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Abstract

The present article deals with a particular class of standard two-point Riemann–
Liouville type nabla fractional boundary value problems associated with Dirichlet
boundary conditions. First, we construct the corresponding Green’s function using
the nabla Laplace transform and obtain its key properties. Next, by applying a suit-
able fixed point theorem, we establish sufficient conditions on the existence of so-
lutions. Finally, we deduce the uniqueness of solutions by assuming the Lipschitz
condition. We close with two examples to illustrate the applicability of established
results.
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1 Introduction
In 2009, Atici & Eloe [7] initiated the study of two-point boundary value problems for
delta fractional difference equations. They obtained sufficient conditions on the exis-
tence of positive solutions for the following two-point boundary value problem using
Guo–Krasnoselskii fixed point theorem.{

−
(
∆αu

)
(t) = F (t+ ν − 1, u(t+ ν − 1)), t ∈ Nb+1

1 ,

u(ν − 2) = 0, u(ν + b+ 1) = 0.
(1.1)

Here 1 < ν ≤ 2 is a real number, b ≥ 2 an integer and F : [ν, ν + b]Nν−1 × R → R is
continuous.
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Following their work, Goodrich [13] introduced several existence theorems for (1.1)
using cone theoretic techniques. In 2014, Chen et al. [10] improved and generalized the
results in [7, 13].

On the other hand, in 2014, Brackins [9] derived Green’s function for a nonhomoge-
neous nabla fractional boundary value problem with homogeneous boundary conditions
and obtained a few of its properties.

Theorem 1.1 (See [9]). Let a, b ∈ R with b − a ∈ N1, 1 < α < 2 and h : Nb
a+1 → R.

The nabla fractional boundary value problem{
−
(
∇α
au
)
(t) = h(t), t ∈ Nb

a+1,

u(a) = u(b) = 0,
(1.2)

has the unique solution

u(t) =
b∑

s=a+1

G(t, s)h(s), t ∈ Nb
a, (1.3)

where

G(t, s) =


1

Γ(α)

(b− s+ 1)α−1

(b− a)α−1
(t− a)α−1, t ∈ Nρ(s)

a ,

1

Γ(α)

[
(b− s+ 1)α−1

(b− a)α−1
(t− a)α−1 − (t− s+ 1)α−1

]
, t ∈ Nb

s.

(1.4)

Remark 1.2. (1.2) is the problem of solving a system of (b−a+2) equations in (b−a+1)
unknowns. So, (1.2) is an over-determined boundary value problem. For example, take
b = a + 3 so that b − a = 3 ∈ N1. Then, (1.2) reduces to the problem of solving a
system of 5 equations in 4 unknowns as follows:

1 0 0 0
0 −1 0 0
0 α −1 0

0
α(1− α)

2
α −1

0 0 0 1




u(a)
u(a+ 1)
u(a+ 2)
u(a+ 3)

 =


0

h(a+ 1)
h(a+ 2)
h(a+ 3)

0

 . (1.5)

Recently, Gholami et al. [11] have also derived Green’s function for a nonhomoge-
neous nabla fractional boundary value problem with homogeneous boundary conditions
and obtained a few of its properties.

Theorem 1.3 (See [11]). Let a ∈ N0, b ∈ N3, 1 < α < 2 and h : Nb+1
a+2 → R. The nabla

fractional boundary value problem{
−
(
∇α
au
)
(t) = h(t), t ∈ Nb+1

a+2,

u(a+ 1) = u(b+ 1) = 0,
(1.6)



Two-Point Nabla Fractional Boundary Value Problems 143

has the unique solution

u(t) =
b+1∑

s=a+2

G(t, s)h(s), t ∈ Nb+1
a+1, (1.7)

where Green’s function G(t, s) is obtained by replacing a by a + 1 and b by b + 1 in
(1.4).

Remark 1.4. (1.6) is also the problem of solving a system of (b − a + 2) equations in
(b − a + 1) unknowns. So, (1.6) is also an over-determined boundary value problem.
For example, take a = 0 and b = 3 so that (1.6) reduces to the problem of solving a
system of 5 equations in 4 unknowns as follows:

1 0 0 0
α −1 0 0

α(1− α)

2
α −1 0

α(1− α)(2− α)

6

α(1− α)

2
α −1

0 0 0 1



u(1)
u(2)
u(3)
u(4)

 =


0

h(2)
h(3)
h(4)

0

 . (1.8)

Remark 1.5. Brackins [9] and Gholami et al. [11] chose two different approaches to
solve the respective boundary value problems. From (1.5) and (1.8), we observe that
both the boundary value problems (1.2) and (1.6) are same, and of course, the corre-
sponding Green’s functions as well as the solutions are same.

Theorem 1.6 (See [9]). The Green’s function G(t, s) defined in (1.4) satisfies the fol-
lowing properties:

1. G(a, s) = G(b, s) = 0 for all s ∈ Nb
a+1.

2. G(t, a+ 1) = 0 for all t ∈ Nb
a.

3. G(t, s) > 0 for all (t, s) ∈ Nb−1
a+1 × Nb

a+2.

4. max
t∈Nb−1

a+1

G(t, s) = G(s− 1, s) for all s ∈ Nb
a+2.

5.
b∑

s=a+1

G(t, s) ≤ λ, (t, s) ∈ Nb
a × Nb

a+1, where

λ =
( b− a− 1

αΓ(α + 1)

)((α− 1)(b− a) + 1

α

)α−1
.
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Based on the Remarks 1.2 and 1.4, we introduce a standard nonhomogeneous nabla
fractional boundary value problem with homogeneous boundary conditions as follows:{

−
(
∇α
ρ(a)u

)
(t) = h(t), t ∈ Nb

a+2,

u(a) = u(b) = 0,
(1.9)

where a, b ∈ R with b− a ∈ N2, 1 < α < 2 and h : Nb
a+2 → R.

Remark 1.7. (1.9) is the problem of solving a system of (b−a+1) equations in (b−a+1)
unknowns. So, (1.9) is a standard boundary value problem. For example, take b = a+3
so that b − a = 3 ∈ N2. Then, (1.9) reduces to the problem of solving a system of 4
equations in 4 unknowns as follows:

1 0 0 0
α(1− α)

2
α −1 0

α(1− α)(2− α)

6

α(1− α)

2
α −1

0 0 0 1




u(a)
u(a+ 1)
u(a+ 2)
u(a+ 3)

 =


0

h(a+ 2)
h(a+ 3)

0

 . (1.10)

Since the determinant of the coefficient matrix is nonzero, the system (1.10) has a unique
solution and so is true for (1.9).

Motivated by the Remark 1.7, in this article, we establish sufficient conditions on
existence and uniqueness of solutions of the following standard two-point boundary
value problem for a nonlinear nabla fractional difference equation:{

−
(
∇α
ρ(a)u

)
(t) = f(t, u(t)), t ∈ Nb

a+2,

u(a) = A, u(b) = B,
(1.11)

where a, b ∈ R with b− a ∈ N2; A, B ∈ R; 1 < α < 2 and f : Nb
a+2 × R→ R.

2 Preliminaries
Throughout, we shall use the following notations, definitions and known results of nabla
fractional calculus [12]. Denote the set of all real numbers by R. Define

Na := {a, a+ 1, a+ 2, . . .} and Nb
a := {a, a+ 1, a+ 2, . . . , b}

for any a, b ∈ R such that b− a ∈ N1. Assume that empty sums and products are taken
to be 0 and 1, respectively.

Definition 2.1 (See [8]). The backward jump operator ρ : Na → Na is defined by

ρ(t) = max{a, (t− 1)}, t ∈ Na.
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Definition 2.2 (See [15, 17]). The Euler gamma function is defined by

Γ(z) :=

∫ ∞
0

tz−1e−tdt, <(z) > 0.

Using the reduction formula

Γ(z + 1) = zΓ(z), <(z) > 0,

the Euler gamma function can be extended to the half-plane <(z) ≤ 0 except for z 6=
0,−1,−2, . . .

Definition 2.3 (See [12]). For t ∈ R \ {. . . ,−2,−1, 0} and r ∈ R such that (t + r) ∈
R \ {. . . ,−2,−1, 0}, the generalized rising function is defined by

tr :=
Γ(t+ r)

Γ(t)
, 0r := 0.

Definition 2.4 (See [8]). Let u : Na → R andN ∈ N1. The first order backward (nabla)
difference of u is defined by(

∇u
)
(t) := u(t)− u(t− 1), t ∈ Na+1,

and the N th-order nabla difference of u is defined recursively by(
∇Nu

)
(t) :=

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .

Definition 2.5 (See [12]). Let u : Na+1 → R and N ∈ N1. The N th-order nabla sum of
u based at a is given by

(
∇−Na u

)
(t) :=

1

(N − 1)!

t∑
s=a+1

(t− ρ(s))N−1u(s), t ∈ Na+1.

We define
(
∇−0a u

)
(t) = u(t) for all t ∈ Na+1.

Definition 2.6 (See [12]). Let u : Na+1 → R and ν > 0. The ν th-order nabla sum of u
based at a is given by

(
∇−νa u

)
(t) :=

1

Γ(ν)

t∑
s=a+1

(t− ρ(s))ν−1u(s), t ∈ Na+1.

Definition 2.7 (See [12]). Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that
N − 1 < ν ≤ N . The Riemann–Liouville type ν th-order nabla difference of u is given
by (

∇ν
au
)
(t) :=

(
∇N
(
∇−(N−ν)a u

))
(t), t ∈ Na+N .
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Theorem 2.8 (See [4]). Assume u : Na+1 → R, ν > 0, ν 6∈ N1, and choose N ∈ N1

such that N − 1 < ν < N . Then,

(
∇ν
au
)
(t) =

1

Γ(−ν)

t∑
s=a+1

(t− ρ(s))−ν−1u(s), t ∈ Na+1.

Theorem 2.9 (See [14]). We observe the following properties of gamma and generalized
rising functions.

1. Γ(t) > 0 for all t > 0.

2. tα(t+ α)β = tα+β .

3. If t ≤ r, then tα ≤ rα.

4. If α < t ≤ r, then r−α ≤ t−α.

Theorem 2.10 (See [2]). Let ν ∈ R+ and µ ∈ R such that µ, µ + ν and µ − ν are
nonnegative integers. Then,

∇−νa (t− a)µ =
Γ(µ+ 1)

Γ(µ+ ν + 1)
(t− a)µ+ν , t ∈ Na,

∇ν
a(t− a)µ =

Γ(µ+ 1)

Γ(µ− ν + 1)
(t− a)µ−ν , t ∈ Na.

Definition 2.11 (See [12]). Assume u : Na+1 → R. Then, the nabla Laplace transform
of u is defined by

La
[
u(t)

]
:=

∞∑
k=1

(1− s)k−1u(a+ k),

for those values of s such that this infinite series converges.

Definition 2.12 (See [12]). For u, v : Na+1 → R, we define the nabla convolution
product of u and v by

(u ∗ v)(t) :=
t∑

s=a+1

u(t− ρ(s) + a)v(s), t ∈ Na+1.

Theorem 2.13 (See [12]). We observe the following properties of the nabla Laplace
transform.

1. For ν not an integer, we have that

La
[
(t− a)ν

]
=

Γ(ν + 1)

sν+1
, |s− 1| < 1.
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2. Assume u, v : Na+1 → R and their nabla Laplace transforms converge for |s −
1| < r for some r > 0. Then,

La
[
(u ∗ v)(t)

]
= La

[
u(t)

]
La
[
v(t)

]
, |s− 1| < r.

3. Assume ν > 0 and the nabla Laplace transform of u : Na+1 → R converges for
|s− 1| < r for some r > 0. Then,

La
[(
∇−νa u

)
(t)
]

= s−νLa
[
u(t)

]
, |s− 1| < min{1, r}.

4. Given u : Na+1 → R and n ∈ N1, we have that

La+n
[
u(t)

]
=
( 1

1− s

)n
La
[
u(t)

]
−

n∑
k=1

u(a+ k)

(1− s)n−k+1
.

5. Let u : Na+1 → R and 1 < ν < 2 be given. Then, we have

La
[(
∇ν
au
)
(t)
]

= sνLa
[
u(t)

]
.

Theorem 2.14 (See [12]). Assume ν > 0 and chooseN ∈ N1 such thatN−1 < ν ≤ N .
Then, a general solution of (

∇ν
ρ(a)u

)
(t) = 0, t ∈ Na+N ,

is given by

u(t) = C1(t− a+ 1)ν−1 + C2(t− a+ 1)ν−2 + . . .+ CN(t− a+ 1)ν−N , t ∈ Na,

where C1, C2, . . . , CN ∈ R.

3 Construction of Green’s Function
Let 1 < α < 2. First, we consider an αth-order nabla fractional initial value problem
and give a formula for its solution using Theorem 2.13.

Lemma 3.1. Assume A0, A1 ∈ R and g : Na+2 → R. Then, the unique solution of the
fractional initial value problem{(

∇α
ρ(a)u

)
(t) = g(t), t ∈ Na+2,

u(a) = A0, u(a+ 1) = A1,
(3.1)

is given by

u(t) =
[A1 − (α− 1)A0

Γ(α)

]
(t− a+ 1)α−1 +

[αA0 − A1

Γ(α− 1)

]
(t− a+ 1)α−2 +

(
∇−αa+1g

)
(t),

(3.2)
for t ∈ Na.
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Proof. Applying the nabla Laplace transform La+1 on both sides of (3.1), we have that

La+1

[(
∇α
ρ(a)u

)
(t)
]

= La+1

[
g(t)

]
. (3.3)

Now, we use Theorem 2.13 to rewrite the left and right hand parts of (3.3) in terms of
Lρ(a)

[
u(t)

]
and Lρ(a)

[
g(t)

]
, respectively. Consider

La+1

[(
∇α
ρ(a)u

)
(t)
]

=
1

(1− s)2
Lρ(a)

[(
∇α
ρ(a)u

)
(t)
]
− 1

(1− s)2
[(
∇α
ρ(a)u

)
(t)
]
t=a

− 1

(1− s)
[(
∇α
ρ(a)u

)
(t)
]
t=a+1

=
sα

(1− s)2
Lρ(a)

[
u(t)

]
+
[ α

(1− s)
− 1

(1− s)2
]
A0

− A1

(1− s)
. (3.4)

Also, consider

La+1

[
g(t)

]
=

1

(1− s)2
Lρ(a)

[
g(t)

]
− g(a)

(1− s)2
− g(a+ 1)

(1− s)
. (3.5)

Using (3.4) and (3.5) in (3.3) and then multiplying by (1−s)2 on both sides, we get that

sαLρ(a)
[
u(t)

]
=
[
1− α(1− s)

]
A0 + (1− s)A1 + Lρ(a)

[
g(t)

]
− g(a)− (1− s)g(a+ 1). (3.6)

Multiplying by s−α on both sides of (3.6), it follows that

Lρ(a)
[
u(t)

]
=
[(1− α)

sα
+

α

sα−1

]
A0 +

[ 1

sα
− 1

sα−1

]
A1 + s−αLρ(a)

[
g(t)

]
− g(a)

sα
−
[ 1

sα
− 1

sα−1

]
g(a+ 1). (3.7)

Applying the inverse nabla Laplace transform L−1ρ(a) on both sides of (3.7) and then using
Theorem 2.13, we have that

u(t) =
[(1− α)(t− a+ 1)α−1

Γ(α)
+
α(t− a+ 1)α−2

Γ(α− 1)

]
A0

+
[(t− a+ 1)α−1

Γ(α)
− (t− a+ 1)α−2

Γ(α− 1)

]
A1 +

(
∇−αρ(a)g

)
(t)

− (t− a+ 1)α−1

Γ(α)
g(a)−

[(t− a+ 1)α−1

Γ(α)
− (t− a+ 1)α−2

Γ(α− 1)

]
g(a+ 1)

=
[A1 − (α− 1)A0

Γ(α)

]
(t− a+ 1)α−1 +

[αA0 − A1

Γ(α− 1)

]
(t− a+ 1)α−2
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+
(
∇−αρ(a)g

)
(t)

− (t− a+ 1)α−1

Γ(α)
g(a)− (t− a)α−1

Γ(α)
g(a+ 1)

=
[A1 − (α− 1)A0

Γ(α)

]
(t− a+ 1)α−1 +

[αA0 − A1

Γ(α− 1)

]
(t− a+ 1)α−2

+
(
∇−αa+1g

)
(t).

Thus, we have (3.2).

Next, we use Lemma 3.1 to deduce the unique solution of the nabla fractional bound-
ary value problem (1.9).

Theorem 3.2. The nabla fractional boundary value problem (1.9) has the unique solu-
tion

u(t) =
b∑

s=a+2

G(t, s)h(s), t ∈ Nb
a, (3.8)

where Green’s function G(t, s) is as in (1.4).

Proof. Comparing (1.9) and (3.1), we have that A0 = 0 and g = −h. Then, from (3.2),
it follows that

u(t) = A1

[(t− a+ 1)α−1

Γ(α)
− (t− a+ 1)α−2

Γ(α− 1)

]
−
(
∇−αa+1h

)
(t)

= A1
(t− a)α−1

Γ(α)
− 1

Γ(α)

t∑
s=a+2

(t− s+ 1)α−1h(s). (3.9)

Using u(b) = 0 in (3.9), we obtain the value of A1 as

A1 =
1

(b− a)α−1

b∑
s=a+2

(b− s+ 1)α−1h(s). (3.10)

Substituting the value of A1 from (3.10) in (3.9), we get that

u(t) =
(t− a)α−1

(b− a)α−1Γ(α)

b∑
s=a+2

(b− s+ 1)α−1h(s)− 1

Γ(α)

t∑
s=a+2

(t− s+ 1)α−1h(s)

=
1

Γ(α)

t∑
s=a+2

[(b− s+ 1)α−1

(b− a)α−1
(t− a)α−1 − (t− s+ 1)α−1

]
h(s)

+
1

Γ(α)

b∑
s=t+1

[(b− s+ 1)α−1

(b− a)α−1
(t− a)α−1

]
h(s)
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=
b∑

s=a+2

G(t, s)h(s).

Thus, we have (3.8).

Now, we wish to obtain an expression for the unique solution of the following two-
point nabla fractional boundary value problem associated with nonhomogeneous bound-
ary conditions: {

−
(
∇α
ρ(a)u

)
(t) = h(t), t ∈ Nb

a+2,

u(a) = A, u(b) = B.
(3.11)

For this purpose, we need the following Lemma.

Lemma 3.3. The solution of the nabla fractional boundary value problem{
−
(
∇α
ρ(a)w

)
(t) = 0, t ∈ Nb

a+2,

w(a) = A, w(b) = B,
(3.12)

is

w(t) = A
( b− t
b− a

)(t− a+ 1)α−2

Γ(α− 1)
+B

(t− a)α−1

(b− a)α−1
, t ∈ Nb

a. (3.13)

Proof. Using Theorem 2.14, the general solution of the equation −
(
∇α
ρ(a)w

)
(t) = 0 is

given by
w(t) = C1(t− a+ 1)α−1 + C2(t− a+ 1)α−2, t ∈ Nb

a, (3.14)

where C1 and C2 are arbitrary constants. Using w(a) = A and w(b) = B in (3.14), we
have that

(α− 1)C1 + C2 =
A

Γ(α− 1)
,

C1(b− a+ 1)α−1 + C2(b− a+ 1)α−2 = B.

Solving the above system of equations for C1 and C2, we get that

C1 =
1

(b− a)α−1

[
B − A

Γ(α− 1)
(b− a+ 1)α−2

]
,

and

C2 =
A

Γ(α− 1)
− (α− 1)

(b− a)α−1

[
B − A

Γ(α− 1)
(b− a+ 1)α−2

]
.

Substituting the values of C1 and C2 in (3.14), it follows that

w(t) =
(t− a+ 1)α−1

(b− a)α−1

[
B − A

Γ(α− 1)
(b− a+ 1)α−2

]
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+
A(t− a+ 1)α−2

Γ(α− 1)
− (α− 1)(t− a+ 1)α−2

(b− a)α−1

[
B − A

Γ(α− 1)
(b− a+ 1)α−2

]
=

A

Γ(α− 1)

[
(t− a+ 1)α−2 − (t− a)α−1

(b− a)

]
+B

(t− a)α−1

(b− a)α−1

= A
( b− t
b− a

)(t− a+ 1)α−2

Γ(α− 1)
+B

(t− a)α−1

(b− a)α−1
.

Thus, we have (3.13).

Theorem 3.4. Let h : Nb
a+2 → R. The nabla fractional boundary value problem (3.11)

has the unique solution

u(t) = w(t) +
b∑

s=a+2

G(t, s)h(s), t ∈ Nb
a, (3.15)

where Green’s function G(t, s) is as in (1.4) and w is given by (3.13).

In order to derive sufficient conditions on the existence of solutions for (1.11), we
use the following Lemma.

Lemma 3.5. |w(t)| ≤ 2 max{|A|, |B|} for each t ∈ Nb
a.

Proof. From Theorem 2.9, it follows that

(t− a+ 1)α−2 =
Γ(t− a+ α− 1)

Γ(t− a+ 1)
> 0,

(t− a)α−1 =
Γ(t− a+ α− 1)

Γ(t− a)
≥ 0,

and

(b− a)α−1 =
Γ(b− a+ α− 1)

Γ(b− a)
> 0,

for t ∈ Nb
a. Since (α− 2) < 1 ≤ (t− a+ 1) and (t− a) ≤ (b− a), using Theorem 2.9,

we have
(t− a+ 1)α−2 ≤ 1α−2 and (t− a)α−1 ≤ (b− a)α−1,

implying that

|w(t)| ≤ |A|
Γ(α− 1)

( b− t
b− a

)
(t− a+ 1)α−2 + |B| (t− a)α−1

(b− a)α−1

≤ |A|
Γ(α− 1)

1α−2 + |B|

= |A|+ |B|
≤ 2 max{|A|, |B|}.

Hence the proof is complete.
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4 Existence of Positive Solutions
In this section, we establish sufficient conditions on the existence of at least one and two
positive solutions for the following standard nonlinear nabla fractional boundary value
problem using Guo–Krasnoselskii fixed point theorem for cones:{

−
(
∇α
ρ(a)u

)
(t) = f(t, u(t)), t ∈ Nb

a+2,

u(a) = 0, u(b) = 0,
(4.1)

where a, b ∈ R with b− a ∈ N2, 1 < α < 2 and f : Nb
a+2 × R→ R is continuous.

Theorem 4.1 (See [3]). [Guo–Krasnoselskii fixed point theorem] Let B be a Banach
space and K ⊆ B be a cone. Assume that Ω1 and Ω2 are open sets contained in B such
that 0 ∈ Ω1 and Ω1 ⊆ Ω2. Further, assume that A : K∩ (Ω2 \Ω1)→ K is a completely
continuous operator. If, either

1. ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2; or

2. ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2;

holds, then A has at least one fixed point in K ∩ (Ω2 \ Ω1).

In addition to Theorem 1.6, we shall also need the following property of Green’s
function.

Theorem 4.2. There exists a number γ ∈ (0, 1) such that

min
t∈Nb−1

a+1

G(t, s) ≥ γ max
t∈Nb−1

a+1

G(t, s) = γG(s− 1, s), s ∈ Nb
a+2.

Proof. Brackins [9] showed that for fixed s ∈ Nb
a+1, G(t, s) increases from G(a, s) = 0

to a positive value at t = s − 1 and then decreases to G(b, s) = 0. Now, for s ∈ Nb
a+2,

consider

G(t, s)

G(s− 1, s)
=


(t− a)α−1

(s− a− 1)α−1
, t ∈ Nρ(s)

a+1,

(t− a)α−1

(s− a− 1)α−1
− (t− s+ 1)α−1(b− a)α−1

(b− s+ 1)α−1(s− a− 1)α−1
, t ∈ Nb−1

s .

For t ∈ Nρ(s)
a+1 and s ∈ Nb

a+2, we have

G(t, s)

G(s− 1, s)
=

(t− a)α−1

(s− a− 1)α−1
≥ 1α−1

(b− a− 1)α−1
=

Γ(α)

(b− a− 1)α−1
. (4.2)
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For t ∈ Nb−1
s and s ∈ Nb−1

a+2, we know that G(t, s) is a decreasing function of t. Then,
we have

G(t, s)

G(s− 1, s)
≥ G(b− 1, s)

G(s− 1, s)

=
(b− a− 1)α−1

(s− a− 1)α−1
− (b− s)α−1(b− a)α−1

(b− s+ 1)α−1(s− a− 1)α−1

=
(b− a− 1)α−1

(s− a− 1)α−1

[
1− (b− s)α−1

(b− s+ 1)α−1
(b− a)α−1

(b− a− 1)α−1

]
=

(b− a− 1)α−1

(s− a− 1)α−1

[
1−

( b− s
b− s+ α− 1

)(b− a+ α− 2

b− a− 1

)]
=

(b− a)α−2

(s− a)α−2

( α− 1

b− s+ α− 1

)
≥ (b− a)α−2

2α−2

( α− 1

b− a+ α− 3

)
=

(b− a)α−2

(b− a+ α− 3)Γ(α− 1)
. (4.3)

It follows from (4.2) and (4.3) that

min
t∈Nb−1

a+1

G(t, s) ≥ γG(s− 1, s), s ∈ Nb
a+2,

where

γ = min
{ Γ(α)

(b− a− 1)α−1
,

(b− a)α−2

(b− a+ α− 3)Γ(α− 1)

}
.

Clearly, 0 < γ < 1.

We observe that, by Theorem 3.2, u is a solution of (4.1) if and only if u is a solution
of the summation equation

u(t) =
b∑

s=a+2

G(t, s)f(s, u(s)), t ∈ Nb
a. (4.4)

Define the operator

(
Au
)
(t) :=

b∑
s=a+2

G(t, s)f(s, u(s)), t ∈ Nb
a. (4.5)

It is evident from (4.4) and (4.5) that u is a fixed point of A if and only if u is a solution
of (4.1). Denote by

B = {u : Nb
a → R | u(a) = u(b) = 0} ⊆ Rb−a+1.
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Clearly, B is a Banach space equipped with the maximum norm

‖u‖ := max
t∈Nba
|u(t)|,

and also, A : B → B. Define the cone

K :=
{
u ∈ B : u(t) ≥ 0 for all t ∈ Nb

a and min
t∈Nb−1

a+1

u(t) ≥ γ‖u‖
}
.

We shall obtain sufficient conditions for the existence of a fixed point of A. First, note
that A is a summation operator on a discrete finite set. Hence, A is trivially completely
continuous. We state the following hypotheses which will be used later. Take

η :=
1∑b

s=a+2G(s− 1, s)
=

Γ(α)

Γ(2α)

(b− a)2α−1

(b− a)α−1
.

Let t0 ∈ Nb−1
a+1 such that

min
t∈Nb−1

a+1

G(t, s) = G(t0, s), for all s ∈ Nb
a+2.

Then, it follows from Theorem 4.2 that

G(t0, s) ≥ γG(s− 1, s), s ∈ Nb
a+2. (4.6)

(H1) f(t, ξ) ≥ 0, (t, ξ) ∈ Nb
a × [0,∞);

(H2) There exists a number r1 > 0 such that f(t, u) ≤ ηr1, whenever 0 ≤ u ≤ r1;

(H3) There exists a number r2 > 0 such that f(t, u) ≥ ηr2
γ

, whenever γr2 ≤ u ≤ r2;

(H4) Assume that

lim
u→0+

min
t∈Nba

f(t, u)

u
=∞, lim

u→∞
min
t∈Nba

f(t, u)

u
=∞.

(H5) Assume that

lim
u→0+

min
t∈Nba

f(t, u)

u
= 0, lim

u→∞
min
t∈Nba

f(t, u)

u
= 0.

Lemma 4.3. Assume (H1) holds. Then, A : K → K.
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Proof. Let u ∈ K. Clearly,
(
Au
)
(t) ≥ 0 for t ∈ Nb

a. Now, consider

min
t∈Nb−1

a+1

(
Au
)
(t) = min

t∈Nb−1
a+1

b∑
s=a+2

G(t, s)f(s, u(s))

≥ γ
b∑

s=a+2

G(s− 1, s)f(s, u(s))

= γ max
t∈Nb−1

a+1

b∑
s=a+2

G(t, s)f(s, u(s))

= γmax
t∈Nba

b∑
s=a+2

G(t, s)f(s, u(s))

= γ‖Au‖,

implying that Au ∈ K.

Theorem 4.4. Assume f satisfies (H1), (H2) and (H3). Then, (4.1) has at least one
positive solution.

Proof. We know that A : K → K is completely continuous. Define the set

Ω1 := {u ∈ K : ‖u‖ < r1}.

Clearly, Ω1 ⊆ B is an open set with 0 ∈ Ω1. Since ‖u‖ = r1 for u ∈ ∂Ω1, (H2) holds
for all u ∈ ∂Ω1. So, it follows that

‖Au‖ = max
t∈Nba

b∑
s=a+2

G(t, s)f(s, u(s)) ≤
b∑

s=a+2

G(s− 1, s)f(s, u(s))

≤ ηr1

b∑
s=a+2

G(s− 1, s)

= r1 = ‖u‖,

implying that ‖Au‖ ≤ ‖u‖ whenever u ∈ K ∩ ∂Ω1. On the other hand, define the set

Ω2 := {u ∈ K : ‖u‖ < r2}.

Clearly, Ω2 ⊆ B is an open set and Ω1 ⊆ Ω2. Since ‖u‖ = r2 for u ∈ ∂Ω2, (H3) holds
for all u ∈ ∂Ω2. Using (4.6), we have

‖Au‖ ≥ |Au(t0)| =
b∑

s=a+2

G(t0, s)f(s, u(s)) ≥ γ
b∑

s=a+2

G(s− 1, s)f(s, u(s))
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≥ ηr2

b∑
s=a+2

G(s− 1, s)

= r2 = ‖u‖,

implying that ‖Au‖ ≥ ‖u‖ whenever u ∈ K ∩ ∂Ω2. Hence, by Theorem 4.1, A has at
least one fixed point in K ∩ (Ω2 \ Ω1), say u0, satisfying r1 < ‖u0‖ < r2.

Theorem 4.5. Assume f satisfies (H1), (H2) and (H4). Then, (4.1) has at least two
positive solutions.

Proof. Fix t1 ∈ Nb−1
a+1 and choose M > 0 such that

Mγ
b∑

s=a+2

G(t1, s) > 1. (4.7)

By (H4), there exists an r > 0 such that r < p and f(t, u) ≥Mu for all 0 ≤ u ≤ r and
t ∈ Nb

a. Define the set
Ωr := {u ∈ K : ‖u‖ < r}.

Using (4.7), we have

‖Au‖ ≥ |Au(t1)| =
b∑

s=a+2

G(t1, s)f(s, u(s)) ≥M
b∑

s=a+2

G(t1, s)|u(s)|

≥Mγ‖u‖
b∑

s=a+2

G(t1, s) > ‖u‖,

implying that ‖Au‖ > ‖u‖ whenever u ∈ K ∩ ∂Ωr. Next, for the same M > 0, we can
find a number R1 > 0 such that f(t, u) ≥Mu for all u ≥ R1 and t ∈ Nb

a. Choose R so
that

R > max
{
p,
R1

γ

}
.

Define the set
ΩR := {u ∈ K : ‖u‖ < R}.

Clearly, ‖Au‖ > ‖u‖ whenever u ∈ K ∩ ∂ΩR. Finally, define the set

Ωp := {u ∈ K : ‖u‖ < p}.

It follows that ‖Au‖ ≤ ‖u‖ whenever u ∈ K ∩ ∂Ωp.
Hence, we conclude that A has at least two fixed points say u1 ∈ Ωp \ Ω̊r and

u2 ∈ ΩR \ Ω̊p, where Ω̊ denotes the interior of the set Ω. In particular, (4.1) has at least
two positive solution, say u1 and u2, satisfying 0 < ‖u1‖ < p < ‖u2‖.
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Theorem 4.6. Assume f satisfies (H1), (H3) and (H5). Then, (4.1) has at least two
positive solutions.

Proof. By (H5), for any ε > 0, there is anM > 0 such that f(t, u) ≤M+εu for u ∈ K
and t ∈ Nb

a. Then,

∣∣(Au)(t)∣∣ =
b∑

s=a+2

G(t, s)f(s, u(s)) ≤
b∑

s=a+2

G(s− 1, s)
[
M + εu(s)

]
.

Since ε > 0 is arbitrary,

∣∣(Au)(t)∣∣ ≤M
b∑

s=a+2

G(s− 1, s) =
M

η
,

implying that

‖Au‖ ≤ M

η
.

Pick R > p sufficiently large so that

M

η
< R.

Define the set
ΩR := {u ∈ K : ‖u‖ < R}.

Then, ‖Au‖ < R = ‖u‖ whenever u ∈ K∩ ∂ΩR. Again, by (H5), there exists an r > 0
such that r < p and f(t, u) < ηu for 0 ≤ u ≤ r, u ∈ K and t ∈ Nb

a. Define the set

Ωr := {u ∈ K : ‖u‖ < r}.

Then, it follows that

‖Au‖ = max
t∈Nba

b∑
s=a+2

G(t, s)f(s, u(s)) ≤
b∑

s=a+2

G(s− 1, s)f(s, u(s))

< η

b∑
s=a+2

G(s− 1, s)|u(s)|

≤ ‖u‖,

implying that ‖Au‖ < ‖u‖ whenever u ∈ K ∩ ∂Ωr. Define the set

Ωp := {u ∈ K : ‖u‖ < p}.

Clearly, ‖Au‖ > ‖u‖ whenever u ∈ K ∩ ∂Ωp.
Hence, we conclude that A has at least two fixed points say u1 ∈ Ωp \ Ω̊r and

u2 ∈ ΩR \ Ω̊p, where Ω̊ denotes the interior of the set Ω. In particular, (4.1) has at least
two positive solution, say u1 and u2, satisfying 0 < ‖u1‖ < p < ‖u2‖.
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5 Existence of Solutions
In this section, we present several existence results using various fixed point theorems.
By Theorem 3.4, we observe that u is a solution of (1.11) if and only if u is a solution
of the summation equation

u(t) = w(t) +
b∑

s=a+2

G(t, s)f(s, u(s)), t ∈ Nb
a. (5.1)

Define the operator

(
Tu
)
(t) := w(t) +

b∑
s=a+2

G(t, s)f(s, u(s)), t ∈ Nb
a. (5.2)

It is evident from (5.1) and (5.2) that u is a fixed point of T if and only if u is a solution
of (1.11).

Theorem 5.1 (See [3]). [Brouwer fixed point theorem] Let K be a nonempty compact
convex subset of Rn and T be a continuous mapping ofK into itself. Then, T has a fixed
point in K.

Theorem 5.2 (See [3]). [Leray–Schauder fixed point theorem] Let Ω be an open subset
of Rn with 0 ∈ Ω. Then, every completely continuous mapping T : Ω→ Rn has at least
one of the two following properties:

1. There exists an u ∈ Ω such that Tu = u.

2. There exist a v ∈ ∂Ω and µ ∈ (0, 1) such that v = µTv.

Then, T has a fixed point u in Ω.

Theorem 5.3 (See [3]). [Krasnoselskii–Zabreiko fixed point theorem] Assume that T :
Rn → Rn is a completely continuous mapping. If L : Rn → Rn is a bounded linear
mapping such that 1 is not an eigenvalue of L and

lim
‖u‖→∞

‖Tu− Lu‖
‖u‖

= 0,

then T has a fixed point in Rn.

We shall use the fact that Rb−a+1 is a Banach space equipped with the maximum
norm defined by

‖u‖ := max
t∈Nba
|u(t)|.
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Theorem 5.4. Assume f(t, u) is continuous with respect to u for each t ∈ Nb
a. Assume

there exist positive constants L and M such that

max{|A|, |B|} ≤ L, (5.3)

max
(t,u)∈Nba×[−3L,3L]

|f(t, u)| = M, (5.4)

and
λ ≤ L

M
. (5.5)

Then, (1.11) has a solution.

Proof. Define the set

K :=
{
u : Nb

a → R and ‖u‖ ≤ 3L
}
.

Clearly, K is a nonempty compact convex subset of Rb−a+1. Now, we claim that T :
K → K. To see this, let u ∈ K and t ∈ Nb

a. Consider

∣∣(Tu)(t)∣∣ =
∣∣∣w(t) +

b∑
s=a+2

G(t, s)f(s, u(s))
∣∣∣

≤ |w(t)|+
b∑

s=a+2

G(t, s)|f(s, u(s))|

≤ 2 max{|A|, |B|}+M
b∑

s=a+2

G(t, s)

≤ 2L+Mλ ≤ 3L,

implying that Tu ∈ K and hence T : K → K. Since T is a summation operator on
a discrete finite set, T is trivially continuous on K. So, it follows by Theorem 5.1 that
the operator T has a fixed point. This means that (1.11) has a solution, say u0, with
‖u0‖ ≤ 3L.

Theorem 5.5. Assume f(t, u) is continuous with respect to u for each t ∈ Nb
a and is

bounded on Nb
a × R. Then, (1.11) has a solution.

Proof. Choose
P > sup

(t,u)∈Nba×R
|f(t, u)|.

Pick L large enough so that

max{|A|, |B|} ≤ L and λ ≤ L

M
.
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For the M defined in Theorem 5.4, M ≤ P , so that

λ ≤ L

M
,

and, by Theorem 5.4, (1.11) has a solution.

Theorem 5.6. Assume f(t, u) is continuous with respect to u for each t ∈ Nb
a. As-

sume there exists a continuous function σ : Nb
a → R+ and a continuous nondecreasing

function ψ : R+ → R+ such that

|f(t, u)| ≤ σ(t)ψ(|u|), (t, u) ∈ Nb
a × R. (5.6)

Moreover, assume there exists a positive constant γ such that
γ

2 max{|A|, |B|}+ λ‖σ‖ψ(γ)
> 1. (5.7)

Then, (1.11) has a solution.

Proof. Define the set
Ω := {u : Na → R and ‖u‖ < γ}.

Clearly, Ω is an open subset of Rb−a+1 with 0 ∈ Ω and T : Ω → Rb−a+1. Since T is a
summation operator on a discrete finite set, T is trivially completely continuous on Ω.
Now, suppose there exist a v ∈ Ω and µ ∈ (0, 1) such that

v = µTv. (5.8)

Using the definition of T and Lemma 3.5 in (5.8), we obtain

|v(t)| ≤ |w(t)|+
b∑

s=a+2

G(t, s)|f(s, v(s))|

≤ 2 max{|A|, |B|}+
b∑

s=a+2

G(t, s)σ(s)ψ(|v(s)|)

≤ 2 max{|A|, |B|}+ ‖σ‖ψ(‖v‖)
b∑

s=a+2

G(t, s)

≤ 2 max{|A|, |B|}+ λ‖σ‖ψ(γ),

implying that
‖v‖ ≤ 2 max{|A|, |B|}+ λ‖σ‖ψ(γ).

Hence,
γ

2 max{|A|, |B|}+ λ‖σ‖ψ(γ)
≤ 1.

This is a contradiction to (5.7). So, it follows by Theorem 5.2 that the operator T has a
fixed point in Ω. This means that (1.11) has a solution, say u1, with ‖u1‖ < γ.
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Theorem 5.7. Assume f(t, u) is continuous with respect to u for each t ∈ Nb
a. Assume

there exists a continuous function φ : Nb
a → R such that

lim
‖u‖→∞

f(t, u)

u
= φ(t), t ∈ Nb

a, (5.9)

and
‖φ‖ < 1

λ
. (5.10)

Then, (1.11) has a solution.

Proof. Clearly, T : Rb−a+1 → Rb−a+1. Since T is a summation operator on a discrete
finite set, we have T is trivially completely continuous on Rb−a+1. Consider a linear
bounded mapping L : Rb−a+1 → Rb−a+1 defined by(

Lu
)
(t) :=

b∑
s=a+2

G(t, s)φ(s)u(s), t ∈ Nb
a. (5.11)

Obviously, ‖Lu‖ < ‖u‖. To see this, let u ∈ Rn and t ∈ Nb
a. Consider∣∣(Lu)(t)∣∣ ≤ b∑

s=a+2

G(t, s)|φ(s)||u(s)|

≤ ‖φ‖‖u‖
b∑

s=a+2

G(t, s) ≤ λ‖φ‖‖u‖ < ‖u‖,

implying that ‖Lu‖ < ‖u‖ and hence 1 is not an eigenvalue of L. From (5.9), we know
that for every ε > 0 there exists a number N such that, for every t ∈ Nb

a,

|f(t, u(t))− φ(t)u(t)| < ε whenever ‖u‖ > N. (5.12)

For every t ∈ Nb
a, we have∣∣(Tu)(t)− (Lu)(t)∣∣ ≤ |w(t)|+

b∑
s=a+2

G(t, s)
∣∣f(s, u(s))− φ(s)u(s)

∣∣
< 2 max{|A|, |B|}+ ε

b∑
s=a+2

G(t, s)

≤ 2 max{|A|, |B|}+ λε,

implying that
‖Tu− Lu‖
‖u‖

<
2 max{|A|, |B|}+ λε

N
.

Consequently, we obtain

lim
‖u‖→∞

‖Tu− Lu‖
‖u‖

= 0.

So, it follows by Theorem 5.3 that the operator T has a fixed point in Rb−a+1. This
means that (1.11) has a solution.
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6 Uniqueness of Solutions
In this section, we deduce the existence of a unique solution to (1.11) by assuming the
Lipschitz condition on f .

Theorem 6.1 (See [3]). [Contraction Mapping Theorem] Let S be a closed subset of
Rn. Assume T : S → S is a contraction mapping, that is, there exists a µ, 0 ≤ µ < 1,
such that

‖Tu− Tv‖ ≤ µ‖u− v‖,

for all u, v ∈ S. Then, T has a unique fixed point w in S.

Theorem 6.2. Assume f(t, u) satisfies the Lipschitz condition with respect to u with
Lipschitz constant K. That is,

‖f(t, u)− f(t, v)‖ ≤ K‖u− v‖, (6.1)

for all (t, u), (t, v) ∈ Nb
a × R. If

0 < Kλ < 1, (6.2)

then (1.11) has a unique solution.

Proof. Let u, v ∈ Rb−a+1 and t ∈ Nb
a. Consider

∣∣(Tu)(t)− (Tv)(t)∣∣ ≤ b∑
s=a+2

G(t, s)|f(s, u(s))− f(s, v(s))|

≤ K
b∑

s=a+1

G(t, s)|u(s)− v(s)|

≤ K‖u− v‖
b∑

s=a+2

G(t, s)

≤ Kλ‖u− v‖,

implying that ∥∥Tu− Tv∥∥ ≤ Kλ‖u− v‖.

Thus, T is a contraction on Rb−a+1 due to (6.2). So, it follows by Theorem 6.1 that
the operator T has a unique fixed point in Rb−a+1. This means that (1.11) has a unique
solution.

Theorem 6.3. Assume there exist positive constants η and β such that

‖f(t, u)− f(t, v)‖ ≤ β‖u− v‖, (6.3)
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for all (t, u), (t, v) ∈ Nb
a × [−η, η]. Take

m1 = max
t∈Nba
|f(t, 0)| (6.4)

and
m2 = max

(t,u)∈Nba×[−η,η]
|f(t, u)|. (6.5)

Assume
0 < βλ < 1. (6.6)

If

η ≥ m1λ+ 2 max{|A|, |B|}
1− βλ

(6.7)

or
2 max{|A|, |B|}+m2λ ≤ η, (6.8)

then (1.11) has a unique solution.

Proof. Clearly, T is a contraction on Rb−a+1 due to (6.6). Define the set

A =
{
u : Nb

a → R and ‖u‖ ≤ η
}
.

Clearly, A ⊆ Rb−a+1. Now, we claim that T : A → A. To see this, let u ∈ A and
t ∈ Nb

a. Suppose that (6.7) holds. Consider

∣∣T (0)(t)
∣∣ =

∣∣∣w(t) +
b∑

s=a+2

G(t, s)f(s, 0)
∣∣∣

≤ |w(t)|+
b∑

s=a+2

G(t, s)|f(s, 0)|

≤ 2 max{|A|, |B|}+m1

b∑
s=a+2

G(t, s)

≤ 2 max{|A|, |B|}+m1λ,

implying that ∥∥T (0)
∥∥ ≤ 2 max{|A|, |B|}+m1λ.

Consequently, we have

‖Tu‖ = ‖Tu− T (0) + T (0)‖
≤ ‖Tu− T (0)‖+ ‖T (0)‖
≤ βλ‖u− 0‖+ 2 max{|A|, |B|}+m1λ

≤ βλη + 2 max{|A|, |B|}+m1λ ≤ η,



164 Jagan Mohan Jonnalagadda

implying that T : A → A. On the other hand, suppose that (6.8) holds. Let u ∈ A and
t ∈ Nb

a. Consider

∣∣(Tu)(t)∣∣ =
∣∣∣w(t) +

b∑
s=a+2

G(t, s)f(s, u(s))
∣∣∣

≤ |w(t)|+
b∑

s=a+2

G(t, s)|f(s, u(s))|

≤ 2 max{|A|, |B|}+m2

b∑
s=a+2

G(t, s)

≤ 2 max{|A|, |B|}+m2λ ≤ η,

implying that ∥∥Tu∥∥ ≤ η,

and hence T : A → A. So, it follows by Theorem 6.1 that the operator T has a
unique fixed point in Rb−a+1. This means that (1.11) has a unique solution, say u2, with
‖u2‖ ≤ η.

7 Examples
Example 7.1. Consider the boundary value problem−

(
∇1.5
ρ(0)u

)
(t) =

1

u2 + t2 + 9
, t ∈ N10

2 ,

u(0) = 1, u(10) = 2.
(7.1)

Here α = 1.5, f(t, u) =
1

u2 + t2 + 9
, a = 0, b = 10, A = 1, B = 2 and L ≥ 2. Also,

λ =
9

(1.5)Γ(2.5)
(12)0.5 = 15.4738,

and
M = max

(t,u)∈N10
0 ×[−3L,3L]

|f(t, u)| = 1

9
.

Since λ ≤ L

M
, by Theorem 5.4, the boundary value problem (7.1) has at least one

solution, u0, satisfying |u0(t)| ≤ 3L for every t ∈ N10
0 .

Example 7.2. Consider the boundary value problem{
−
(
∇1.5
ρ(0)u

)
(t) = t+ (0.05) sinu, t ∈ N10

2 ,

u(0) = 1, u(10) = 2.
(7.2)
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Here α = 1.5, f(t, u) = t + (0.05) sinu, a = 0, b = 10, A = 1 and B = 2. Clearly,
f satisfies Lipschitz condition with respect to the second argument on N10

0 × R with
Lipschitz constant K = 0.05. Also,

λ =
9

(1.5)Γ(2.5)
(12)0.5 = 15.4738.

Since 0 < Kλ < 1, by Theorem 6.2, the boundary value problem (7.1) has a unique
solution on N10

0 × R.
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tion with applications. Birkhäuser Boston, Inc., Boston, MA, 2001. x+358 pp.

[9] Brackins, Abigail, Boundary value problems of nabla fractional difference equa-
tions. Thesis (Ph.D.), The University of Nebraska - Lincoln. 2014. 92 pp.

[10] Chen, Huiqin; Cui, Yaqiong; Zhao, Xianglan, Multiple solutions to fractional dif-
ference boundary value problems. Abstr. Appl. Anal. 2014, Art. ID 879380, 6 pp.



166 Jagan Mohan Jonnalagadda

[11] Gholami, Yousef; Ghanbari, Kazem, Coupled systems of fractional ∇-difference
boundary value problems. Differ. Equ. Appl. 8 (2016), no. 4, 459–470.

[12] Goodrich, Christopher; Peterson, Allan C., Discrete fractional calculus. Springer,
Cham, 2015.

[13] Goodrich, Christopher S., Some new existence results for fractional difference
equations. Int. J. Dyn. Syst. Differ. Equ. 3 (2011), no. 1-2, 145–162.

[14] Jonnalagadda, Jaganmohan, Analysis of a system of nonlinear fractional nabla
difference equations. Int. J. Dyn. Syst. Differ. Equ. 5 (2015), no. 2, 149–174.

[15] Kilbas, Anatoly A.; Srivastava, Hari M.; Trujillo, Juan J., Theory and applications
of fractional differential equations. North-Holland Mathematics Studies, 204. El-
sevier Science B.V., Amsterdam, 2006.

[16] Pachpatte, Deepak B.; Bagwan, Arif S.; Khandagale, Amol D., Existence of some
positive solutions to fractional difference equations. Int. J. Difference Equ. 10
(2015), no. 2, 221–232.

[17] Podlubny, Igor, Fractional differential equations. An introduction to fractional
derivatives, fractional differential equations, to methods of their solution and some
of their applications. Mathematics in Science and Engineering, 198. Academic
Press, Inc., San Diego, CA, 1999.


