−m−1∑
k=0

f∇
k+m

(s) ĥk (t, s) +

∫ t

s

ĥn−m−1 (t, ρ (τ)) f∇
n

(τ)∇τ.

Proof. Use Theorem 2.12 with n and f substituted by n−m and f∇
m

, respectively.

Define [a, b]k = [a, b] if a is right-dense, and [a, b]k = [σ (a) , b] if a is right-
scattered.

Proposition 2.14 (See [10]). Suppose a, b ∈ T, a < b, and f ∈ Cld([a, b] ,R) is such

that f ≥ 0 on [a, b]. If
∫ b

a

f (t)∇t = 0, then f = 0 on [a, b]k.

Theorem 2.15 (Nabla Hölder Inequality, see [2]). Let a, b ∈ T, a ≤ b. For f, g ∈
Cld ([a, b]) we have∫ b

a

|f (t)| |g (t)| ∇t ≤
(∫ b

a

|f (t)|p∇t
) 1

p

·
(∫ b

a

|g (t)|q∇t
) 1

q

,

where p, q > 1 :
1

p
+

1

q
= 1.
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Next define ĝ0 (t, s) ≡ 1,

ĝn+1 (t, s) =

∫ t

s

ĝn (ρ (τ) , s)∇τ , n ∈ N, s, t ∈ T.

Notice that ĝ∇n+1 (t, s) = ĝn (ρ (t) , s), t ∈ Tk; ĝ1 (t, s) = t− s, for all s, t ∈ T.
If T has a left-scattered maximumM , define Tk := T−{M}; otherwise, set Tk = T.

Similarly define Tkn+1

:=
(
Tkn
)k

. Notice Tkn+1 ⊂ Tk and Tkn+1 ⊂ Tk.

Theorem 2.16 (See [4]). Let t ∈ Tk ∩ Tk, s ∈ Tkn , and n ≥ 0. Then

ĥn (t, s) = (−1)n ĝn (s, t) .

Remark 2.17. Let the time scale T be such that Tk = Tk = T. Clearly both ĥn, ĝn
are nabla differentiable in their first variables, therefore both are continuous in their first
variables.

Using now Theorem 2.16 we get that also both ĥn, ĝn are continuous in their second
variables.

Consequently ĥn (t, s) is ld-continuous in each variable and thus ĥn (t, ρ (s)) is ld-
continuous in s.

Notice also in general that if t ≥ s then ĥ1 (t, s) ≥ 0, ĥ2 (t, s) ≥ 0, . . . , ĥn−1 (t, s) ≥
0. So that ĥn−1 (t, ρ (τ)) ≥ 0 for all s ≤ τ ≤ t.

Also in general it holds

ĥk (t, s) ≤ (t− s)k , ∀ t ≥ s, k ∈ N0,

and easily we get: ∣∣∣ĥk (t, s)
∣∣∣ ≤ |t− s|k , ∀ t, s ∈ T, k ∈ N0.

We need the following result.

Theorem 2.18 (Nabla Chain Rule, see [6]). Let f : R → R be continuously differen-
tiable and suppose that g : T→ R is nabla differentiable on T. Then f ◦ g : T→ R is
nabla differentiable on T and the formula

(f ◦ g)∇ (t) =

{∫ 1

0

f ′
(
g (t) + hν (t) g∇ (t)

)
dh

}
g∇ (t)

holds.

We formulate the following assumption.

Assumption 2.19. Let the time scale T be such that Tk = Tk = T.
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Remark 2.20. Assume that ρ is a continuous function, Tk = T, ĥn−1 (t, s) and ĥn−2 (t, s)

are jointly continuous in (t, s) ∈ T2; p > 1. Clearly ĥ∇n−1 (t, s) = ĥn−2 (t, s) in t ∈ T.
Also ĥn−1 (t, ρ (s)), ĥn−2 (t, ρ (s)) are jointly continuous in (t, s) ∈ T2.

By Theorem 2.18 we have that
((
ĥn−1 (t, ρ (τ))

)p)∇
exists in t ∈ T, where τ is

fixed in T, and ((
ĥn−1 (t, ρ (τ))

)p)∇
=

p

{∫ 1

0

(
ĥn−1 (t, ρ (τ)) + hν (t) ĥn−2 (t, ρ (τ))

)p−1
dh

}
ĥn−2 (t, ρ (τ)) .

By bounded convergence theorem we obtain that
((
ĥn−1 (t, ρ (τ))

)p)∇
is jointly con-

tinuous in (t, τ), and of course
(
ĥn−1 (t, ρ (τ))

)p
is jointly continuous in (t, τ) .

Therefore by Theorem 2.9 (11), we derive for

u (t) =

∫ t

a

ĥn−1 (t, ρ (τ))p∇τ

(t ∈ [a, b] ⊂ T), that

u∇ (t) =

∫ b

a

(
ĥn−1 (t, ρ (τ))p

)∇
∇τ +

(
ĥn−1 (ρ (t) , ρ (t))

)p
.

I.e.

u∇ (t) =

∫ t

a

(
ĥn−1 (t, ρ (τ))p

)∇
∇τ.

That is u (t) is nabla differentiable, hence continuous and therefore ld-continuous on
[a, b] ⊂ T.

We formulate the next assumptions.

Assumption 2.21. We suppose that ρ is a continuous function and

ĥn−1 (t, s) , ĥn−2 (t, s)

are jointly continuous in (t, s) ∈ T2.

Assumption 2.22. We suppose that ρ is a continuous function and

ĥn−m−1 (t, s) , ĥn−m−2 (t, s)

are jointly continuous in (t, s) ∈ T2.
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3 Main Results
Next we present nabla Iyengar type inequalities on time scales for all norms ‖·‖p, 1 ≤
p ≤ ∞. We give the following result.

Theorem 3.1. Let f ∈ Cn
ld (T), n ∈ N is odd, a, b ∈ T; a ≤ b. Here ρ is continuous

and ĥn−1 (t, s) is jointly continuous. Also assume that Tk = T. Then

1) ∣∣∣∣∣
∫ b

a

f (t)∇t−
n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)∣∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T[(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)

+

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)]

,

(3.1)
∀ x ∈ [a, b] ∩ T,

2) assuming f∇
k

(a) = f∇
k

(b) = 0, k = 0, 1, . . . , n− 1, we get from (3.1) that∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T[(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)

+

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)]

,

(3.2)
∀ x ∈ [a, b] ∩ T,

21) when x = a we get from (3.2) that∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

a

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)
, (3.3)

22) when x = b we get from (3.2) that∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)
, (3.4)

23) by (3.3) and (3.4) we get∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T×

min

{∫ b

a

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t,

∫ b

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇t
}
,

(3.5)

and
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3) assuming f∇
k

(a) = f∇
k

(b) = 0, k = 1, . . . , n− 1, by (3.1) we have∣∣∣∣∫ b

a

f (t)∇t− [f (a) (x− a) + f (b) (b− x)]

∣∣∣∣ ≤ ∥∥f∇n∥∥
∞,[a,b]∩T×[∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇∆t+

∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t
]
,

(3.6)

∀ x ∈ [a, b] ∩ T.

Proof. By [7, p. 23], we have that
∥∥f∇n∥∥

∞,[a,b]∩T <∞. By Theorem 2.12 we have

f (t)−
n−1∑
k=0

f∇
k

(a) ĥk (t, a) =

∫ t

a

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ, (3.7)

and

f (t)−
n−1∑
k=0

f∇
k

(b) ĥk (t, b) =

∫ t

b

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ, (3.8)

∀ t ∈ [a, b] ∩ T.
Then we get∣∣∣∣∣f (t)−

n−1∑
k=0

f∇
k

(a) ĥk (t, a)

∣∣∣∣∣ (3.7)
≤
∥∥f∇n∥∥

∞,[a,b]∩T

∫ t

a

ĥn−1 (t, ρ (τ))∇τ, (3.9)

and ∣∣∣∣∣f (t)−
n−1∑
k=0

f∇
k

(b) ĥk (t, b)

∣∣∣∣∣ (3.8)
=

∣∣∣∣∫ b

t

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ
∣∣∣∣

≤
(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)∥∥f∇n∥∥

∞,[a,b]∩T . (3.10)

Therefore it holds (by (3.9), (3.10))

−
∥∥f∇n∥∥

∞,[a,b]∩T

∫ t

a

ĥn−1 (t, ρ (τ))∇τ ≤ f (t)−
n−1∑
k=0

f∇
k

(a) ĥk (t, a)

≤
∥∥f∇n∥∥

∞,[a,b]∩T

∫ t

a

ĥn−1 (t, ρ (τ))∇τ

and

−
∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
≤ f (t)−

n−1∑
k=0

f∇
k

(b) ĥk (t, b)
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≤
∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
,

∀ t ∈ [a, b] ∩ T.
Consequently we have

n−1∑
k=0

f∇
k

(a) ĥk (t, a)−
∥∥f∇n∥∥

∞,[a,b]∩T

∫ t

a

ĥn−1 (t, ρ (τ))∇τ ≤ f (t) (3.11)

≤
n−1∑
k=0

f∇
k

(a) ĥk (t, a) +
∥∥f∇n∥∥

∞,[a,b]∩T

∫ t

a

ĥn−1 (t, ρ (τ))∇τ

and

n−1∑
k=0

f∇
k

(b) ĥk (t, b)−
∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
≤ f (t) (3.12)

≤
n−1∑
k=0

f∇
k

(b) ĥk (t, b) +
∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
,

∀ t ∈ [a, b] ∩ T.
Let any x ∈ [a, b] ∩ T, then integrating (3.11), (3.12) we obtain:

n−1∑
k=0

f∇
k

(a) ĥk+1 (x, a)−
∥∥f∇n∥∥

∞,[a,b]∩T

(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)

≤
∫ x

a

f (t)∇t ≤ (3.13)

n−1∑
k=0

f∇
k

(a) ĥk+1 (x, a) +
∥∥f∇n∥∥

∞,[a,b]∩T

(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)
,

and

−
n−1∑
k=0

f∇
k

(b) ĥk+1 (x, b)−
∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)

≤
∫ b

x

f (t)∇t ≤ (3.14)

−
n−1∑
k=0

f∇
k

(b) ĥk+1 (x, b) +
∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)
.
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Adding (3.13) and (3.14) we derive

n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)
−
∥∥f∇n∥∥

∞,[a,b]∩T×

[(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)

+

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)]

≤
∫ b

a

f (t)∇t ≤ (3.15)

n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)

+
∥∥f∇n∥∥

∞,[a,b]∩T×[(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)

+

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))∇τ
)
∇t
)]

,

∀ x ∈ [a, b] ∩ T.
The proof is now complete.

We continue with the following result.

Theorem 3.2. Let f ∈ Cn
ld (T), n ∈ N is odd, a, b ∈ T; a ≤ b, where Tk = T. Then

1) ∣∣∣∣∣
∫ b

a

f (t)∇t−
n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)∣∣∣∣∣ ≤

∥∥f∇n∥∥
L1([a,b]∩T)

{∫ x

a

(t− ρ (a))n−1∇t+

∫ b

x

(ρ (b)− t)n−1∇t
}
, (3.16)

∀ x ∈ [a, b] ∩ T,

2) assuming f∇
k

(a) = f∇
k

(b) = 0, k = 0, 1, . . . , n− 1, from (3.16) we obtain∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

L1([a,b]∩T)
×{∫ x

a

(t− ρ (a))n−1∇t+

∫ b

x

(ρ (b)− t)n−1∇t
}
, (3.17)

∀ x ∈ [a, b] ∩ T,

21) when x = a by (3.16) we get∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

L1([a,b]∩T)

(∫ b

a

(ρ (b)− t)n−1∇t
)
, (3.18)
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22) when x = b by (3.16) we get∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

L1([a,b]∩T)

(∫ x

a

(t− ρ (a))n−1∇t
)
, (3.19)

23) by (3.18), (3.19) we have∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

L1([a,b]∩T)
×

min

{(∫ b

a

(ρ (b)− t)n−1∇t
)
,

(∫ b

a

(t− ρ (a))n−1∇t
)}

, (3.20)

3) assuming f∇
k

(a) = f∇
k

(b) = 0, k = 1, . . . , n− 1, by (3.16) we derive∣∣∣∣∫ b

a

f (t)∇t− [f (a) (x− a) + f (b) (b− x)]

∣∣∣∣ ≤
∥∥f∇n∥∥

L1([a,b]∩T)

{∫ x

a

(t− ρ (a))n−1∇t+

∫ b

x

(ρ (b)− t)n−1∇t
}
, (3.21)

∀ x ∈ [a, b] ∩ T.

Proof. Clearly, here it holds
∥∥f∇n∥∥

L1([a,b]∩T)
<∞.

By Theorem 2.12 we have

f (t)−
n−1∑
k=0

f∇
k

(a) ĥk (t, a) =

∫ t

a

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ,

and

f (t)−
n−1∑
k=0

f∇
k

(b) ĥk (t, b) =

∫ t

b

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ,

∀ t ∈ [a, b] ∩ T.
Then ∣∣∣∣∣f (t)−

n−1∑
k=0

f∇
k

(a) ĥk (t, a)

∣∣∣∣∣ =

∣∣∣∣∫ t

a

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ
∣∣∣∣ ≤

∫ t

a

∣∣∣ĥn−1 (t, ρ (τ))
∣∣∣ ∣∣f∇n

(τ)
∣∣∇τ ≤ ∫ t

a

|t− ρ (τ)|n−1
∣∣f∇n

(τ)
∣∣∇τ ≤

(t− ρ (a))n−1
∥∥f∇n∥∥

L1([a,b]∩T)
.
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Furthermore we have∣∣∣∣∣f (t)−
n−1∑
k=0

f∇
k

(b) ĥk (t, b)

∣∣∣∣∣ =

∣∣∣∣∫ b

t

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ
∣∣∣∣ ≤

∫ b

t

∣∣∣ĥn−1 (t, ρ (τ))
∣∣∣ ∣∣f∇n

(τ)
∣∣∇τ ≤ ∫ b

t

|t− ρ (τ)|n−1
∣∣f∇n

(τ)
∣∣∇τ ≤

(ρ (b)− t)n−1
∥∥f∇n∥∥

L1([a,b]∩T)
.

Therefore it holds

− (t− ρ (a))n−1
∥∥f∇n∥∥

L1([a,b]∩T)
≤ f (t)−

n−1∑
k=0

f∇
k

(a) ĥk (t, a)

≤ (t− ρ (a))n−1
∥∥f∇n∥∥

L1([a,b]∩T)
,

∀ t ∈ [a, b] ∩ T, and

− (ρ (b)− t)n−1
∥∥f∇n∥∥

L1([a,b]∩T)
≤ f (t)−

n−1∑
k=0

f∇
k

(b) ĥk (t, b)

≤ (ρ (b)− t)n−1
∥∥f∇n∥∥

L1([a,b]∩T)
,

∀ t ∈ [a, b] ∩ T.
Consequently it holds

n−1∑
k=0

f∇
k

(a) ĥk (t, a)− (t− ρ (a))n−1
∥∥f∇n∥∥

L1([a,b]∩T)
≤ f (t)

≤
n−1∑
k=0

f∇
k

(a) ĥk (t, a) + (t− ρ (a))n−1
∥∥f∇n∥∥

L1([a,b]∩T)
,

∀ t ∈ [a, b] ∩ T, and

n−1∑
k=0

f∇
k

(b) ĥk (t, b)− (ρ (b)− t)n−1
∥∥f∇n∥∥

L1([a,b]∩T)
≤ f (t)

≤
n−1∑
k=0

f∇
k

(b) ĥk (t, b) + (ρ (b)− t)n−1
∥∥f∇n∥∥

L1([a,b]∩T)
,

∀ t ∈ [a, b] ∩ T.
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Let any x ∈ [a, b] ∩ T, then by integration we have

n−1∑
k=0

f∇
k

(a) ĥk+1 (x, a)−
(∫ x

a

(t− ρ (a))n−1∇t
)∥∥f∇n∥∥

L1([a,b]∩T)
(3.22)

≤
∫ x

a

f (t)∇t ≤

n−1∑
k=0

f∇
k

(a) ĥk+1 (x, a) +

(∫ x

a

(t− ρ (a))n−1∇t
)∥∥f∇n∥∥

L1([a,b]∩T)
,

and

−
n−1∑
k=0

f∇
k

(b) ĥk+1 (x, b)−
(∫ b

x

(ρ (b)− t)n−1∇t
)∥∥f∇n∥∥

L1([a,b]∩T)

≤
∫ b

x

f (t)∇t ≤

−
n−1∑
k=0

f∇
k

(b) ĥk+1 (x, b) +

(∫ b

x

(ρ (b)− t)n−1∇t
)∥∥f∇n∥∥

L1([a,b]∩T)
, (3.23)

∀ x ∈ [a, b] ∩ T.
Adding (3.22) and (3.23) we obtain

n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)
−

∥∥f∇n∥∥
L1([a,b]∩T)

{(∫ x

a

(t− ρ (a))n−1∇t
)

+

(∫ b

x

(ρ (b)− t)n−1∇t
)}

≤
∫ b

a

f (t)∇t ≤

n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)

+

∥∥f∇n∥∥
L1([a,b]∩T)

{(∫ x

a

(t− ρ (a))n−1∇t
)

+

(∫ b

x

(ρ (b)− t)n−1∇t
)}

, (3.24)

∀ x ∈ [a, b] ∩ T.
The proof is now complete.

We continue with the next result.

Theorem 3.3. Let f ∈ Cn
ld (T), n ∈ N is odd, a, b ∈ T; a ≤ b; p, q > 1 :

1

p
+

1

q
= 1.

We suppose Assumptions 2.19, 2.21. Then
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1) ∣∣∣∣∣
∫ b

a

f (t)∇t−
n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)∣∣∣∣∣

≤
∥∥f∇n∥∥

Lq([a,b]∩T)
×[∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t+

∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

]
,

(3.25)

∀ x ∈ [a, b] ∩ T,

2) assuming f∇
k

(a) = f∇
k

(b) = 0, k = 0, 1, . . . , n− 1, by (3.25) we have that∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

Lq([a,b]∩T)
×[∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t+

∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

]
,

(3.26)

∀ x ∈ [a, b] ∩ T,

21) when x = a by (3.26) we get∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

Lq([a,b]∩T)

(∫ b

a

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
,

(3.27)

22) when x = b by (3.26) we get∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

Lq([a,b]∩T)

(∫ b

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
,

(3.28)

23) by (3.27), (3.28) we derive that∣∣∣∣∫ b

a

f (t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

Lq([a,b]∩T)
×

min

{∫ b

a

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t,
∫ b

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

}
,

(3.29)
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3) assuming f∇
k

(a) = f∇
k

(b) = 0, k = 1, . . . , n− 1, by (3.25) we obtain∣∣∣∣∫ b

a

f (t)∇t− [f (a) (x− a) + f (b) (b− x)]

∣∣∣∣ ≤ ∥∥f∇n∥∥
Lq([a,b]∩T)

×[∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t+

∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

]
,

(3.30)

∀ x ∈ [a, b] ∩ T.

Proof. As before we have

K (t, a) := f (t)−
n−1∑
k=0

f∇
k

(a) ĥk (t, a) =

∫ t

a

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ,

and

K (t, b) := f (t)−
n−1∑
k=0

f∇
k

(b) ĥk (t, b) =

∫ t

b

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ,

∀ t ∈ [a, b] ∩ T.
We have that (by use of Theorem 2.15)

|K (t, a)| ≤
(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p
(∫ t

a

∣∣f∇n

(τ)
∣∣q∇τ) 1

q

≤
(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

,

and

|K (t, b)| =
∣∣∣∣∫ b

t

ĥn−1 (t, ρ (τ)) f∇
n

(τ)∇τ
∣∣∣∣ ≤(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p
(∫ b

t

∣∣f∇n

(τ)
∣∣q∇τ) 1

q

≤
(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

,

∀ t ∈ [a, b] ∩ T.
Hence it holds

−
(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

≤ K (t, a)
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≤
(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

and

−
(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

≤ K (t, b)

≤
(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

,

∀ t ∈ [a, b] ∩ T.
That is

n−1∑
k=0

f∇
k

(a) ĥk (t, a)−
(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

≤ f (t)

≤
n−1∑
k=0

f∇
k

(a) ĥk (t, a) +

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

and

n−1∑
k=0

f∇
k

(b) ĥk (t, b)−
(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

≤ f (t)

≤
n−1∑
k=0

f∇
k

(b) ĥk (t, b) +

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p ∥∥f∇n∥∥
Lq([a,b]∩T)

,

∀ t ∈ [a, b] ∩ T.
Let any x ∈ [a, b] ∩ T, then by integration we get

n−1∑
k=0

f∇
k

(a) ĥk+1 (x, a)−
∥∥f∇n∥∥

Lq([a,b]∩T)

(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)

≤
∫ x

a

f (t)∇t ≤

n−1∑
k=0

f∇
k

(a) ĥk+1 (x, a) +
∥∥f∇n∥∥

Lq([a,b]∩T)

(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
,

(3.31)
and

−
n−1∑
k=0

f∇
k

(b) ĥk+1 (x, b)−
∥∥f∇n∥∥

Lq([a,b]∩T)

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
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≤
∫ b

x

f (t)∇t ≤

−
n−1∑
k=0

f∇
k

(b) ĥk+1 (x, b) +
∥∥f∇n∥∥

Lq([a,b]∩T)

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
.

(3.32)
Adding (3.31) and (3.32) we obtain

n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)
−

∥∥f∇n∥∥
Lq([a,b]∩T)

{(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
+

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)}

≤
∫ b

a

f (t)∇t ≤

n−1∑
k=0

(
f∇

k

(a) ĥk+1 (x, a)− f∇k

(b) ĥk+1 (x, b)
)

+

∥∥f∇n∥∥
Lq([a,b]∩T)

{(∫ x

a

(∫ t

a

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
+

(∫ b

x

(∫ b

t

ĥn−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)}
, (3.33)

∀ x ∈ [a, b] ∩ T.
The proof is now complete.

We give the next result.

Theorem 3.4. Let f ∈ Cn
ld (T), m,n ∈ N, m < n, n−m is odd, a, b ∈ T; a ≤ b. Here

ρ is continuous and ĥn−m−1 (t, s) is jointly continuous. Also assume Tk = T. Then

1) ∣∣∣∣∣
∫ b

a

f∇
m

(t)∇t−

(
n−m−1∑
k=0

(
f∇

k+m

(a) ĥk+1 (x, a)− f∇k+m

(b) ĥk+1 (x, b)
))∣∣∣∣∣ ≤

∥∥f∇n∥∥
∞,[a,b]∩T

[(∫ x

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t
)

+
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(∫ b

x

(∫ b

t

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t
)]

, (3.34)

∀ x ∈ [a, b] ∩ T,

2) assuming f∇
k+m

(a) = f∇
k+m

(b) = 0, k = 0, 1, . . . , n − m − 1, we get from
(3.34) that∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T×[∫ x

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t+

∫ b

x

(∫ b

t

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t
]
,

(3.35)

∀ x ∈ [a, b] ∩ T,

21) when x = a we get from (3.35) that∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

a

(∫ b

t

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t
)
,

(3.36)

22) when x = b we get from (3.35) that∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T

(∫ b

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t
)
,

(3.37)

23) by (3.36), (3.37) we get∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T×

min

{∫ b

a

(∫ b

t

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t,

∫ b

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t
}
,

(3.38)

and

3) assuming f∇
k+m

(a) = f∇
k+m

(b) = 0, k = 1, . . . , n − m − 1, from (3.34) we
obtain∣∣∣∣∫ b

a

f∇
m

(t)∇t−
[
f∇

m

(a) (x− a) + f∇
m

(b) (b− x)
]∣∣∣∣ ≤ ∥∥f∇n∥∥

∞,[a,b]∩T×[∫ x

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t+

∫ b

x

(∫ b

t

ĥn−m−1 (t, ρ (τ))∇τ
)
∇t
]
,

(3.39)

∀ x ∈ [a, b] ∩ T.
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Proof. As in the proof of Theorem 3.1, now using Corollary 2.13.

We give the following theorem.

Theorem 3.5. Let f ∈ Cn
ld (T), m,n ∈ N, m < n, n−m is odd, a, b ∈ T; a ≤ b, where

Tk = T. Then

1) ∣∣∣∣∣
∫ b

a

f∇
m

(t)∇t−
n−m−1∑
k=0

(
f∇

k+m

(a) ĥk+1 (x, a)− f∇k+m

(b) ĥk+1 (x, b)
)∣∣∣∣∣ ≤

∥∥f∇n∥∥
L1([a,b]∩T)

{∫ x

a

(t− ρ (a))n−m−1∇t+

∫ b

x

(ρ (b)− t)n−m−1∇t
}
,

(3.40)
∀ x ∈ [a, b] ∩ T,

2) assuming f∇
k+m

(a) = f∇
k+m

(b) = 0, k = 0, 1, . . . , n − m − 1, we get from
(3.40) that∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

L1([a,b]∩T)
×{∫ x

a

(t− ρ (a))n−m−1∇t+

∫ b

x

(ρ (b)− t)n−m−1∇t
}
, (3.41)

∀ x ∈ [a, b] ∩ T,

21) when x = a by (3.41) we get∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

L1([a,b]∩T)

(∫ b

a

(ρ (b)− t)n−m−1∇t
)
, (3.42)

22) when x = b by (3.41) we get∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

L1([a,b]∩T)

(∫ x

a

(t− ρ (a))n−m−1∇t
)
, (3.43)

23) by (3.42), (3.43) we have∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

L1([a,b]∩T)
×

min

{(∫ b

a

(ρ (b)− t)n−m−1∇t
)
,

(∫ b

a

(t− ρ (a))n−m−1∇t
)}

, (3.44)

and
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3) assuming f∇
k+m

(a) = f∇
k+m

(b) = 0, k = 1, . . . , n − m − 1, from (3.40) we
obtain ∣∣∣∣∫ b

a

f∇
m

(t)∇t−
[
f∇

m

(a) (x− a) + f∇
m

(b) (b− x)
]∣∣∣∣ ≤

∥∥f∇n∥∥
L1([a,b]∩T)

{∫ x

a

(t− ρ (a))n−m−1∇t+

∫ b

x

(ρ (b)− t)n−m−1∇t
}
,

(3.45)
∀ x ∈ [a, b] ∩ T.

Proof. As in Theorem 3.2, now using Corollary 2.13.

We also give the next result.

Theorem 3.6. Let f ∈ Cn
ld (T), m,n ∈ N, m < n, n −m is odd, a, b ∈ T; a ≤ b. Let

also p, q > 1 :
1

p
+

1

q
= 1. We suppose Assumptions 2.19, 2.22. Then

1) ∣∣∣∣∣
∫ b

a

f∇
m

(t)∇t−
n−m−1∑
k=0

(
f∇

k+m

(a) ĥk+1 (x, a)− f∇k+m

(b) ĥk+1 (x, b)
)∣∣∣∣∣ ≤

∥∥f∇n∥∥
Lq([a,b]∩T)

[(∫ x

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
+

(∫ b

x

(∫ b

t

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)]
, (3.46)

∀ x ∈ [a, b] ∩ T,

2) assuming f∇
k+m

(a) = f∇
k+m

(b) = 0, k = 0, 1, . . . , n − m − 1, we get from
(3.46) that∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

Lq([a,b]∩T)

[(∫ x

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
+

(∫ b

x

(∫ b

t

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)]
, (3.47)

∀ x ∈ [a, b] ∩ T,
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21) when x = a we get from (3.47) that∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

Lq([a,b]∩T)

(∫ b

a

(∫ b

t

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
,

(3.48)

22) when x = b we get from (3.47) that∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

Lq([a,b]∩T)

(∫ b

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
,

(3.49)

23) by (3.48), (3.49) we get∣∣∣∣∫ b

a

f∇
m

(t)∇t
∣∣∣∣ ≤ ∥∥f∇n∥∥

Lq([a,b]∩T)
×

min

{(∫ b

a

(∫ b

t

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
,(∫ b

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)}
, (3.50)

and

3) assuming f∇
k+m

(a) = f∇
k+m

(b) = 0, k = 1, . . . , n−m− 1, we get from (3.46)
that ∣∣∣∣∫ b

a

f∇
m

(t)∇t−
[
f∇

m

(a) (x− a) + f∇
m

(b) (b− x)
]∣∣∣∣ ≤

∥∥f∇n∥∥
Lq([a,b]∩T)

[(∫ x

a

(∫ t

a

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)
+

(∫ b

x

(∫ b

t

ĥn−m−1 (t, ρ (τ))p∇τ
) 1

p

∇t

)]
, (3.51)

∀ x ∈ [a, b] ∩ T.

Proof. As in Theorem 3.3, by using Corollary 2.13.

4 Applications
Next we give applications of our initial main results.
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Theorem 4.1. Let f ∈ Cn ([a, b]), n ∈ N is odd and [a, b] ⊂ R. Then∣∣∣∣∣
∫ b

a

f (t) dt−
n−1∑
k=0

1

(k + 1)!

(
f (k) (a) (x− a)k+1 + (−1)k f (k) (b) (b− x)k+1

)∣∣∣∣∣
≤

∥∥f (n)
∥∥
∞,[a,b]

(n+ 1)!

[
(x− a)n+1 + (b− x)n+1] , (4.1)

∀ x ∈ [a, b] .

Proof. By Theorem 3.1, (3.1).

We continue with the following.

Theorem 4.2. Let f ∈ Cn ([a, b]), n ∈ N is odd, [a, b] ⊂ R. Then∣∣∣∣∣
∫ b

a

f (t) dt−
n−1∑
k=0

1

(k + 1)!

(
f (k) (a) (x− a)k+1 + (−1)k f (k) (b) (b− x)k+1

)∣∣∣∣∣
≤

∥∥f (n)
∥∥
L1([a,b])

n
[(x− a)n + (b− x)n] , (4.2)

∀ x ∈ [a, b] .

Proof. By Theorem 3.2, (3.16).

We also give the next result.

Theorem 4.3. Let f ∈ Cn ([a, b]), n ∈ N is odd and [a, b] ⊂ R. Let also p, q > 1 :
1

p
+

1

q
= 1. Then

∣∣∣∣∣
∫ b

a

f (t) dt−
n−1∑
k=0

1

(k + 1)!

(
f (k) (a) (x− a)k+1 + (−1)k f (k) (b) (b− x)k+1

)∣∣∣∣∣
≤

∥∥f (n)
∥∥
Lq([a,b])

(n− 1)! (p (n− 1) + 1)
1
p

(
n+ 1

p

) [(x− a)n+
1
p + (b− x)n+

1
p

]
, (4.3)

∀ x ∈ [a, b] .

Proof. By Theorem 3.3, (3.25).

We continue with the following theorem.
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Theorem 4.4. Let f : Z→ R, n is an odd number, a, b ∈ Z; a ≤ b. Then∣∣∣∣∣
b∑

t=a+1

f (t)−
n−1∑
k=0

1

(k + 1)!

(
∇kf (a) (x− a)(k+1) −∇kf (b) (x− b)(k+1)

)∣∣∣∣∣ ≤
‖∇nf‖∞,[a,b]∩Z

(n− 1)!

[(
x∑

t=a+1

(
t∑

τ=a+1

(t− τ + 1)(n−1)

))
+

(
b∑

t=x+1

(
b∑

τ=t+1

(t− τ + 1)(n−1)

))]
, (4.4)

∀ x ∈ [a, b] ∩ Z.

Proof. By Theorem 3.1, (3.1).

We give the next result.

Theorem 4.5. Let f : Z→ R, n ∈ N is odd, a, b ∈ Z; a ≤ b. Then∣∣∣∣∣
b∑

t=a+1

f (t)−
n−1∑
k=0

1

(k + 1)!

(
∇kf (a) (x− a)(k+1) −∇kf (b) (x− b)(k+1)

)∣∣∣∣∣ ≤(
b∑

t=a+1

|∇nf (t)|

){
x∑

t=a+1

(t− a+ 1)n−1 +
b∑

t=x+1

(b− 1− t)n−1
}
, (4.5)

∀ x ∈ [a, b] ∩ Z.

Proof. By Theorem 3.2, (3.16).

We give the next theorem.

Theorem 4.6. Let f : Z → R, n is an odd number, a, b ∈ Z; a ≤ b, let also p, q > 1 :
1

p
+

1

q
= 1. Then∣∣∣∣∣
b∑

t=a+1

f (t)−
n−1∑
k=0

1

(k + 1)!

(
∇kf (a) (x− a)(k+1) −∇kf (b) (x− b)(k+1)

)∣∣∣∣∣ ≤(
b∑

t=a+1

|∇nf (t)|q
) 1

q

(n− 1)!

 x∑
t=a+1

(
t∑

τ=a+1

(
(t− τ + 1)(n−1)

)p) 1
p

+

 b∑
t=x+1

(
b∑

τ=t+1

(
(t− τ + 1)(n−1)

)p) 1
p

 , (4.6)

∀ x ∈ [a, b] ∩ Z.
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Proof. By Theorem 3.3, (3.25).

We need the following remark.

Remark 4.7 (See [4]). We consider the time scale T = qZ = {0, 1, q, q−1, q2, q−2, . . .},
for some q > 1. Here ρ (t) =

t

q
, ∀ t ∈ T. We have that

ĥk (t, s) =
k−1∏
r=0

qrt− s∑r
j=0 q

j
, for all s, t ∈ T,

for all k ∈ N0.

We continue with the next theorem.

Theorem 4.8. Let f ∈ Cn
ld

(
qZ
)

, n ∈ N is odd, a, b ∈ qZ; a ≤ b. Then∣∣∣∣∣∣∣∣
∫ b

a

f (t)∇t−
n−1∑
k=0

f∇k

(a)
k∏
ν=0

qνx− a
ν∑

µ=0

qµ
− f∇k

(b)
k∏
ν=0

qνx− b
ν∑

µ=0

qµ


∣∣∣∣∣∣∣∣ ≤

∥∥f∇n∥∥
L1([a,b]∩qZ)

{∫ x

a

(
t− a

q

)n−1
∇t+

∫ b

x

(
b

q
− t
)n−1

∇t

}
, (4.7)

∀ x ∈ [a, b] ∩ qZ.

Proof. By Theorem 3.2, (3.16).

We finish with the next theorem.

Theorem 4.9. Let f ∈ Cn
ld

(
qZ
)

, m,n ∈ N; m < n, n −m is odd, a, b ∈ qZ; a ≤ b.
Then∣∣∣∣∣∣∣∣
∫ b

a

f∇
m

(t)∇t−
n−m−1∑
k=0

f∇k+m

(a)
k∏
ν=0

qνx− a
ν∑

µ=0

qµ
− f∇k+m

(b)
k∏
ν=0

qνx− b
ν∑

µ=0

qµ


∣∣∣∣∣∣∣∣ ≤

∥∥f∇n∥∥
L1([a,b]∩qZ)

{∫ x

a

(
t− a

q

)n−m−1
∇t+

∫ b

x

(
b

q
− t
)n−m−1

∇t

}
, (4.8)

∀ x ∈ [a, b] ∩ qZ.

Proof. By Theorem 3.5, (3.40).

One can give many similar applications for other time scales.
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