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Abstract

In this paper, we present some results for a local fractional derivative, not con-
formable, defined by the authors in a previous work, and which are closely related
to some of the classic calculus.
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1 Preliminaries
The asymptotic behaviors of functions have been analyzed by velocities or rates of
change in functions, while there are very small changes occur in the independent vari-
ables. The concept of rate of change in any function versus change in the independent
variables was defined as derivative,first of an integer order, and this concepts attracted
many scientists and mathematicians such as Newton, L’Hospital, Leibniz, Abel, Eu-
ler, Riemann, etc. Later, several types of fractional derivatives have been introduced to
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date Euler, Riemann–Liouville, Abel, Fourier, Caputo, Hadamard, Grunwald–Letnikov,
Miller–Ross, Riesz among others, extended the derivative concept to fractional order
derivative (see [10, 13, 14]). Most of these derivatives are defined on the basis of the
corresponding fractional integral in the Riemann–Liouville sense. Among the inconsis-
tencies of the above fractional derivatives Dα are:

1. Most of the fractional derivatives except Caputo-type, do not satisfy Dα(1) = 0,
if α is not a natural number.

2. All fractional derivatives do not satisfy the familiar product rule for two functions
Dα(fg) = gDα(f) + fDα(g).

3. All fractional derivatives do not satisfy the familiar quotient rule for two functions

Dα(
f

g
) =

gDα(f)− fDα(g)

g2
with g 6= 0.

4. All fractional derivatives do not satisfy the chain rule for composite functions
Dα(f ◦ g)(t) = Dα(f(g))Dαg(t).

5. The fractional derivatives do not have a corresponding “calculus”.

6. All fractional derivatives do not satisfy the indices rule DαDβ(f) = Dα+β(f).

The fractional calculus attracted many researches in the last and present centuries. The
impact of this fractional calculus in both pure and applied branches of science and en-
gineering (cf. [2, 9, 12]) started to increase substantially during the last two decades, in
particular this meant that these notions of “global” fractional derivatives have been ex-
tended to the local sense (see, for example [1,3–8,15]). As we pointed out before, one of
the drawbacks that exists is the absence of a theoretical body relative to these local frac-
tional derivatives. In this direction, this paper should be understood as a continuation
of [3] and we will present some of the most important theorems of fractional calculus
for the derivative Nα

1 f(t), a new fractional derivative of local type defined therein.

2 Main Results
First, let’s remember the definition of Nα

1 f(t), a nonconformable fractional derivative
of a function in a point t defined in [3] and that is the basis of our results, that are close
resemblance of those found in classical calculus.

Definition 2.1. Given a function f : [0,+∞) → R. Then the N -derivative of f of

order α is defined by Nα
1 f(t) = lim

ε→0

f(t+ εet
−α
)− f(t)

ε
for all t > 0, α ∈ (0, 1). If

f is α-differentiable in some (0, a), and lim
t→0+

N
(α)
1 f(t) exists, then define N (α)

1 f(0) =

lim
t→0+

N
(α)
1 f(t).
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Following the same procedure of the ordinary calculus, we can prove the following
result.

Theorem 2.2. Let a > 0 and f : [a, b]→ R be a given function that satisfies

i) f is continuous on [a, b],

ii) f is N -differentiable for some α ∈ (0, 1).

Then, we have that if Nα
1 f(t) ≥ 0 (≤ 0), then f is a nondecreasing (increasing) func-

tion.

Analogously we have the following result.

Theorem 2.3 (Racetrack Type Principle). Let a > 0 and f, g : [a, b] → R be given
functions satisfying

i) f and g are continuous on [a, b],

ii) f and g are N -differentiable for some α ∈ (0, 1),

iii) Nα
1 f(t) ≥ Nα

1 g(t) for all t ∈ (a, b).

Then, we have that following:

I) If f(a) = g(a), then f(t) ≥ g(t) for all t ∈ (a, b).

II) If f(b) = g(b), then f(t) ≤ g(t) for all t ∈ (a, b).

Proof. Consider the auxiliary function h(t) = f(t)−g(t). Then h is continuous on [a, b]
and N -differentiable for some α ∈ (0, 1). From here, we obtain that Nα

1 h(t) ≥ 0 for all
t ∈ (a, b), so by Theorem 2.2, h is a nonincreasing function. Hence, for any t ∈ [a, b],
we have that h(a) ≤ h(t) and since h(a) = f(a) − g(a) = 0 by assumption, the result
follows. In a similar way, the second part is proved. This concludes the proof.

We will discuss the occurrence of local maxima and local minima of a function. In
fact, these points are crucial to many questions related to application problems.

Definition 2.4. A function f is said to have a local maximum at c iff there exists an
interval I around c such that f(c) ≥ f(x) for all x ∈ I . Analogously, f is said to have
a local minimum at c iff there exists an interval I around c such that f(c) ≤ f(x) for all
x ∈ I . A local extremum is a local maximum or a local minimum.

Remark 2.5. As in the classic calculus, if the function f is N -differentiable at a point c
where it reaches an extreme, then Nα

1 f(c) = 0.

Theorem 2.6 (Rolle’s Theorem). Let a > 0 and f : [a, b]→ R be a given function that
satisfies
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i) f ∈ C[a, b],

ii) f is N -differentiable on (a, b) for some α ∈ [0, 1],

iii) f(a) = f(b).

Then, there exists c ∈ (a, b) such that Nα
1 f(c) = 0.

Proof. We prove this using contradiction. From assumptions, since f is continuous in
[a, b] and f(a) = f(b), there is c ∈ (a, b), at least one, which is a point of local extreme.
On the other hand, as f is N -differentiable in (a, b) for some α, we have

Nα
1 f(c) = Nα

1 f(c
+) = lim

h→0+

f(c+ hec
−α

)− f(c)
h

= Nα
1 f(c

−) = lim
h→0−

f(c+ hec
−α
)− f(c)

h

but Nα
1 f(c

+) and Nα
1 f(c

−) have opposite signs. Hence Nα
1 f(c) = 0. If Nα

1 f(c
+) and

Nα
1 f(c

−) they have the same sign then as f(a) = f(b), we have that f is constant and
the result is trivially followed. This concludes the proof.

Theorem 2.7 (Mean Value Theorem). Let a > 0 and f : [a, b] → R be a function that
satisfies

i) f is continuous in [a, b],

ii) f is N -differentiable on (a, b), for some α ∈ (0, 1].

Then, exists c ∈ (a, b) such that

Nα
1 f(c) =

[
f(b)− f(a)

b− a

]
ec

−α

.

Proof. Consider the function

g(t) = f(t)− f(a)−
[
f(b)− f(a)

b− a

]
(t− a).

The auxiliary function g satisfies all conditions of Theorem 2.6, and, therefore, there
exists c ∈ (a, b) such that Nα

1 g(c) = 0. Then, we have

Nα
1 g(t) = Nα

1 (f(t)− f(a))− f(b)− f(a)
b− a

Nα
1 (t− a),

and from here it follows that

Nα
1 g(c) = Nα

1 f(c)−
f(b)− f(a)

b− a
ec

−α

= 0,

from where

Nα[f(c)] =
f(b)− f(a)

b− a
ec

−α

.

This concludes the proof.
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Theorem 2.8. Let a > 0 and f : [a, b]→ R be a given function that satisfies

i) f is continuous on [a, b],

ii) f is N -differentiable for some α ∈ (0, 1).

If Nα
1 f(t) = 0 for all t ∈ (a, b), then f is a constant on [a, b].

Proof. It is sufficient to apply Theorem 2.7 to the function f over any nondegenerate
interval contained in [a, b].

As a consequence of the previous theorem, we have the following.

Corollary 2.9. Let a > 0 and F,G : [a, b]→ R be functions such that for all α ∈ (0, 1),
Nα

1 F (t) = Nα
1 G(t) for all t ∈ (a, b). Then there exists a constant C such that F (t) =

G(t) + C.

Along the same lines of classic calculus, one can use the previous results to prove
the following result.

Theorem 2.10. Let f : [a, b]→ R be N -differentiable for some α ∈ (0, 1). If

i) Nα
1 f(t) is bounded on [a, b] with a > 0, then f is uniformly continuous on [a, b],

and hence f is bounded.

ii) Nα
1 f(t) is bounded on [a, b] and continuous at a with a > 0, then f is uniformly

continuous on [a, b], and hence f is bounded.

Theorem 2.11 (Extended Mean Value Theorem). Let α ∈ (0, 1] and a > 0. If f, g :
[a, b]→ R are functions that satisfy

i) f, g are continuous in [a, b],

ii) f, g are N -differentiable on (a, b), for some α ∈ (0, 1],

iii) Nα
1 g(t) 6= 0 for all t ∈ (a, b).

Then, there exists c ∈ (a, b) such that

Nα
1 f(c)

Nα
1 g(c)

=
f(b)− f(a)
g(b)− g(a)

.

Remark 2.12. If g(t) = t, then this is just the statement of Theorem 2.7.
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Proof of Theorem 2.11. Let us now define a new function as

F (t) = f(t)− f(a)− f(b)− f(a)
g(b)− g(a)

(g(t)− g(a)).

Then the auxiliary function F satisfies the assumptions of Theorem 2.6. Thus, there
exists c ∈ (a, b) such that Nα

1 F (c) = 0 for some α ∈ (0, 1). From here, we have

Nα
1 F (c) = Nα

1 f(c)−
f(b)− f(a)
g(b)− g(a)

Nα
1 g(c) = 0.

Now the desired result is obtained.

Our last result is a generalization of one of the most important, and oldest, theorems
of mathematical analysis, the Taylor series, which establishes under what conditions
a function f can be approximated in a neighborhood of a point t = a, by a linear
combination of polynomials.

Theorem 2.13. Let f : [v, w]→ R be n times continuously N -differentiable and n+ 1
timesN -differentiable in (v, w) and let a ∈ (v, w). Then, for each t ∈ (v, w) with t 6= a,
there exists a point ξ ∈ (a, t), respectively (t, a), such that

f(t) =
n∑
j=0

fj(a)

j!
(t− a) +Rn+1(f) (2.1)

with
fj+1(·) = Nα

1 f(·)e−(·)
−α

, f0(·) = f(·) (2.2)

holds, whereby the remainder term can be written as

Rn+1(f) =
fn+1(ξ)

(n+ 1)!
(t− a)n+1.

Proof. Define

g(y) = f(t)− f(y)− f1(y)(t− y)− f2(y)
(t− y)2

2!

− . . .− fn(y)
(t− y)n

n!
− M

(n+ 1)!
(t− y)n+1, (2.3)

where M is chosen so that g(a) = 0 is fulfilled. Using g(a) = g(t) = 0, Theorem
2.6 allows us to affirm that there exist ξ ∈ (a, t), respectively (t, a), with Nα

1 g(ξ) = 0.
Since

Nα
1 g(y) = −

Nα
1 fn(y)

n!
(t− y)n − M

n!
(t− y)n(−1)ey−α

,

it follows that
0 = Nα

1 g(ξ) = −Nα
1 fn(ξ) +Meξ

−α

and thus M = fn+1(ξ). Setting y = a in (2.3) we obtain the desired result.
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3 Concluding Remarks
In the present paper, we obtained some new results concerning a new local fractional
derivative obtained in [3], give some analogues results of classical theorems (Rolle,
mean value, etc.) those who come to complete the necessary theoretical body of this
new calculus. As in ordinary calculus, the function g(t) used to prove the mean value
theorem from Rolle’s theorem is not the only one. In fact, following [16] we can apply
Rolle’s theorem to the function

h(t) = [f(t)− f(a)](t− b) + [f(t)− f(b)](t− a)

and get the next result. If f(x) is continuous on [a, b] and N -differentiable on (a, b),

0 < α < 1, then there is a c in (a, b) such that (c 6= a+ b

2
)

f ′(c) =
f(c)− f(a)+f(b)

2

c− a+b
2

.

To prove this result, it is enough to verify that the function h(x) satisfies Rolle’s theorem
and then

Nα
1 h(t) = et

−α

[f ′(t)(2t− a− b) + 2f(t)− f(a)− f(b)] = 0

and from here the desired result is derived. The search for new auxiliary functions that
comply with Rolle’s theorem, would allow obtaining new results similar to those of the
ordinary calculation, we recommend [10] and [17] for works in this direction in the
ordinary case. As we pointed before, in the proof of Rolle’s theorem (and of Lagrange,
of course) we look for a function that satisfies the hypotheses of this theorem and in
this way guarantee the existence of (at least) a point c inside the interval, where the
derivative of said function becomes zero. We wanted to present an application of this
idea, to the resolution of equations, where the derivative Nα

1 plays a prominent role.
Problem. Let f be a continuous function on [a, b] and differentiable on (a, b), solve the
equation

αt−α−1f(t) + f ′(t) = 0,

subject to the condition f(a) = f(b) = 0 with 0 < a < b and 0 < α < 1. From [3],
we know that Nα

1 (e
−t−α

) = αt−α−1, so we can write the above equation of the form
Nα

1

[
e−t

−α

f(t)
]
= 0, taking h(t) = e−t

−α

f(t), we observe that all conditions of Rolle’s
theorem are satisfied for the function h(t) and therefore, there exists at least one point
in (a, b) where its derivative is canceled, which is the solution sought from the original
equation. We can exemplify this with a concrete application. Show that the equation

t−
3
2 sin(t2 − 3t+ 2) + 2(2t− 3) cos(t2 − 3t+ 2) = 0
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has a solution between 1 and 2. This equation can be written in the form

1

2
t−

3
2 sin((t− 1)(t− 2)) + (2t− 3) cos((t− 1)(t− 2)) = 0,

from here we have h(t) = e−t
−α

sin((t − 1)(t − 2)), α =
1

2
, a = 1 and b = 2.

Applying Rolle’s theorem, we have that there is at least one c ∈ (1, 2) such that h′(c) =
0. Moreover, from the mean value theorem we can obtain that this local fractional
derivative provides us the coefficient A in the approximation of f(x) by the function

f(x) = f(a) + A(x− a), A =
Nα

1 f(c)

ec−α , a < c < x, 0 < α < 1,

in the neighborhood of x. This generalizes the geometric interpretation of derivatives
in terms of “tangents”, because if there is the limit of the secant of the points (t, f(t))
and ((t+ ε), f(t+ ε)), then the limit of the points will exist (t, f(t)) and ((t+ ε), f(t+
εexp(t−α))), since the latter is contained in the former, since t + εexp(t−α) < t + ε.
All these results are consistent with the Taylor Series obtained later. It is clear that the
results obtained in this work, extend the various obtained for compliant fractional local
derivatives, because the introduction of the term e in the case of differentiable functions
in the classical sense, opens a totally new picture in the study of functions.
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